Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

интернет и другие компьютерные сети

Энциклопедия Кольера

Компьютерная сеть - это группа компьютеров, которые соединены между собой таким образом, чтобы был возможен обмен данными между ними. Работу компьютерных сетей обеспечивают компоненты трех основных типов: 1) компьютеры; 2) средства передачи, такие, как кабели, телефонные или радиолинии; 3) некоторая совокупность рабочих процедур, или протоколов. Компьютерные сети используются для получения доступа к удаленным компьютерам, передачи файлов данных от одного компьютера другому или пересылки электронной почты. Они обеспечивают широкий доступ к таким централизованным информационным службам, как каталоги библиотек или базы данных юридической либо медицинской информации, а также связь между предприятиями бизнеса, с одной стороны, и их заказчиками и поставщиками - с другой. Они обеспечивают также дальнюю двустороннюю персональную связь между отдельными абонентами. Предусматривается, кроме того, связь для систем заводской автоматики, банкоматов и терминалов розничной торговли. Компьютерные сети ускорили распространение информации в современном обществе. Доступ к таким источникам информации, как базы данных, электронные доски объявлений и глобальная служба WWW, может осуществляться почти мгновенно и притом с одновременной рассылкой электронных сообщений тысячам пользователей компьютеров.

См. также

ОРГТЕХНИКА И КАНЦЕЛЯРСКОЕ ОБОРУДОВАНИЕ;

КОМПЬЮТЕР;

ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ.

Типы сетей. Существуют компьютерные сети двух основных типов: локальные вычислительные сети (ЛВС) и территориальные сети.

ЛВС. Такие сети имеют относительно небольшую протяженность (несколько километров или меньше) и обычно принадлежат какой-либо одной организации, например, предприятию бизнеса или университету. Для них характерны, как правило, множественный доступ и высокие скорости передачи данных. При разработке ЛВС главная проблема состоит в том, чтобы избежать столкновения посланного сообщения с сообщениями других компьютеров. Для решения этой проблемы применяются два способа: принцип состязательной конкуренции и эстафетная передача маркера доступа. Основной тип систем состязательного типа - это системы множественного доступа с анализом состояния канала и обнаружением столкновений (CSMA/CD). В системе CSMA/CD компьютеры совместно пользуются кабелем для передачи сообщений, предназначенных для вещания. Компьютеры прослушивают трафик ("несущую") в кабеле и, прежде чем начать передачу, ждут, когда канал станет свободным. Если два компьютера начнут свои передачи одновременно, то будут происходить столкновения сообщений. Как только столкновение обнаруживается, компьютеры прекращают передачу и выжидают некоторый случайно выбранный интервал времени перед тем, как приступить к следующей попытке передачи. Компьютеры с высокой степенью вероятности выбирают разные временные интервалы, и поэтому какой-то из них начнет передачу первым и таким образом избежит повторного столкновения сообщений. В ЛВС с эстафетной передачей маркера доступа компьютеры включены в кольцо, и маркер посылается по кольцу от одного компьютера к следующему. Овладев маркером, компьютер приступает к передаче данных. Поскольку в каждый момент времени только один компьютер может владеть маркером, одновременные передачи, способные привести к столкновениям, исключаются. Два основных типа ЛВС с эстафетной передачей - это локальная сеть с маркерным кольцом, в которой передача между компьютерами происходит по непрерывному контуру, и эстафетная шина, по которой маркер передается в соответствии с некоторой последовательностью, что создает эффект маркерного кольца, сохраняя линейный режим работы кабеля.

Территориальные сети. Такие сети соединяют между собой территориально удаленные друг от друга компьютеры; по своей протяженности они могут быть региональными, общегосударственными или глобальными. Обычно они эксплуатируются как сети с открытым доступом или находятся под совместным управлением многих организаций. В территориальных сетях используется коммутируемая среда передачи, так что информация, посылаемая по таким сетям, прежде чем она достигнет своего пункта назначения, проходит через один или большее число промежуточных пунктов, называемых коммутаторами. Примерами коммутируемых сетей могут служить телефонная, телеграфная и почтовая системы. Территориальные сети обычно строят на базе существующих систем связи, хотя для них могут использоваться также выделенные микроволновые каналы, радиоканалы для связи с мобильными объектами и спутниковые каналы. В большинстве территориальных сетей применяют метод пакетной коммутации, при котором подлежащие передаче данные группируются в небольшие пакеты. Каждый пакет содержит в себе адреса посылающего и принимающего компьютеров, а также информацию для управления. Сеть использует эту информацию для отправки пакетов адресатам и их сборки в надлежащем порядке. Преимущество пересылки отдельных пакетов по сравнению с непрерывным процессом передачи состоит в том, что каналы связи можно в этом случае использовать более эффективно. Пакеты, приходящие по разным линиям от разных отправителей, могут вперемежку пересылаться по одному и тому же участку сети, так что пропускная способность сети не будет оставаться неиспользуемой, когда какой-либо из каналов не загружен. Кроме того, пакеты, приходящие по одной и той же линии, могут посылаться в свои пункты назначения по разным маршрутам, что позволяет распределять трафик по многим каналам и реагировать на неисправность в какой-либо части сети. См. также ТЕЛЕФОН. Режим асинхронной передачи ATM - одна из форм пакетной коммутации. Благодаря ATM становится эффективным использование небольших пакетов фиксированного размера со скоростями передачи 1 Гбит/с и более. ATM допускает также интеграцию компьютерных данных с речевой информацией, видеоданными и другими типами трафика, предоставляя пользователям возможность определять, какое именно качество обслуживания им нужно. Для зависимой от времени информации, например звука и видео, можно использовать передачу с малым временем задержки, а для передачи информационных массивов пользоваться более медленными, но и более дешевыми каналами передачи. Разработчикам территориальных сетей приходится решать множество непростых технических задач. Каждый компьютер сети должен иметь собственный условный адрес, а сеть должна обладать возможностью переводить этот адрес в реальный физический. В коммутируемой сети между любыми двумя точками существует множество возможных маршрутов, так что коммутаторы должны располагать возможностью выбора подходящего маршрута. Одно из простых решений состоит в том, чтобы иметь на каждом коммутаторе таблицу маршрутизации, показывающую, какие исходящие линии приводят к тем или иным адресам. Однако таблицы фиксированных маршрутов не позволяют коммутаторам приспосабливаться к изменяющимся конфигурациям сети и условиям трафика. Широко используется более гибкая адаптивная система распределенной маршрутизации, в которой коммутаторы запрашивают своих соседей о наилучшем существующем на данный момент маршруте до каждого из пунктов назначения и соответствующим образом корректируют свои таблицы маршрутизации. Территориальные сети нуждаются также в средствах обнаружения и исправления ошибок, в том числе искаженных данных, потерянных пакетов и поврежденных компьютеров и коммутаторов. Рабочие процедуры (протоколы) имеют многослойную организацию, что позволяет упростить разработку сети. Самые нижние слои управляют электрическими соединениями; вышележащие слои определяют, как надо передавать информацию по отдельным звеньям сети, сетям межсоединений, устанавливать соединения между компьютерами и подготавливать данные для того или иного конкретного приложения, например для передачи файлов или электронной почты. Стандартизация разных слоев протоколов была одной из основных задач, которую пришлось решать программистам. Стандарты не только облегчают проектирование и разработку сетей, но и обеспечивают возможности использования компонентов, выпускаемых разными поставщиками, в одной и той же системе. Область, в которой стандарты имеют особенно важное значение, - это организация межсетевого взаимодействия, т.е. процесс соединения двух или большего числа сетей, позволяющий компьютерам одной сети обмениваться информацией с компьютерами другой сети. Сеть, связывающая между собой другие сети, является, таким образом, "сетью сетей". Интернет - глобальная система связанных между собой компьютерных сетей - самая старая и самая большая "сеть сетей" в мире. Чтобы "сеть сетей" работала, включенные в нее сети должны иметь по меньшей мере один протокол общего пользования. В сети Интернет это межсетевой протокол IP. Обычно он используется в паре с протоколом управления передачей TCP. Эта пара получивших широкое распространение протоколов известна как TCP/IP.

История сети Интернет. Интернет берет свое начало от экспериментальной компьютерной сети Арпанет, которая была создана управлением перспективных исследований и разработок министерства обороны США (ARPA). Управление ARPA рассчитывало, что его сеть сможет снизить расходы на вычисления, предоставляя исследователям доступ к совместному использованию компьютерных ресурсов и способствуя сотрудничеству между исследователями, находящимися в разных местах. ARPA приступило к работе над проектом сети в 1969, и несколько подрядчиков из университетских и промышленных кругов спроектировали, изготовили и испытали аппаратные средства и программное обеспечение для этой сети. Проект Арпанет внес значительный вклад в практику создания сетей. Так, была продемонстрирована эффективность метода пакетной коммутации; было установлено, что компьютеры разных типов можно объединять в одну сеть; были решены проблемы создания распределенных сетей, в частности проблема маршрутизации; было разработано много важных протоколов. На гребне успеха Арпанет управление ARPA начало разрабатывать другие экспериментальные сети с использованием радио- и спутниковой связи. В то время еще не существовало простого способа для соединения столь различных сетей. Поэтому в 1973 ARPA приступило к разработке системы протоколов TCP/IP, что сделало возможным обмен данными между сетями разных типов. Арпанет и присоединенные к ней другие сети, использующие протоколы TCP/IP, в целом стали известны под названием Интернет. ARPA сделало эти протоколы доступными для других групп, желающих создавать сети, и данный стандарт получил широкое признание. Сеть Интернет была горячо принята учеными, сотрудничавшими с ARPA и стремившимися к обмену информацией и идеями со своими далекими коллегами. Эта атмосфера вдохновляла на создание новых сетей, и в 1985 Национальный научный фонд NSF начал строить сеть NSFNET для объединения своих суперкомпьютерных центров. В начале 1990-х годов правительство США решило передать административное управление сетью Интернет в руки частных лиц. Это способствовало расширению круга коммерческих поставщиков и потребителей услуг сети Интернет, которая вскоре связала между собой миллионы компьютеров и сотни миллионов людей во всем мире.

"Всемирная паутина". Одной из наиболее популярных служб, возникших на базе сети Интернет, стала "Всемирная паутина" WWW (World Wide Web). Типичная "Web-страница" представляет собой полный экран текстовой и графической информации, связанной с некоторым конкретным предметом или вопросом. Ключевые слова и (или) изображения на такой странице выделены. Если пользователь выбирает один из таких выделенных элементов, то на экране воспроизводится новая страница, посвященная выбранному слову или изображению. Пользователь может, следуя таким ссылкам, продолжить вывод на экран новых страниц. Программа, которая осуществляет поиск, выборку и воспроизведение Web-страниц, называется браузером, а компьютеры, хранящие информацию, - Web-серверами. Концепцию "паутины" разработал в 1990 Т. Бернерс-Ли в Европейском центре ядерных исследований ЦЕРН в Женеве (Швейцария). Он хотел создать систему, которая помогала бы ученым сотрудничать, применяя упрощенные способы создания и использования мультимедиа-информации. Систему связей (ссылок) между документами называют гипертекстом. Для создания системы гипермедиа "паутина" сочетает гипертекст с мультимедиа (текст, изображения, звук и видео). Совместное пользование информацией, содержащейся в "паутине", стало возможным благодаря применению для создания Web-страниц общего языка, получившего название гипертекстового языка описания документов HTML, общего протокола для обмена информацией, названного гипертекстовым транспортным протоколом HTTP, и стандартного формата адресов (унифицированного указателя ресурсов) URL. Важным достоинством URL является то, что он может работать с любым протоколом, а не только с HTTP; отсюда следует, что "Всемирная паутина" спроектирована так, чтобы ее можно было использовать со всеми существующими и будущими сетевыми службами. "Паутина" приобрела в ЦЕРНе исключительно высокую популярность и вскоре появилась в других научно-исследовательских центрах, включая национальный центр США по применениям суперкомпьютерных вычислений NCSA. В 1993 группа сотрудников NCSA, возглавляемая М.Эндрессеном, начала разработку улучшенного Web-браузера, получившего название "Мозаик". "Мозаик" мог работать на большинстве типов рабочих станций и персональных компьютеров. Бесплатный доступ к этой программе просмотра сделал "паутину" исключительно популярной, и число обращений к сети начало расти с феноменальной скоростью. За несколько месяцев количество используемых экземпляров "Мозаик" превысило миллион, а трафик WWW вырос в 10 тыс. раз. Эндрессен и его группа ушли из NCSA, чтобы работать над коммерческой версией "Мозаик". Затем появились и другие коммерческие браузеры, способствовавшие быстрому росту и развитию "Всемирной паутины". Спектр пользователей WWW довольно широк. Ее мультимедиа-возможности удобны для астрономов, заинтересованных в совместных наблюдениях за кометами, для математиков привлекательны воспроизводимые на экране геометрические фигуры, а для биологов - доступ к обширным базам данных по белкам. Благодаря тем же средствам стали возможными "виртуальные туры", посвященные осмотру коллекций произведений искусств в разных музеях. Такие государственные организации, как НАСА, Смитсоновский институт и Библиотека Конгресса используют WWW для публикации текстовой информации и изображений. Корпорации размещают в узлах WWW рекламу, информацию о продаже аппаратных или программных продуктов и принимают заказы. Для индивидуальных пользователей, располагающих собственными компьютерными идентификаторами, наиболее увлекательным представляется создание своих "базовых Web-страниц", открывающих новые возможности для самовыражения и совместного пользования информацией.

ЛИТЕРАТУРА

Крол Э. Все об Internet. Киев, 1995 Хоффман П. Internet: краткий справочник. М., 1995 Зельднер Г. и др. Компьютер на связи. М., 1996

Полезные сервисы

интегральная схема

Энциклопедия Кольера

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.

См. также ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ. Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками - схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник - это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.

См. также ТРАНЗИСТОР. Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см2 базы (см. ниже).

ВВЕДЕНИЕ ПРИМЕСЕЙ В КРЕМНИЙ методом диффузии - основа производства ИС. Для получения области коллектора с проводимостью n-типа добавляют фосфор, затем для создания области базы с проводимостью p-типа - бор и, наконец, снова фосфор для создания области эмиттера с проводимостью n-типа. 1 - контакт коллектора; 2 - контакт базы; 3 - контакт эмиттера; 4 - эмиттер (-); 5 - база (+); 6 - коллектор (-); 7 - защитный слой двуокиси кремния.

ВВЕДЕНИЕ ПРИМЕСЕЙ В КРЕМНИЙ методом диффузии - основа производства ИС. Для получения области коллектора с проводимостью n-типа добавляют фосфор, затем для создания области базы с проводимостью p-типа - бор и, наконец, снова фосфор для создания области эмиттера с проводимостью n-типа. 1 - контакт коллектора; 2 - контакт базы; 3 - контакт эмиттера; 4 - эмиттер (-); 5 - база (+); 6 - коллектор (-); 7 - защитный слой двуокиси кремния.

Производство. Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Биполярный транзистор. Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p. Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p-типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n-типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора - в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n-типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n- и p-типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему. См. также ТРАНЗИСТОР.

МОП-транзистор. Наибольшее распространение получила МОП (металл-окисел-полупроводник) - структура, состоящая из двух близко расположенных областей кремния n-типа, реализованных на подложке p-типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n-типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n-типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n-типа соединяет исток и сток; в других случаях канал может быть индуцированным - создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p-типа превращается в слой n-типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.

ИНТЕГРАЛЬНЫЕ СХЕМЫ. Очень чистый кристаллический кремний, необходимый для изготовления интегральных схем, выращивается в форме цилиндра, из которого затем нарезаются пластины, имеющие толщину бумажного листа. На каждой пластине создаются сотни ИС. Затем пластина разделяется на отдельные ИС, каждая из которых представляет собой квадратный кристалл (чип) со стороной 1,27 мм. ИС выпускаются в корпусах различных конфигураций.

ИНТЕГРАЛЬНЫЕ СХЕМЫ. Очень чистый кристаллический кремний, необходимый для изготовления интегральных схем, выращивается в форме цилиндра, из которого затем нарезаются пластины, имеющие толщину бумажного листа. На каждой пластине создаются сотни ИС. Затем пластина разделяется на отдельные ИС, каждая из которых представляет собой квадратный кристалл (чип) со стороной 1,27 мм. ИС выпускаются в корпусах различных конфигураций.

После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.

Компьютерные запоминающие устройства. В электронике термин "память" обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ). У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 210 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно. Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.

См. также

ОРГТЕХНИКА И КАНЦЕЛЯРСКОЕ ОБОРУДОВАНИЕ;

КОМПЬЮТЕР;

ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ;

ИНФОРМАЦИИ НАКОПЛЕНИЕ И ПОИСК.

ЛИТЕРАТУРА

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковых приборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М., 1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Полезные сервисы