Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

геофизик

Толковый словарь

м.

Специалист в области геофизике.

Энциклопедический словарь

ГЕОФИ́ЗИК -а; м. Специалист по геофизике.

Академический словарь

-а, м.

Специалист по геофизике.

Орфографический словарь

геофи́зик, -а

Формы слов для слова геофизик

геофи́зик, геофи́зики, геофи́зика, геофи́зиков, геофи́зику, геофи́зикам, геофи́зиком, геофи́зиками, геофи́зике, геофи́зиках

Синонимы к слову геофизик

сущ., кол-во синонимов: 4

Морфемно-орфографический словарь

гео/фи́з/ик/.

Грамматический словарь

геофи́зик мо 3a

Полезные сервисы

геофизика

Толковый словарь

ж.

Комплекс научных дисциплин, изучающих физические свойства Земли в целом и физические процессы, происходящие в её твёрдой, жидкой и газовой оболочках (геосферах).

Толковый словарь Ушакова

ГЕОФИ́ЗИКА, геофизики, мн. нет, жен. (от греч. ge - земля и слова "физика") (научн.). Совокупность дисциплин, применяющих физические методы к изучению земного шара.

Популярный словарь

Геофизика

-и, только ед., ж.

Комплекс наук, исследующих внутреннее строение Земли, ее физические свойства и процессы, происходящие в ее оболочках.

Дисциплины геофизики.

Родственные слова:

геофи́зик, геофизи́ческий

Этимология:

От гео... и физика.

Энциклопедический комментарий:

Соответственно в геофизике выделяют физику твердой Земли, физику моря и физику атмосферы. Различные геофизические науки развивались на протяжении четырех последних столетий (особенно в XIX и XX вв.) неравномерно и в некоторой изоляции одна от другой. Понятие геофизики как науки, объединяющей большую совокупность наук в определенную систему, оформилось лишь в 40-60 гг. XX в. Современное развитие геофизических наук стимулируется возрастающими потребностями в прогнозе состояния окружающей человека среды, особенно погоды и гидрологического режима, в освоении природных богатств и в регулировании природных процессов. В определенной мере оно связано и с космическими исследованиями.

Словарь существительных

ГЕОФИ́ЗИКА, -и, ж

Комплексная наука, исследующая физическими методами строение Земли, ее физические свойства и процессы, происходящие в ее оболочках.

Первые открытия в геофизике были сделаны еще в античные времена.

Энциклопедический словарь

ГЕОФИ́ЗИКА -и; ж. [от греч. gē и physikē] Комплексная наука, изучающая физические свойства Земли и происходящие в ней физические процессы.

Геофизи́ческий, -ая, -ое. Г-ие явления. Г-ие приборы. Г-ие исследования. Г-ая обсерватория.

* * *

геофи́зика - комплекс наук, исследующих физическими методами строение Земли, её физические свойства и процессы, происходящие в её оболочках. Соответственно в геофизике выделяют физику так называемой твёрдой Земли (сейсмология, геомагнетизм, гравиметрия, разведочная геофизика и др.), гидрофизику и физику атмосферы. Геофизические исследования используются в прогнозе погоды, а также при освоении энергетических и сырьевых ресурсов Земли.

* * *

ГЕОФИЗИКА - ГЕОФИ́ЗИКА, комплекс наук, исследующих физическими методами строение Земли, ее физические свойства и процессы, происходящие в ее оболочках. Соответственно в геофизике выделяют физику т. н. твердой Земли (сейсмология (см. СЕЙСМОЛОГИЯ), геомагнетизм (см. ГЕОМАГНЕТИЗМ), гравиметрия (см. ГРАВИМЕТРИЯ), разведочная геофизика (см. РАЗВЕДОЧНАЯ ГЕОФИЗИКА) и др.), гидрофизику и физику атмосферы. Геофизические исследования используются в прогнозе погоды (см. ПРОГНОЗ ПОГОДЫ) , а также при освоении энергетических и сырьевых ресурсов Земли.

Большой энциклопедический словарь

ГЕОФИЗИКА - комплекс наук, исследующих физическими методами строение Земли, ее физические свойства и процессы, происходящие в ее оболочках. Соответственно в геофизике выделяют физику т. н. твердой Земли (сейсмология, геомагнетизм, гравиметрия, разведочная геофизика и др.), гидрофизику и физику атмосферы. Геофизические исследования используются в прогнозе погоды, а также при освоении энергетических и сырьевых ресурсов Земли.

Академический словарь

-и, ж.

Комплекс наук о физических свойствах Земли и о происходящих в ней физических процессах.

Энциклопедия Кольера

ГЕОФИЗИКА - комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию). В настоящей статье рассматривается исключительно физика твердой Земли, основными разделами которой являются сейсмология, геодезия, гравиметрия, геомагнетизм, геоэлектрика, геотермия, реология, физика минералов и горных пород. Прикладная геофизика разрабатывает методы и теорию геофизической съемки и геофизической разведки, главным образом с целью поиска месторождений полезных ископаемых

(см. ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА). Морская геофизика проводит исследования в морях и океанах. Геофизика использует данные других наук, в основном физики и геологии, а также математики, астрономии, кристаллографии, геохимии. Большое влияние на развитие геофизики оказали результаты космических исследований и развитие теории тектоники плит. См. также ЗЕМЛЯ. Сейсмология изучает землетрясения, их механизмы и последствия, распространение сейсмических волн, а также все виды движений земной коры, которые регистрируются сейсмографами на суше и на дне океанов и морей. Наиболее активные землетрясения наблюдаются в ослабленных зонах вдоль границ тектонических плит. При этом возбуждаются три типа сейсмических волн: продольные (P), поперечные (S) и поверхностные (волны Лява и Рэлея). Сильные землетрясения могут также возбуждать свободные колебания всей Земли. Выбором сейсмически безопасных мест для строительства проектируемых сейсмостойких сооружений занимается инженерная сейсмология. Реальной методологии точного прогноза времени и места землетрясений пока не существует. Известно, что наиболее сильные землетрясения сопровождают процесс субдукции (поддвига) в глубоководных желобах или движения по трансформным разломам. Это позволяет прогнозировать районы возможных землетрясений. Информация о силе ожидаемых толчков крайне необходима для определения возможной интенсивности сейсмических воздействий на такие сооружения, как ядерные реакторы, плотины, мосты и здания. Сейсмические методы используются для изучения внутреннего строения Земли в целом и ее структуры на разных глубинах. Следует отметить, что на основе результатов сейсмических исследований установлено, что Земля состоит из ядра, мантии и земной коры. Использование цифровых сейсмографов сыграло огромную роль в изучении земных недр и позволило регистрировать землетрясения. По данным об изменениях скоростей волн была составлена трехмерная схема строения мантии. Структура верхней мантии, определяемая по скоростям сейсмических волн, различна для районов срединно-океанических хребтов и материков и соответствует распределению теплового потока. Сходная картина в изменениях скоростей волн отмечается и в нижней мантии, однако они не коррелируют с макрорельефом поверхности Земли.

См. также ЗЕМЛЕТРЯСЕНИЯ. Геодезия исследует главным образом форму Земли. Различают две геодезические задачи: определение параметров сфероида или эллипсоида (дающего наилучшее совпадение с поверхностью моря), в первом приближении аппроксимирующего форму Земли, и измерение отклонений действительной поверхности геоида от сфероида. По существу, форма Земли представляет собой эллипсоид вращения, слегка сплющенный на полюсах. Определение формы геоида и сфероида осуществляется в основном путем сочетания наземной геодезической съемки и изучения орбит искусственных спутников Земли. Изменения формы Земли, связанные с перемещением литосферных плит, определяются по данным радиоинтерферометрии и Системы глобального определения местоположения (GРS).

См. также ГЕОДЕЗИЯ. Гравиметрия занимается изучением гравитационного поля Земли. Локальные вариации этого поля, связанные с плотностными неоднородностями в пределах земной коры, используются для определения положения рудных тел. Полагают, что рельеф земной поверхности и плотностные изменения внутри земной коры с глубиной взаимно компенсируются, поэтому удовлетворительная корреляция между гравитационными аномалиями протяженностью 100-1000 км и рельефом не наблюдается. Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). Измерения интенсивности и направления намагниченности горных пород позволяют изучать происхождение и изменения во времени геомагнитного поля и служат ключевой информацией для развития теории тектоники плит и дрейфа материков.

См. также ГЕОМАГНЕТИЗМ. Геоэлектрика изучает изменяющуюся с глубиной электропроводность Земли путем наблюдений за изменениями магнитного поля. Взаимодействие вариаций магнитного и электрического полей, обусловленных как естественными, так и искусственно индуцированными токами, используется в магнитотеллурическом зондировании при разведке полезных ископаемых и для изучения строения нижней части коры и верхней мантии.

См. также ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА. Геотермические исследования основаны на измерении теплового потока и теплопроводности, а также радиоактивности вблизи поверхности, которые затем экстраполируются на глубину. Тепловое излучение Солнца оказывает незначительный эффект на недра Земли. Точно так же энергия, высвобождаемая при землетрясениях и приливном трении, мала по сравнению с геотермальными потерями тепла. Предполагается, что главный источник тепла в Земле обусловлен радиоактивным распадом долгоживущих радионуклидов, а также высвобождением гравитационной энергии и распадом короткоживущих радионуклидов. Современный тепловой поток Земли подвержен большим изменениям. На материках он зависит от радиоактивности коренных пород, причем на долю мантии приходится примерно половина общего теплового потока. В океанах он вдвое больше, чем на материках, и обусловлен, главным образом, конвекцией в мантии. На глубинах ниже 100 км распределение температур и источников тепла, а также механизм его переноса точно не установлены. Конвекция, вероятно, происходит в верхней мантии и внешнем ядре, но неясно, насколько она активна в нижней мантии. На ранних этапах истории Земли термальная конвекция могла быть более интенсивной. В вулканических областях, срединно-океанических хребтах и областях гидротермальной активности обнаружен более высокий тепловой поток. Реология занимается изучением остаточных деформаций и течения вязких и пластичных материалов. Применительно к Земле это обычно означает исследование вязкости внутренних слоев и ее изменений во времени, а также глубинных движений вдоль разломов, перемещений литосферы относительно астеносферы, субдукции литосферных плит, трещинообразования в горных породах, крипа и т.п. Прямые измерения вязкости в недрах Земли невозможны, однако ее оценки могут быть выполнены на основе изучения скорости поднятий таких древних областей, как Канадский и Балтийский щиты, ранее опустившихся под действием ледниковой нагрузки. Согласно этим оценкам, вязкость верхней мантии - 10 20-10 22 Па*с, а нижней - от 1022 до 1026 Па*с (паскаль - единица давления, 1 Па = 10 дн/см2). На основе исследований горных пород при высоких давлениях изучаются их свойства и интерпретируются данные о скоростях распространения сейсмических волн и распределении плотности вещества в недрах Земли. Таким образом определяется минералогический состав ее внутренних слоев. Методы изучения плотности, кристаллической структуры, электропроводности, точки плавления минералов и горных пород при высоких давлениях базируются на достижениях термодинамики и физики твердого тела. Экспериментальные методы включают ультразвуковые измерения скорости как функции давления величиной примерно 30 кбар (1 кбар = 108 Па). При помощи специальной техники можно генерировать высокие давления, по крайней мере до 1000 кбар (100 ГПа). Под действием ударного сжатия или в камерах с алмазными наковальнями могут быть получены более высокие давления, чем в центре Земли (ГЕОФИЗИКА3600 кбар, или 360 ГПа). В идеальном случае для полного понимания процессов, происходящих в глубине Земли, необходимо знать зависимости скоростей распространения продольных и поперечных волн, модуля упругости, плотности, коэффициента термического расширения, удельной теплоемкости, температуры плавления, вязкости, электро- и теплопроводности горных пород от давления. Поскольку эти сведения невозможно получить путем непосредственных наблюдений, большая часть современных знаний предстает в форме теоретически рассчитанных уравнений состояния как функции от плотности. На основе использования уравнений состояния экспериментальные данные экстраполируются на область высоких давлений, характерных для недр Земли. Важную роль в определении свойств, не поддающихся непосредственным измерениям, и интерпретации сейсмических данных для определения состава пород и фазовых переходов в Земле играют опытным путем установленные соотношения между скоростями волн, плотностью и атомным весом. Все модели Земли включают зоны скачкообразных изменений плотности и волновых скоростей на различных глубинах, обусловленные изменениями химического состава. Некоторые из этих зон идентифицируются как фазовые переходы или перестройка кристаллической структуры в минеральных ассоциациях, что подтвердили эксперименты с использованием методов рентгеноструктурного анализа. Лабораторные эксперименты по фазовым переходам в горных породах при высоких давлениях и температурах позволяют определить границы различных сред в земных недрах. Фазовые переходы в недрах Земли происходят в определенном диапазоне глубин. Переходная зона между 400 и 1000 км включает две главные границы со скачкообразным изменением свойств на глубинах ГЕОФИЗИКА400 и ГЕОФИЗИКА670 км, которые идентифицированы как границы перехода оливина в шпинель и шпинелеподобные структуры и шпинели в более плотную ассоциацию - перовскит плюс магнезиовюстит. Граница между ядром и мантией имеет химическую природу. Внешнее ядро может быть представлено жидким железо-никелевым расплавом с добавками более легких элементов, по всей вероятности, серы, кислорода или кремния. Наиболее точные изотопные методы определения возраста горных пород основаны на процессах распада радиоактивных элементов в этих породах.

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ, установленное по геофизическим данным об изменении давления с глубиной (100 ГПа = 1 Мбар = 106 атмосфер).

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ, установленное по геофизическим данным об изменении давления с глубиной (100 ГПа = 1 Мбар = 106 атмосфер).

ЛИТЕРАТУРА

Джефрис Г., Земля, ее происхождение, история и строение. М., 1960 Гутенберг Б., Физика земных недр. М., 1963

Слитно. Раздельно. Через дефис

геофи/зика, -и

Орфографический словарь

геофи́зика, -и

Формы слов для слова геофизика

геофи́зика, геофи́зики, геофи́зик, геофи́зике, геофи́зикам, геофи́зику, геофи́зикой, геофи́зикою, геофи́зиками, геофи́зиках

Синонимы к слову геофизика

сущ., кол-во синонимов: 4

Идеография

геология

основываться на, метод, физика

геофизика - изучение Земли физическими методами.

геофизический.

гелиогеофизика.

физика литосферы.

геотермия, геотермика. геотермический.

пиргеометр.

гравиметрия. | сейсмология.

геомагнетизм. деклинация.

магнитометрия. аэромагнитная съемка.

деклинатор. инклинатор. магнитограф. аэромагнитометр.

гидрофизика.

гидроакустика. бароклинность. баротропность.

физика атмосферы.

ионозонд. электрограф.

Морфемно-орфографический словарь

гео/фи́з/ик/а.

Грамматический словарь

геофи́зика ж 3a

Словарь иностранных слов

ГЕОФИЗИКА (греч., ge - земля, и physikos - физика). Учение о физических процессах внутри земли.

Сканворды для слова геофизика

- Наука о внутреннем составе Земли.

- Наука о внутреннем строении Земли.

Полезные сервисы

геофизическая разведка

Энциклопедия Кольера

ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА - исследование земных недр физическими методами. Геофизическая разведка проводится прежде всего при поисках нефти и газа, рудных полезных ископаемых и подземных вод. Она отличается от геологической разведки тем, что вся информация о поисковых объектах извлекается в результате интерпретации инструментальных измерений, а не путем непосредственных наблюдений. Геофизические методы основаны на изучении физических свойств пород. Они используются либо для выявления месторождений полезных ископаемых (например, магнитные свойства исследуют для поиска железных руд), либо для картографирования таких геологических структур, как соляные купола и антиклинали (где аккумулируется нефть), а также для картографирования рельефа дна океана, структуры океанической и континентальной земной коры, определения генезиса и мощности рыхлых отложений и коренных пород, толщины ледниковых покровов и плавающих в океанах льдов, при археологических исследованиях и т.п. Геофизические методы делятся на две категории. К первой относятся методы измерения естественных земных полей - гравитационного, магнитного и электрического, ко второй - искусственно создаваемых полей. Геофизические методы дают наилучшие результаты, когда физические свойства исследуемых и картографируемых пород существенно отличаются от свойств граничащих с ними пород. Геофизические исследования всех типов включают сбор первичного материала в полевых условиях, обработку и геологическую интерпретацию полученных данных. На всех этапах применяются компьютеры. Зарождение геофизических методов разведки связано с началом использования магнитных компасов для поиска железных руд и электрических измерений для выявления сульфидных руд. Применение геофизических методов расширилось в 1920-х годах, когда гравиметрические и сейсмические исследования доказали свою эффективность в обнаружении соляных куполов и связанных с ними нефтяных залежей на побережье Мексиканского залива в США и Мексике.

Сейсмическая разведка. В твердом теле при внезапном приложении силы возникают упругие колебания, или волны, называемые сейсмическими, сферически распространяющиеся от источника возбуждения. Сведения о внутреннем строении Земли получают по результатам анализа времен пробега сейсмических волн от источника колебаний к регистрирующим устройствам (времена пробега волн зависят от плотности среды на их пути). Сейсмические волны генерируются или искусственными взрывами в неглубоких скважинах, или с помощью механических вибраторов. В морской сейсмике для возбуждения сейсмических волн используется пневмопушка. Применяются также эхолотные излучатели упругих колебаний большой мощности, электроискровые разряды и другие средства. Направленные вниз генерируемые волны, достигая геологической границы (т.е. пород, состав которых отличается от вышележащих), отражаются подобно эху. Регистрация этого "эха" детекторами называется методом отраженных волн. Преломляющиеся на геологической границе волны распространяются также и горизонтально (вдоль ее поверхности) на большие расстояния, затем вновь преломляются, следуют к земной поверхности и регистрируются вдали от сейсмического источника. Регистрация сейсмических волн ведется чувствительными приборами сейсмоприемниками, или геофонами, которые располагаются на земной поверхности или в скважинах на определенном расстоянии от места возбуждения волн. Геофоны преобразуют механические колебания грунта в электрические сигналы. При морских исследованиях для регистрации сейсмических волн используются детекторы давления, называемые гидрофонами. Упругие колебания записываются в виде трассы на бумаге, магнитной ленте или фотопленке, а в последнее время обычно на электронные носители. Интерпретация сейсмограмм позволяет измерить время прохождения волны от источника до отражающего слоя и обратно к поверхности с точностью до тысячных долей секунды. Скорость сейсмических волн зависит от упругости и плотности среды, в которой они распространяются. В воде она составляет ок. 1500 м/с, в неконсолидированных песках и почвах, содержащих воздух в поровых пространствах, - 600-1500 м/с, в твердых известняках - 2700-6400 м/с и в наиболее плотных кристаллических породах до 6600-8500 м/с (в глубинных слоях Земли до 13 000 м/с).

Отражение. При использовании метода отраженных волн регистрация осуществляется набором геофонов, равномерно располагающихся на земной поверхности на одной линии с источником возбуждения. Обычно используется 96 групп геофонов, каждая из которых насчитывает от 6 до 24 соединенных вместе приборов. Поскольку известны расстояние до геофона и скорость распространения сейсмических волн в изучаемых породах, по временам пробега волн можно рассчитать глубину отражающей границы. Путь волны может быть описан в виде двух сторон равнобедренного треугольника (так как угол падения равен углу отражения), а глубина отражающего слоя соответствует его вершине. Суммарная длина сторон такого треугольника равна произведению времени прохождения волны и ее скорости. Глубины поверхности отражения рассчитываются в пределах достаточно обширной площади, что позволяет проследить конфигурацию пласта, обнаружить и нанести на карту соляные купола, рифы, разломы и антиклинали. Любая из этих структур может оказаться нефтяной ловушкой.

Преломление. Методом преломленных волн исследуются литология и глубина залегания горных пород, а также конфигурация залежей и геологических свит. Он используется и при инженерно-геологических изысканиях, в гидрогеологии, морской и нефтяной геологии. Сейсмические волны возбуждаются близ земной поверхности, а детекторы, регистрирующие преломленные волны, расположены на земной поверхности на некотором расстоянии от источника колебаний (иногда удаленном на многие километры). Первой достигает детектора та преломленная волна, которая следовала по кратчайшему пути от источника к приемнику. По годографу (графику времени прихода первого импульса волн к сейсмоприемникам, расположенным на разных расстояниях от источника) определяют скорость распространения волн, а затем вычисляют глубину залегания преломляющей поверхности. Гравиметрическая разведка широко применяется для рекогносцировки плохо изученных районов. В этих исследованиях сила земного притяжения измеряется со столь высокой точностью, что даже небольшие ее изменения, обусловленные присутствием погребенных масс горных пород, позволяют определить глубину и форму их залегания. Гравиметрические приборы - одни из самых точных, ими можно измерять вариации гравитационного поля с точностью до стомиллионных долей. В наиболее типичном из таких инструментов, гравиметре, используется горизонтальный балансир (маятник), отклоняющийся от положения равновесия при малейших изменениях силы гравитации. Гравитационное поле Земли определяется плотностью слагающих ее пород. Гравиметрическая разведка оперирует не абсолютными измерениями гравитационного поля, а разницей в ускорении силы тяжести от одного пункта к другому. В процессе гравиметрической съемки фиксируются горизонтальные изменения гравитационного поля, обусловленные различиями в составе и плотности горных пород. С глубиной их плотность меняется в диапазоне от 1,5 г/см3 (рыхлые пески) до почти 3,5 г/см3 (эклогит). Градиент даже ок. 0,1-0,2 г/см3 приводит к возникновению распознаваемых аномалий (отклонений от стандартной величины силы тяжести), если изучаемое тело достаточно велико, неглубоко залегает и не слишком велики шумы, т.е. помехи от внешних источников. Гравиметрическая съемка практикуется для выявления соляных куполов, антиклиналей, погребенных хребтов, разломов, неглубоко залегающих коренных пород, интрузий, рудных тел, погребенных вулканических кратеров и проч.

См. также ТЯГОТЕНИЕ. Магниторазведка основана на измерении небольших изменений геомагнитного поля, связанных с наличием магнитных минералов в поверхностных отложениях или в геологическом фундаменте - изверженных и метаморфических породах, подстилающих осадочные толщи. Магнитные вариации, обусловленные магнитными минералами, используются для поиска месторождений железных руд и пирротина, а также связанных с ними сульфидных руд. Исследования магнитных вариаций, создаваемых породами фундамента, позволяют изучать строение вышележащих слоев земной коры. При поисках нефтегазоносных толщ методами магниторазведки определяются глубина залегания, площадь и строение осадочных бассейнов. Магнитным методом измеряется магнитная восприимчивость пород. Важный железорудный минерал магнетит характеризуется самой высокой магнитной восприимчивостью (в 2-6 раз выше, чем у двух других также высокомагнитных минералов - ильменита и пирротина). Поскольку магнетит имеет довольно широкое распространение, изменение геомагнитного поля обычно связывают с присутствием этого минерала в составе горных пород. Магнитные минералы, сопряженные с изверженными породами фундамента, имеют гораздо более высокую магнитную восприимчивость, чем породы осадочного чехла. Этим обусловлены контрасты их намагниченности. В последние годы на основе изучения намагниченности пород океанического дна получено много новых сведений об истории Земли, особенно о формировании океанических бассейнов и положении материков в далеком геологическом прошлом. Породы часто сохраняют остаточную намагниченность, соответствующую геомагнитному полю времени их формирования. Таким образом, остаточная намагниченность представляет собой своеобразную "запись" изменений магнитного поля Земли на протяжении ее истории. На основе магнитных исследований подтверждено, что по мере того, как наращивались срединно-океанические хребты, происходило расширение океанических бассейнов.

См. также ОКЕАН. Магнитная съемка обычно проводится с самолетов припомощи магнитометров. В первых аэромагнитных приборах использовались измерительные средства, разработанные во время Второй мировой войны для обнаружения подводных лодок.

См. также ГЕОМАГНЕТИЗМ. Электрическая, или электромагнитная, разведка (электроразведка) предназначена для исследования внутреннего строения Земли и геологической среды, поиска полезных ископаемых на основе изучения различных естественных и искусственных электромагнитных полей. Электроразведка основана на дифференциации горных пород по элетромагнитным свойствам. Характер электромагнитных полей, обусловленных как искусственными, так и естественными источниками, определяется геоэлектрическим строением изучаемого участка. Некоторые геологические объекты в определенных условиях способны создавать собственные электрические поля. По выявленной электромагнитной аномалии можно делать выводы, направленные на решение поставленных задач. Электроразведка располагает более чем 50 методами. Такое разнообразие методов объясняется тем, что в ней используются естественные поля космической, атмосферной и электрохимической природы; искусственные поля с различными способами их создания и измерения (гальваническим, индуктивным и дистанционными); гармонические поля широкого диапазона частот; импульсные поля разной длительности; регистрируются сигналы разных частотных (от миллигерц до сотен терагерц) и динамических диапазонов. Кроме того электроразведка пользуется новейшими достижениями электротехники и радиоэлектроники. При электроразведке измеряются амплитуды электрических и магнитных составляющих поля, а также их фазы. Регистрация ведется в аналоговой или цифровой форме. При измерениях, обработке и интерпретации результатов имеет широкое применение современная компьютерная техника. Ядерно-геофизические методы основаны на изучении естественной радиоактивности горных пород или вторичной радиоактивности, возникающей при нейтронном или гамма-облучении пород. Различают гамма, нейтронно-активационные, а также рентгенорадиометрические методы. Наиболее широко используется гамма-метод, при котором измеряется интенсивность гамма-излучения естественных радионуклидов, содержащихся в горных породах. Изменения радиоактивности зависят от состава и свойств горных пород, что позволяет использовать эти методы для изучения геологического строения территории, процессов, происходящих в недрах, и выявления в них месторождений полезных ископаемых.

См. также ГЕОФИЗИКА.

ЛИТЕРАТУРА

Справочник геофизика, тт. 1-6. М., 1960-1969 Федынский В.В. Разведочная геофизика. М., 1967 Справочник геофизика. М., 1983 Электроразведка (справочник геофизика), тт. 1-2. М., 1989

Полезные сервисы

геофизический

Толковый словарь

прил.

1. соотн. с сущ. геофизика, связанный с ним

2. Свойственный геофизике, характерный для неё.

3. Порождающий землетрясения или оползни (об оружии).

Толковый словарь Ушакова

ГЕОФИЗИ́ЧЕСКИЙ, геофизическая, геофизическое (научн.). прил. к геофизика.

Академический словарь

-ая, -ое.

прил. к геофизика.

Геофизическая обсерватория.

Слитно. Раздельно. Через дефис

геофизи/ческий

Орфографический словарь

геофизи́ческий

Формы слов для слова геофизический

геофизи́ческий, геофизи́ческая, геофизи́ческое, геофизи́ческие, геофизи́ческого, геофизи́ческой, геофизи́ческих, геофизи́ческому, геофизи́ческим, геофизи́ческую, геофизи́ческою, геофизи́ческими, геофизи́ческом, геофизи́ческ, геофизи́ческа, геофизи́ческо, геофизи́чески

Синонимы к слову геофизический

прил., кол-во синонимов: 1

Морфемно-орфографический словарь

гео/физ/и́ч/еск/ий.

Грамматический словарь

геофизи́ческий п 3a✕~

Новый словарь иностранных слов

геофизи́ческий

- относящийся к геофизике; г-ие методы разведки - способы разведки полезных ископаемых физ. методами (магнитная, сейсмическая разведка и др.).

Словарь галлицизмов русского языка

ГЕОФИЗИЧЕСКИЙ ая, ое. géophysique? Отн. к геофизике, связанный с физическими процессами,

происходящими в геосферах. БАС-2. - Лекс. БСЭ-1: геофизическая лаборатория; Уш. 1935:

геофизи/ческий.

Полезные сервисы

геофит

Слитно. Раздельно. Через дефис

геофи/т, -а

Синонимы к слову геофит

сущ., кол-во синонимов: 3

Полезные сервисы

геофиты

Энциклопедический словарь

Геофи́ты (от гео... и греч. phytón - растение), многолетние растения, у которых почки возобновления скрыты в почве. Например, луковичные растения (лук, тюльпан), корневищные (ландыш, спаржа, многие злаки и осоки) и клубнелуковичные (шафран и др.), клубненосные (картофель и др.). Геофиты - преобладающая жизненная форма в засушливых степях.

* * *

ГЕОФИТЫ - ГЕОФИ́ТЫ (от гео- и греч. phyton - растение), многолетние растения, у которых почки возобновления скрыты в почве. Напр., луковичные растения (лук, тюльпан), корневищные (ландыш, спаржа, многие злаки и осоки) и клубнелуковичные (шафран и др.), клубненосные (картофель и др.). Геофиты - преобладающая жизненная форма в засушливых степях.

Большой энциклопедический словарь

ГЕОФИТЫ (от гео... и греч. phyton - растение) - многолетние растения, у которых почки возобновления скрыты в почве. Напр., луковичные растения (лук, тюльпан), корневищные (ландыш, спаржа, многие злаки и осоки) и клубнелуковичные (шафран и др.), клубненосные (картофель и др.). Геофиты - преобладающая жизненная форма в засушливых степях.

Орфографический словарь

геофи́ты, -ов, ед. ч. -фи́т, -а

Новый словарь иностранных слов

геофи́ты

(см. гео... + ...фит) многолетние травянистые растения, у которых почки возобновления находятся в почве (лук, картофель и др.); г. относятся к криптофитам.

Полезные сервисы