Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

сегнетоэлектричество

Энциклопедия Кольера

СЕГНЕТОЭЛЕКТРИЧЕСТВО - электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле, возникает остаточная электрическая поляризация.

См. также

МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА. Микроскопической причиной сегнетоэлектричества является наличие внутри вещества атомных (или молекулярных) диполей. Эти диполи ориентируются внешним электрическим полем и остаются ориентированными после снятия поля; переключение направления поля на противоположное приводит к обратной ориентации диполей. Принципиальное отличие сегнетоэлектричества от ферромагнетизма состоит в том, что свободные электрические заряды могут экранировать электрические поля, создаваемые электрическими диполями, а это затрудняет прямое наблюдение статической поляризации. Поляризацию обычно измеряют по так называемой петле гистерезиса. Образец помещают между пластинами конденсатора, на которые подается переменное напряжение E. На экране осциллографа регистрируется кривая зависимости заряда, возникающего на пластинах, а тем самым и электрической поляризации (поскольку заряд, отнесенный к единице площади поверхности пластин, является мерой вектора электрической поляризации P), от напряжения (поля) E. Петля гистерезиса, представленная на рис. 1, характеризуется двумя величинами: остаточной поляризацией P (любого знака), имеющейся даже при нулевом поле E, и коэрцитивным полем Ec, при котором вектор поляризации изменяет направление на обратное. Площадь петли гистерезиса равна работе электрических сил, затрачиваемой в пределах одного цикла перехода сегнетоэлектрика между двумя эквивалентными состояниями поляризации противоположного знака.

Рис. 1. ПЕТЛЯ ГИСТЕРЕЗИСА ДЛЯ СЕГНЕТОЭЛЕКТРИКА, демонстрирующая характерную связь между вектором поляризации P и электрическим полем E; Ec - коэрцитивное поле, при котором вектор поляризации меняет направление на обратное.

Рис.

1. ПЕТЛЯ ГИСТЕРЕЗИСА ДЛЯ СЕГНЕТОЭЛЕКТРИКА, демонстрирующая характерную связь между вектором поляризации P и электрическим полем E; Ec - коэрцитивное поле, при котором вектор поляризации меняет направление на обратное.

Хотя образование петли гистерезиса является свидетельством наличия сегнетоэлектричества, во многих сегнетоэлектрических веществах она возникает лишь при определенных условиях, а иногда и вообще не наблюдается. Подобные трудности характерны для электропроводящих веществ, материалов с высокими диэлектрическими потерями и очень большими коэрцитивными полями. В этих случаях для выявления сегнетоэлектричества используются другие эффекты, в частности пироэлектрический эффект (зависимость вектора поляризации от температуры), зависимость диэлектрической проницаемости от температуры, наличие доменной структуры (см. ниже), особенности кристаллической структуры и динамики решетки. См. также КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ. Первым веществом, в котором было обнаружено сегнетоэлектричество, была сегнетова соль KNaC4H4O6*4H2O. Аналогия между диэлектрическими свойствами этого вещества и ферромагнитными свойствами железа была установлена Дж.Валашеком (США) в 1920. Ему же удалось определить и температуру Кюри Tc как температуру перехода, при которой в сегнетовой соли возникает упорядоченная поляризация. Выше этой температуры дипольное упорядочение, а вместе с ним и сегнетоэлектричество, отсутствуют. Ряд сегнетоэлектрических кристаллов был впервые получен в 1935 в Цюрихе Г.Бушем и П.Шеррером. В качестве исходного был взят кристалл дигидрофосфата калия KH2PO4. Изоморфные с ним кристаллы, в которые вместо фосфора и водорода входят мышьяк и дейтерий, тоже обнаруживали сегнетоэлектрические свойства. Соединения аммония же (например, NH4H2PO4) не становились сегнетоэлектрическими ниже температуры Кюри, и спустя 20 лет было установлено, что они являются антисегнетоэлектриками. Это означает, что чередующиеся диполи таких кристаллов ориентируются антипараллельно друг другу (подобно магнитным моментам в антиферромагнетике). До 1943 считалось, что содержание водорода в известных сегнетоэлектриках является непременным условием сегнетоэлектричества. Л.Онсагер и Дж.Слэтер в 1939 предположили, что в кристалле КН2РО4 носителями сегнетоэлектрических свойств являются ионы водорода, смещенные из положения равновесия и упорядочивающиеся при температуре ниже Тс. Однако после открытия в 1945 Б.М.Вулом и И.М.Гольдманом сегнетоэлектричества в титанате бария BaTiO3 стало ясно, что наличие или отсутствие атомов водорода несущественно для сегнетоэлектричества. Выяснилось также, что явление сегнетоэлектричества распространено значительно шире, чем было принято считать ранее; в частности, оно возможно и в сравнительно простых кристаллических структурах. Вслед за титанатом бария в короткий срок было открыто много других сегнетоэлектриков, и в настоящее время их известно более 340. Кристаллическая структура BaTiO3 изображена на рис. 2. Она достаточно проста для исследования методом рентгеноструктурного анализа и дала первую детальную картину атомных смещений, сопутствующих установлению сегнетоэлектричества. Выше температуры Кюри Тс (135° С) кристалл имеет объемно-центрированную кубическую решетку. При температуре, равной Тс, ион титана скачком смещается вдоль одной из осей куба (рис. 3), в результате чего возникает тетрагональная структура. Соседние ионы титана смещаются в том же направлении, что и приводит к появлению макроскопической поляризации, т.е. сегнетоэлектричеству. При температурах ниже комнатной по мере того, как ионы Ti смещаются вдоль других осей куба, происходят два дальнейших фазовых перехода в орторомбическую и ромбоэдрическую структуры. Было выявлено много соединений, обладающих подобной простой структурой перовскита или близкой к ней, и найдены важные технические применения. Температура Кюри и другие сегнетоэлектрические характеристики существенно зависят от состава таких соединений.

Рис. 2. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ТИТАНАТА БАРИЯ, элементарная ячейка. При поляризации кристалла ионы титана и кислорода смещаются из своих позиций.

Рис. 2. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ТИТАНАТА БАРИЯ, элементарная ячейка. При поляризации кристалла ионы титана и кислорода смещаются из своих позиций.

В кубической структуре шесть главных направлений вдоль ребер куба эквивалентны друг другу, а потому понятие тетрагонального искажения в равной мере пригодно по отношению к любому из них. В только что выращенном кристалле отдельные области, "домены", имеют разные направления поляризации. Эти домены часто выявляются в поляризованном свете, поскольку оптические свойства домена обладают той же симметрией, что и локальная кристаллическая структура. Ширина границ между доменами ("доменных стенок"), как правило, не превышает нескольких элементарных ячеек. Если к многодоменному кристаллу приложить электрическое поле (превышающее Ec), то домены, ориентированные вдоль поля, будут расти (вследствие смещения доменной стенки) за счет ориентированных против поля. В итоге весь кристалл превращается в один домен с однородными оптическими свойствами. Обращение вектора поляризации тоже сопровождается смещением доменной стенки. Поскольку многие сегнетоэлектрические соединения обладают сходными структурами, можно образовать твердые растворы из двух или более таких веществ. Подобные растворы часто отличаются по своим свойствам от их ингредиентов; в частности, точка Кюри оказывается размытой, так что сегнетоэлектрический переход происходит постепенно в широком диапазоне температур и диэлектрическая проницаемость в этом диапазоне обнаруживает сложное поведение релаксационного характера. Такие переходы обычно называют диффузными, и соответствующие микроскопические процессы весьма интенсивно исследуются. Другие структуры, например композиционные материалы на основе сегнетоэлектриков и полимеров или стекол, часто сохраняют ценные качества своих ингредиентов. Примером могут служить гибкие сегнетоэлектрики, сегнетоэлектрики с большой сжимаемостью, а также многослойные структуры с большой электрической емкостью (способностью к накоплению заряда). Подобные композиционные материалы возможны по той причине, что из многих сегнетоэлектриков (например, BaTiO3 и цирконата-титаната свинца PZT) можно без труда изготовить поликристаллические керамики, а будучи отлиты в сложные формы, они обычно в значительной мере сохраняют сегнетоэлектрические свойства массивного материала. Сегнетоэлектрические свойства обнаруживают не только твердые кристаллические вещества. Некоторые жидкие кристаллы и полимерные материалы тоже являются сегнетоэлектриками. В смектических жидких кристаллах молекулярная структура такова, что киральные центры (молекулярные диполи) соседних молекул благодаря стерическим взаимодействиям между молекулами ориентированы почти параллельно. Внешнее электрическое поле изменяет направление этих диполей на обратное за счет молекулярных вращений. В полимере поливинилиденфториде PVF2 молекулярные диполи, присоединенные к полимерному скелету, могут быть ориентированы в электрическом поле с образованием устойчивой решетки, обнаруживающей макроскопическую поляризацию. Такие материалы весьма перспективны для многих видов применения. См. также

ЖИДКИЙ КРИСТАЛЛ;

ЖИДКОСТЕЙ ТЕОРИЯ. Первые теории сегнетоэлектричества относились лишь к небольшому числу известных тогда конкретных кристаллических структур. Теория Слэтера (1950), основанная на гипотезе дальнодействующих дипольных сил, была успешно применена к описанию BaTiO3. Феноменологические теоретические модели, развитые А.Девонширом и В.Л.Гинзбургом, оказались вполне пригодными для описания поведения сегнетоэлектрической и несегнетоэлектрической фаз, а также для интерпретации теплового, упругого и электрического поведения материалов вблизи сегнетоэлектрического фазового перехода. В 1960 Ф.Андерсон и В.Кохран установили, что эта теория может быть построена на основе понятий динамики решетки. В частности, они ввели термин "мягкие моды" для движений ионов всех атомов, принимающих участие в переходах типа смещения. С 1960-х годов такой подход стал доминирующим в теории сегнетоэлектричества и использовался для описания всех типов сегнетоэлектрической неустойчивости.

Рис. 3. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ТИТАНАТА БАРИЯ (проекция на грань куба). Смещение атомов титана и кислорода из нормальных положений преувеличено для иллюстрации ионной деформации, ведущей к сегнетоэлектричеству. Смещения указаны в ангстремах.

Рис. 3. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ТИТАНАТА БАРИЯ (проекция на грань куба). Смещение атомов титана и кислорода из нормальных положений преувеличено для иллюстрации ионной деформации, ведущей к сегнетоэлектричеству. Смещения указаны в ангстремах.

Применения. Сегнетоэлектрические материалы широко изучались в перспективе разнообразных применений. Достаточно привести лишь несколько примеров. Большая диэлектрическая проницаемость вблизи Тс (например, в BaTiO3) представляет интерес с точки зрения применения в многослойных конденсаторах. Ниобат лития (LiNbO3), обладающий большими электрооптическими коэффициентами, - наилучший материал для интегральных оптических модуляторов и дефлекторов. Тонкие пленки из цирконата-титаната свинца и лантана (PLZT) активно изучаются с целью создания энергозависимых микроэлектронных ЗУ с применением кремниевой технологии. (Бистабильная поляризация - идеальная основа для двоичных ячеек памяти.) Кристалл КН2РО4 широко применяется для удвоения оптической частоты лазера. Из триглицинсульфата (TGS) изготавливаются фотоприемники для инфракрасной области спектра. Сегнетоэлектрическая керамика и полимеры используются в качестве пьезоэлектрических преобразователей, гидрофонов и измерительных преобразователей давления. Успехи в этих и других технических приложениях будут определяться достижениями в области обработки материалов и выращивания кристаллов сегнетоэлектриков высокого качества.

См. также ФИЗИКА ТВЕРДОГО ТЕЛА.

ЛИТЕРАТУРА

Струков Б.А., Леванюк А.П. Физические основы сегнетоэлектрических явлений в кристаллах. М., 1995

Полезные сервисы

жидкие кристаллы

Энциклопедический словарь

Жи́дкие криста́ллы - жидкости, обладающие анизотропией свойств (в частности, оптических), связанной с удлинённой формой молекул и упорядоченностью в их ориентации. Благодаря сильной зависимости свойств жидких кристаллов от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т. д.).

* * *

ЖИДКИЕ КРИСТАЛЛЫ - ЖИ́ДКИЕ КРИСТА́ЛЛЫ (мезофазы, мезоморфное состояние вещества, анизотропная жидкость), вещества, находящиеся в промежуточном между твердым кристаллическим и изотропным жидким, в так называемом мезоморфном (греч. «мезос» - промежуточный, средний) состоянии. Жидкие кристаллы обладают свойствами жидкости - текучестью, способностью находиться в каплевидном состоянии, но при этом проявляют анизотропию (см. АНИЗОТРОПИЯ) оптических, электрических, магнитных и др. свойств, связанную с упорядоченностью в ориентации молекул. В отсутствие внешнего воздействия в жидких кристаллах анизотропны диэлектрическая проницаемость, магнитная восприимчивость, электропроводность и теплопроводность. В жидких кристаллах наблюдаются двойное лучепреломление (см. ДВОЙНОЕ ЛУЧЕПРЕЛОМЛЕНИЕ) и дихроизм (см. ДИХРОИЗМ). Открыты в 1888 году австрийским ботаником Ф. Рейницером.

По способу получения различают термотропные и лиотропные жидкие кристаллы. Лиотропные жидкие кристаллы образуются при растворении твердых кристаллов в определенных растворителях. К ним относятся многие коллоидные системы. Существует много типов лиотропных жидкокристаллических текстур. Их многообразие объясняется различной внутренней молекулярной структурой, которая является более сложной, чем у термотропных жидких кристаллов. Структурными единицами здесь являются не молекулы, а молекулярные комплексы - мицеллы (см. МИЦЕЛЛА). Мицеллы могут быть пластинчатыми, цилиндрическими, сферическими или прямоугольными.

Термотропные жидкие кристаллы - это вещества, для которых мезоморфное состояние характерно в определенном интервале температур. Ниже этого интервала вещество является твердым кристаллом, выше - обычной жидкостью. Такие жидкие кристаллы образуются при нагревании некоторых твердых кристаллов (мезогенных): сначала происходит переход в жидкий кристалл, причем может происходить последовательно переход из одной модификации в следующую, т. е. в жидких кристаллах проявляется полиморфизм (см. ПОЛИМОРФИЗМ (в минералогии)). Каждая мезофаза существует в определенном температурном интервале. У разных веществ этот интервал различен. В настоящее время известны соединения, имеющие жидкокристаллическую фазу в интервале от отрицательных температур до 300-400 оС. Структурные переходы всегда осуществляются по схеме: твердокристаллическая фаза - смектическая - нематическая - аморфно-жидкая. Термотропные жидкие кристаллы можно получить также в результате охлаждения изотропной жидкости. Эти переходы являются фазовыми переходами первого рода (см. ФАЗОВЫЕ ПЕРЕХОДЫ ПЕРВОГО РОДА) (с выделением теплоты фазового перехода). Теплота перехода жидкого кристалла в аморфную жидкость в десятки раз меньше теплоты плавления органических твердых кристаллов.

Взаимное расположение молекул в жидких кристаллах является промежуточным между твердыми кристаллами, где существует трехмерный координационный дальний порядок (см. ДАЛЬНИЙ ПОРЯДОК И БЛИЖНИЙ ПОРЯДОК) (упорядоченность в расположении центров тяжести молекул) и ориентационный дальний порядок (упорядоченность в ориентации молекул), и аморфными жидкостями, в которых дальний порядок полностью отсутствует. В макроскопических образцах жидких кристаллов образуются области размером от 10-5 до 10-2 см с соответствующей данному жидкому кристаллу упорядоченностью. В жидком кристалле возникает совокупность областей с однородной молекулярной ориентацией доменов, ориентированных хаотически или закономерно, т. е. образуется жидкокристаллическая текстура.

В жидкокристаллическом состоянии могут находиться некоторые органические вещества, состоящие из молекул удлиненной формы (в виде палочек или вытянутых пластинок), имеющие параллельную укладку таких молекул. Значительную часть жидких кристаллов составляют соединения ароматического ряда, т. е. соединения, молекулы которых содержат бензольные кольца. Существуют «застеклованные» жидкие кристаллы, получающиеся в результате переохлаждения. В настоящее время известно несколько тысяч органических соединений, способных находиться в мезоморфном состоянии. Среди них есть и такие вещества, у которых температурный интервал существования включает комнатную температуру.

В большом объеме жидкие кристаллы интенсивно рассеивают свет и выглядят мутными. Это обусловлено рассеянием света на неоднородностях - ориентационных флуктуациях, а также границах доменов и дисинклинациях (аналог дислокаций (см. ДИСЛОКАЦИИ) в твердых кристаллах). Если применить ориентирующее воздействие на тонкий слой жидкого кристалла, то можно получить один большой домен.

Молекулярные силы, обеспечивающие упорядоченную структуру жидкого кристалла, малы. Поэтому жидкие кристаллы легко изменяют структуру под действием различных внешних факторов (температуры, давления, излучения, электрических и магнитных полей и т. д.), что приводит к изменению их оптических, электрических и других свойств. Эта зависимость, в свою очередь, открывает богатые возможности при разработке индикаторных устройств различного назначения. В отличие от твердых кристаллов, у которых для управления, например, оптическими свойствами используются напряжения в сотни и тысячи вольт, в жидких кристаллах достаточно использование напряжения порядка 2-20 в. Жидкие кристаллы являются диамагнитными материалами (см. ДИАМАГНЕТИЗМ). В магнитном поле напряженностью H у них возникает магнитный момент I, направленный противоположно H. По электрическим свойствам жидкие кристаллы относятся к полярным диэлектрикам с невысоким удельным сопротивлением (r=ЖИДКИЕ КРИСТАЛЛЫ106-1010 Ом.м).

Понятием «жидкие кристаллы» обычно называют большое количество жидкокристаллических фаз с различными структурой и свойствами. По признаку общей симметрии все жидкие кристаллы подразделяются на три типа: смектические, нематические и холестерические. Тип кристаллов характеризует их строение на молекулярном уровне. Нематическим и смектическим жидким кристаллам свойственно параллельное расположение молекул. Известны некоторые промежуточные типы упорядоченности между смектическими и нематическими типами. Например, жидкие кристаллы из дискообразных молекул, уложенных стопками в столбики, образующие двухмерную жидкую кристаллическую структуру.

Смектические жидкие кристаллы

Название произошло от греческого «смегма», что означает «мыло», так как впервые жидкие кристаллы этого типа обнаружены в мылах. В смектических жидких кристаллах (этиловый эфир азоксибензойной кислоты, водные растворы мыл) концы молекул как бы закреплены в плоскостях, перпендикулярных продольным осям молекул. Дальний порядок в расположении поперечных осей и центров тяжести молекул также отсутствует. Смектические кристаллы характеризуются слоистым строением. Центры тяжести удлиненных молекул находятся в плоскостях, равноудаленных друг от друга. В каждом слое молекулы ориентированы параллельно за счет упругого дисперсного взаимодействия. В этих материалах, помимо ориентационной упорядоченности молекул, существует частичное упорядочение центров тяжести молекул: центры тяжести молекул организованы в слои, расстояние между которыми фиксированы. Слои молекул легко смещаются относительно друг друга, и смектики на ощупь мылоподобные. Текучесть обеспечивается взаимным скольжением смектических плоскостей, поэтому вязкость достаточно велика. Различают несколько смектических полиморфных модификаций: А, В и С. В смектике А длинные молекулярные оси перпендикулярны смектическим слоям. Внутри слоев имеется лишь ближний позиционный порядок. В смектике В внутри слоя имеется дальний позиционный порядок в расположении молекул. Фазы А и В оптически одноосны. В фазе С длинные оси молекул согласованно наклонены к смектическим плоскостям; такие жидкие кристаллы оптически двуосны. Кроме фаз А, В и С известно еще несколько разновидностей смектических структур.

Смектики - это наиболее обширный класс жидких кристаллов. Причем некоторые разновидности смектиков обладают сегнетоэлектрическими свойствами. Из-за высокой вязкости смектические кристаллы не получили широкого применения в технике.

Нематические жидкие кристаллы

Название происходит от греческого «нема» - нить. Нематические жидкие кристаллы (параазоксианизол, растворы синтетических полипептидов) характеризуются ориентацией продольных осей молекул вдоль некоторого направления, т. е. для них характерен дальний ориентацнонный порядок. Нити (дисинклинации) подвижны и хорошо заметны в естественном свете. Они являются местами разрыва оптической непрерывности среды, где ориентация удлиненных молекул резко изменяется. Молекулы таких веществ представляют собой образования со сравнительно большим молекулярным весом, причем их протяженность в длину гораздо больше, чем в поперечных направлениях. Длинные оси молекул ориентированы вдоль одного общего направления, называемого нематическим директором. Однако центры тяжести молекул расположены беспорядочно, так что возникает симметрия более низкого порядка, чем у смектических кристаллов. При таком строении вещества возможно взаимное скольжение молекул вдоль нематического директора. В нематическом состоянии не все молекулы имеют одинаковую ориентацию. Так как на разных участках директор ориентирован по-разному, в жидком кристалле появляются области с различными направлениями директора - домены. Однородно ориентированные слои нематика с осями молекул, параллельными поверхностям пластин, называют планарной текстурой. На границах раздела доменов меняется коэффициент преломления света, поэтому жидкие кристаллы выглядят мутными.

Важными характеристиками нематических жидких кристаллов являются оптическая и диэлектрическая анизотропия. По электрическим свойствам нематические жидкие кристаллы относятся к группе полярных диэлектриков с невысоким удельным сопротивлением. Упорядоченность в ориентации поперечных осей молекул и в расположении их центров тяжести отсутствует. Это обеспечивает свободу поступательных перемещений молекул. Поэтому вязкость вещества в нематической фазе лишь незначительно отличается от вязкости в аморфно-жидком состоянии.

Холестерические жидкие кристаллы

Жидкие кристаллы холестерического типа дают производные холестерина (см. ХОЛЕСТЕРИН), например, холестерилциннамат, пропиловый эфир холестерина, и ряд других веществ. Молекулы холестерических жидких кристаллов имеют форму продолговатых пластинок, расположенных параллельно друг другу. Холестерические жидкие кристаллы являются разновидностью нематических жидких кристаллов, но в них отсутствует координационный дальний порядок. Текучесть вещества обеспечивается поступательным перемещением и вращением молекул в их плоскости. Директоры соседних молекул смещены относительно друг друга, в результате чего образуется холестерическая спираль - слоистая винтовая структура с шагом спирали L порядка 300 нм. Т. е. вся структура дополнительно закручена вокруг оси винта, перпендикулярной молекулярным осям. Такая фаза ведет себя по отношению к падающему излучению подобно интерференционному фильтру: световые лучи испытывают селективные отражения. Явление во многом аналогично дифракции рентгеновских лучей (см. ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ) на кристаллических решетках твердых тел. Однако масштабы здесь совсем иные: поскольку периоды холестерической спирали составляют сотни нанометров, длины волн, удовлетворяющих условию Вульфа-Брэгга (см. БРЭГГА-ВУЛЬФА УСЛОВИЕ), соответствуют видимой области спектра. Если плоский слой холестерического жидкого кристалла освещать белым светом, то в отраженном состоянии он будет казаться окрашенным, причем окраска может изменяться в зависимости от угла наблюдения и от температуры. Изменения цвета текстуры при изменении температуры называют термохромным эффектом.

Своеобразная молекулярная структура холестерических жидких кристаллов обусловливает их уникальные оптические свойства. Шаг винтовой спирали сильно зависит от внешних воздействий: при изменении, например, температуры, изменяется расстояние между молекулярными слоями, соответственно изменяется длина волны максимального рассеяния при заданном угле наблюдения. В результате получается цветовой термометр, который нашел различные применения. Холестерические жидкие кристаллы обладают весьма большой оптической активностью, на два-три порядка превышающей оптическую активность органических жидкостей и твердых кристаллов, и резко изменяют окраску при изменении температуры среды на десятые доли градуса, а также при изменении состава среды на доли процента.

Применение

Цветовые термоиндикаторы на жидких холестерических кристаллах успешно применяются для технической и медицинской диагностики. Их чувствительность к температуре дает возможность визуализации распределения температур на поверхности, что используется в интроскопии (см. ИНТРОСКОПИЯ), в медицине для диагностики ряда заболеваний, в различных температурных датчиках. Они позволяют легко получить картину теплового поля в виде цветовой диаграммы. Кроме того, холестерики могут использоваться для визуализации СВЧ полей. Эффект динамического рассеяния света также используется для изготовления индикаторов. Поскольку в индикаторах на жидких кристаллах используется окружающий свет, то потребляемая мощность значительно меньше, чем у других индикаторных устройств, и составляет 10-4 - 10-6 Вт/см2. Это на несколько порядков ниже, чем в светодиодах, порошковых и пленочных люминофорах, а также в газоразрядных индикаторах. На основе холестерических жидких кристаллов работают преобразователи инфракрасного изображения в видимое.

В отличие от нематика, динамическое рассеяние света в холестерике может обладать памятью. Рассеивающее свет состояние может сохраняться и после снятия поля. Время памяти зависит от конкретных свойств холестерика и может сохраняться от минут до нескольких лет. Приложение переменного напряжения переводит холестерик в исходное нерассеивающее состояние. Это свойство позволяет использовать холестерики для создания ячеек памяти.

Благодаря сильной зависимости свойств жидких кристаллов от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т. д.).

Жидкие кристаллы в биологии

Многим структурным образованиям живого организма свойственно жидкокристаллическое состояние. Структура жидких кристаллов оказалась удобной для биологических процессов. Она соединяет в себе устойчивость к внешним воздействиям с гибкостью и пластичностью.

Среди биоорганических веществ особенно распространены лиотропные жидкие кристаллы. Их образуют полипептиды, эфиры холестерина, цереброзиды, вирусы. Сложные биологически активные молекулы (например, ДНК (см. ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ)) и даже макроскопические тела (например, вирусы) также могут находиться в жидкокристаллическом состоянии. Жидкие кристаллы играют важную роль в ряде механизмов жизнедеятельности человеческого организма. Некоторые болезни (атеросклероз, желчнокаменная болезнь), связанные с появлением в организме твердых кристаллов, проходят через стадию возникновения жидкокристаллического состояния.

Полезные сервисы

сегнетоэлектрические материалы

Энциклопедический словарь

СЕГНЕТОЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ - СЕГНЕТОЭЛЕКТРИ́ЧЕСКИЕ МАТЕРИА́ЛЫ, диэлектрики (см. ДИЭЛЕКТРИКИ), в которых проявляется сегнетоэлектрический эффект, связанный с наличием в кристалле спонтанной поляризации (см. ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ), направление которой может быть изменено внешним электрическим полем, и обладающие рядом сопутствующих свойств (наличием фазового перехода, разбиением кристалла на области с различным направлением спонтанной поляризации - домены и т.д.). Сегнетоэлектрики (см. СЕГНЕТОЭЛЕКТРИКИ), благодаря структурным фазовым превращениям, проявляют сегнетоэлектрические свойства лишь в определенном интервале температур и давлений.

Сегнетоэлектричество является достаточно широко распространенным явлением, и в настоящее время известно несколько сотен соединений, обладающих сегнетоэлектрическими свойствами. Группу сегнетоэлектрических материалов существенно расширяют и дополняют твердые растворы (см. ТВЕРДЫЕ РАСТВОРЫ) на основе различных соединений. Подобные растворы часто отличаются по своим свойствам от их ингредиентов. Сегнетоэлектрическими свойствами обладают кристаллы некоторых фосфатов и арсенатов, нитратов и солей глицина и бетаина, пропионатов и нитритов, двойных и сложных окислов, других соединений, содержащих почти все элементы таблицы Менделеева. Сегнетоэлектрические кристаллы характеризуются многообразием структурных типов и химического состава, что свидетельствует о различии молекулярных механизмов возникновения спонтанной поляризации.

По типу химической связи и физическим свойствам все кристаллические сегнетоэлектрики принято подразделять на две большие группы: ионные сегнетоэлектрические кристаллы (сегнетоэлектрики типа смешения) и дипольные сегнетоэлектрические кристаллы (упорядочивающиеся сегнетоэлектрики). Свойства ионных и дипольных сегнетоэлектриков существенно различаются.

Ионные сегнетоэлектрические кристаллы

Для структуры ионных сегнетоэлектриков характерно наличие кислородного октаэдра, благодаря чему эти сегнетоэлектрики называют сегнетоэлектриками кислородно-октаэдрического типа. Ионные сегнетоэлектрики имеют структуру элементарной ячейки типа перовскита CaTiO3 (см. структурные типы кристаллов (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ)). К ионным сегнетоэлектрикам относится титанат бария (см. БАРИЯ ТИТАНАТ) BaTiO3, титанат свинца PbTiO3, ниобат калия KNbO3, ниобат лития LiNbO3, танталат лития LiTaO3, йодат калия KIO3, ниобат лития LiNbO3, барий-натриевый ниобат (БАНАН) Ba2NaNb5O15 и др.

Все соединения кислородно-октаэдрического типа нерастворимы в воде, обладают значительной механической прочностью, легко получаются в виде поликристаллов по керамической технологии. Они представляют собой в основном кристаллы с преимущественно ионной связью (см. ИОННАЯ СВЯЗЬ). Спонтанная поляризация и фазовый переход диэлектрика из параэлектрического состояния в сегнетоэлектрическое происходит в результате смещения иона Ti4+ (или замещающего его) в объеме элементарной ячейки из центрального положения и деформации ячейки. При получении твердых растворов на основе таких кристаллов можно получать материал с широким диапазоном свойств. Например при изменении соотношения компонентов твердого раствора BaTiO3 и SrTiO3 диэлектрическая проницаемость изменяется от 2000 до 12000, а точка Кюри от 120оС (BaTiO3) до 250оС (Sr TiO3)

Дипольные сегнетоэлектрические кристаллы

У дипольных кристаллов сегнетоэлектриков имеются готовые полярные группы атомов, способные занимать различные положения равновесия. К дипольным сегнетоэлектрикам относятся сегнетова соль (см. СЕГНЕТОВА СОЛЬ) NaKC4H4O6.4H2O, триглицинсульфат NH2CH2COOH.H2SO4, дигидрофосфат калия KH2PO4, нитрит натрия NaNO2и др. Именно в кристаллах сегнетовой соли впервые были обнаружены особенности в поведении диэлектриков, обусловленные спонтанной поляризацией. Отсюда произошло название всей группы материалов со специфическими свойствами - сегнетоэлектрики.

Дипольные сегнетоэлектрики обладают высокой растворимостью в воде и малой механической прочностью. Растворимость сегнетовой соли в воде так велика, что ее кристаллы можно распилить с помощью влажной нити. Благодаря высокой растворимости в воде можно легко вырастить крупные монокристаллы этих соединений из водных растворов. Атомы в этих соединениях связаны между собой преимущественно ковалентной связью.

Подавляющее большинство сегнетоэлектриков первой группы имеет значительно более высокую температуру Кюри и большее значение спонтанной поляризованности, чем сегнетоэлектрики второй группы. У значительной части дипольных сегнетоэлектриков точка Кюри лежит намного ниже комнатной температуры.

Кристаллы ряда сегнето- и антисегнетоэлетриков (см. АНТИСЕГНЕТОЭЛЕКТРИКИ) обладают сильно выраженным электрооптическим эффектом (см. ЭЛЕКТРООПТИЧЕСКИЙ ЭФФЕКТ).

Другие типы сегнетоэлектрических материалов

Сегнетоэлектрическими свойствами обладают также некоторые полупроводники и магнитоупорядоченные вещества. Сочетание различных свойств приводит к новым эффектам, например магнитоэлектрическим. Сегнетоэлектрические свойства обнаруживают не только твердые кристаллические вещества. Некоторые жидкие кристаллы (см. ЖИДКИЕ КРИСТАЛЛЫ) и полимерные материалы (см. ПОЛИМЕРЫ) тоже являются сегнетоэлектриками.

Сегнетоэлектрические жидкие кристаллы имеют сложную структуру молекул, обладающих спиральностью и поперечным дипольным моментом В смектических жидких кристаллах молекулярная структура такова, что молекулярные диполи соседних молекул благодаря стерическим взаимодействиям между молекулами ориентированы почти параллельно. Внешнее электрическое поле изменяет направление этих диполей на обратное за счет молекулярных вращений. Реализованы фазы, в которых дипольные моменты молекул в слоях чередуются так, что формируется своеобразная антисегнетоэлектрическая конфигурация молекул с дипольными моментами в соседних слоях, ориентированными в противоположных направлениях.

В полимере поливинилиденфториде молекулярные диполи, присоединенные к полимерному скелету, могут быть ориентированы в электрическом поле с образованием устойчивой решетки, обнаруживающей макроскопическую поляризацию.

Применение сегнетоэлектрических материалов

Сегнетоэлектрические материалы (монокристаллы, керамика, пленки) находят широкое применение. Благодаря большим значениям диэлектрической проницаемости их используют в качестве материала для конденсаторов высокой удельной емкости, малогабаритных конденсаторов. Большая диэлектрическая проницаемость вблизи Тк (например, в BaTiO3) представляет интерес с точки зрения применения в многослойных конденсаторах. Сегнетоэлектрики обладают пьезоэлектрическим эффектом и применяются для изготовления пьезоэлектрических преобразователей и излучателей ультразвука, в преобразователях звуковых сигналов в электрические и наоборот, в датчиках давления. Сильная температурная зависимость спонтанной поляризации (большая величина пироэлектрические константы) позволяет применять сегнетоэлектрики в приёмниках электромагнитных излучений переменной интенсивности в широком диапазоне длин волн. Благодаря сильной зависимости диэлектрической проницаемости сегнетоэлектриков от электрического поля их используют в нелинейных конденсаторах - варикондах (см. ВАРИКОНД). Сегнетоэлектрики применяются в качестве электрооптических материалов (см. ЭЛЕКТРООПТИЧЕСКИЕ МАТЕРИАЛЫ). Во внешнем электрическом поле изменяются преломляющие свойства сегнетоэлектрических кристаллов (компоненты тензора показателя преломления): это явление используется для управления световыми пучками, в оптических затворах, модуляторах и умножителях частоты лазерного излучения. Ниобат лития LiNbO3, обладающий большими электрооптическими коэффициентами, является одним из лучших материалов для интегральных оптических модуляторов. Кристалл КН2РО4 широко применяется для удвоения оптической частоты лазера. Из триглицинсульфата изготавливаются фотоприемники для инфракрасной области спектра.

Как правило, сегнетоэлектрики используются в виде сегнетокерамики (см. СЕГНЕТОКЕРАМИКА), преимуществами которой являются легкость изготовления, прочность, стабильность, возможность получения сложных конфигураций. Сегнетокерамика и полимеры используются в качестве пьезоэлектрических преобразователей, гидрофонов и измерительных преобразователей давления.

Полезные сервисы