Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

элементарные полупроводниковые материалы

Энциклопедический словарь

ЭЛЕМЕНТАРНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ - ЭЛЕМЕНТА́РНЫЕ ПОЛУПРОВОДНИКО́ВЫЕ МАТЕРИА́ЛЫ (простые полупроводники), химические элементы, простые вещества которых проявляют полупроводниковые свойства (см. ПОЛУПРОВОДНИКИ).

Полупроводниковые свойства проявляют 12 химических элементов, находящихся в средней части Периодической системы Д. И. Менделеева (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА). К ним относятся: элементы IVА подгруппы - углерод (алмаз), кремний, германий, олово; элементы VА подгруппы - фосфор, мышьяк, сурьма и висмут; элементы VIА подгруппы - сера, селен, теллур; элементы VIIА подгруппы - иод. Все они являются p-элементами, в атомах которых постепенно заполняются электронами p-орбитали. В простых веществах с валентными s- и p-электронами выполняется правило Юм-Розери (правило октета), согласно которому координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) К = (8 - N) , где N - номер группы в Периодической системе. В полупроводниках группы IVА координационное число равно четырем (тетраэдр). У полупроводниковых модификаций простых веществ группы VА - фосфор, мышьяк, сурьма - координационное число равно трем, что способствует формированию слоистых структур. S, Se, Te (группа VIА) в полупроводниковом состоянии имеют координационное число 2 и образуют линейные и цепочечные структуры, связанные в трехмерную решетку силами Ван-дер-Ваальса (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ). У полупроводниковой модификации йода (группа VIIА) координационное число равно единице. Из 12 элементарных полупроводниковых элементов приборное применение имеют только три - кремний, германий и селен.

Элементы VII А подгруппы

Из элементов этой группы к полупроводникам относится только йод. В твердом состоянии он обладает полупроводниковыми свойствами, в нем реализуются р-связи.

Элементы VI А подгруппы

Полупроводниковыми свойствами обладают сера, селен и теллур. Кристаллы этих элементов состоят из спиральных цепочек или колец, в которых каждый атом имеет две ковалентные связи с атомами той же цепочки. Между собой цепочки связаны силами Ван-дер-Ваальса. Ширина запрещенной зоны (см. ЗАПРЕЩЕННАЯ ЗОНА) убывает с увеличением порядкового номера и составляет у серы - 2,4 эВ, у селена 1,7 эВ, у теллура 0,35 эВ. Элементы этой подгруппы входят в качестве основных компонентов в полупроводниковые соединения, а также используются в качестве донорных примесей в соединениях AIIIBV.

В качестве полупроводникового материала в микроэлектронике из элементов VIА подгруппы используется гексагональная модификация селена. Это полупроводник p-типа проводимости, полупроводниковые свойства которого проявляются и используются и в поликристаллических структурах. Ширина запрещенной зоны 1,8 эВ. Монокристаллы гексагонального селена получают выращиванием из расплава или осаждением из газовой фазы. Испарением Se в вакууме на подложку можно получать пленки толщиной 50-100 мкм, которые применяют для производства полупроводниковых приборов. Гексагональный селен используется для изготовления полупроводниковых выпрямителей фотоэлементов, солнечных батарей.

Для селена характерен внутренний фотоэффект: под действием света растет число дырок и увеличивается собственная электропроводность. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов. Влияние света на электрические свойства селена двояко. Первое - это уменьшение его сопротивления на свету. Второе, не менее важное - фотогальванический эффект, т. е. непосредственное преобразование энергии света в электроэнергию в селеновом приборе. Для осуществления фотогальванического эффекта необходимо, чтобы энергия фотонов была больше некоей пороговой, минимальной для данного фотоэлемента, величины. Простейший прибор, в котором используется именно этот эффект, - экспонометр. Более сложные устройства - солнечные батареи, работающие на Земле и в космосе.

Элементы VА подгруппы

У полупроводниковых элементов VА подгруппы - фосфора, сурьмы, мышьяка и висмута - химические связи реализуются за счет образования р3-орбит, они имеют структуры с координационным числом =3, относящимся к ромбоэдрической сингонии. Такие кристаллы можно представить состоящими из двухслойных пластин. Каждый атом имеет в соседнем слое той же пластины трех ближайших соседей, с которыми он связан ковалентными связями. Соседние пластины связаны между собой слабыми силами Ван-дер-Ваальса. Элементы этой подгруппы входят в качестве основных компонентов в полупроводниковые соединения, а также используются в качестве донорных примесей в соединениях AIIIBV.

Элементы IVА подгруппы

К полупроводниковым элементам IVА подгруппы относятся основные полупроводниковые материалы германий и кремний, а также углерод (алмаз) и полиморфная -модификация олова. Эти элементы имеют кристаллическую решетку типа алмаза. Связи между атомами sp3-гибридные, тетраэдрические.

Недостатком германия и кремния как полупроводниковых материалов, являются малая ширина запрещенной зоны, поэтому рабочая температура германиевых приборов не превышает 60-80 оC. Германий относится к числу редких и очень рассеянных химических элементов. Кремний не имеет указанных недостатков, а по распространенности занимает второе место после кислорода. Ширина запрещенной зоны кремния значительно больше, чем у германия, поэтому кремниевые приборы могут функционировать при более высокой температуре (200-220 оC), однако подвижности носителей тока у кремния меньше, чем у германия. Поэтому частотный предел кремниевых полупроводниковых приборов ниже германиевых. Технологически кремний труднее получить в чистом состоянии, чем германий. Поэтому один из самых распространенных элементов в виде простого вещества нужной чистоты становится дороже редкого и рассеянного германия.

Германий полупроводниковый. Кристаллизуется в решетке типа алмаза (см. Типы кристаллических структур (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ)). Связь между атомами в решетке германия - ковалентная. Число атомов Ge в единице объема - 4,45.1022атом/см3. Ширина запрещенной зоны небольшая и равна 0,72эВ. Германий прозрачен в ИК-области спектра, начиная с длины волны 1,8 мкм.

Одно из преимуществ технологии германия - относительно невысокая температура плавления (936 оС) и ничтожно малое давление насыщенного пара при этой температуре, что существенно упрощает процесс кристаллизационной очистки и выращивания монокристаллов. Кроме этого германий даже в расплавленном состоянии практически не взаимодействует с кварцем, из которого изготавливают тигли. Монокристаллический германий получают методом Чохральского (см. Методы выращивания кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ)), реже - методом зонной плавки (см. ЗОННАЯ ПЛАВКА). Основной фоновой загрязняющей примесью в германии является кислород. Для некоторых приборов (например, для счетчиков ядерных излучений) требуются монокристаллы германия с пониженным содержанием кислорода. Монокристаллы германия с малым содержанием кислорода выращивают методом Чохральского на высоковакуумных установках при остаточном давлении 10-5Па. В связи с сильным испарением германия в таких условиях процесс проводят в атмосфере высокочистого водорода или в смеси водорода с инертными газами.

Для получения необходимых электрофизических свойств германий легируют различными примесями. В качестве доноров и акцепторов в германии используют соответственно элементы V и III групп Периодической системы. Эти примеси создают мелкие уровни в запрещенной зоне с энергией ионизации порядка 0,01 эВ. Большинство примесей других групп проявляют свойства многозарядовых центров (создают несколько уровней в запрещенной зоне (см. ЗАПРЕЩЕННАЯ ЗОНА)). Мелкие доноры и акцепторы при температуре выше 90 К полностью ионизованы, поэтому в нормальных условиях концентрация носителей заряда в германии определяется концентрацией примеси. В слаболегированном германии в достаточно широком диапазоне температур наблюдается положительный температурный коэффициент удельного сопротивления. Температура, при которой начинает проявляться собственная электропроводность, зависит от концентрации легирующей примеси.

Германий - один из первых полупроводниковых материалов, который широко использовался для изготовления большого количества приборов. На его основе можно изготавливать выпрямительные плоскостные диоды, низко- и высокочастотные, мощные и маломощные транзисторы, лавинно-пролетные и туннельные диоды, варикапы, точечные высокочастотные импульсные и СВЧ-диоды. В импульсных диодах для достижения высокой скорости переключения требуется материал с малым временем жизни неравновесных носителей заряда. Этому требованию удовлетворяет германий, легированный золотом. Благодаря относительно высокой подвижности носителей заряда германий применяют для изготовления датчиков Холла (см. ХОЛЛА ЭДС ДАТЧИК) и других магниточувствительных приборов.

В последние годы основное применение германий находит в производстве оптических приборов. Оптические свойства германия позволяют использовать его для изготовления фототранзисторов и фотодиодов, оптических линз и фильтров инфракрасной техники, модуляторов света и коротковолнового радиоизлучения. Он не имеет конкуренции в счетчиках ядерных частиц. Недостаточно высокое значение ширины запрещенной зоны позволяет изготовленным из германия приборам работать при относительно невысоких температурах (до 60-70 оС). Это явилось основной причиной вытеснения его из многих приборов более широкозонным кремнием и арсенидом галлия (см. ГАЛЛИЯ АРСЕНИД).

Кремний полупроводниковый, монокристаллический - основной материал для твердотельной электроники. Ежегодно в мире производится около 9000 тонн высокосовершенных бездислокационных монокристаллов кремния. Кремний находит широкое применение в микроэлектронике, силовой электронике, солнечной энергетике, кремниевой оптоэлектронике.

Кремний, как и германий, кристаллизуется в решетке типа (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ) алмаза. Связь между атомами в решетке германия - ковалентная. Число атомов Si в единице объема - 5,0.1022атом/см3. Ширина запрещенной зоны равна 1,12 эВ.

Получение монокристаллов кремния

В качестве исходного материала при производстве монокристаллов используется поликристаллический кремний высокой чистоты, полученный путем водородного восстановления прошедших глубокую очистку хлорсиланов или путем термического разложения особо чистого моносилана. Оба метода обеспечивают получение исходного кремния с суммарным содержанием остаточных примесей 1011-1012 ат.см-3. Для получения монокристаллов используют метод (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ) Чохральского и бестигельную зонную плавку (см. ЗОННАЯ ПЛАВКА). Процесс бестигельной зонной плавки, в котором предварительно проводится дополнительная глубокая зонная очистка исходной поликристаллической заготовки от остаточных примесей, используют для получения наиболее чистых и обладающих высоким удельным сопротивлением монокристаллов. Монокристаллы, полученные таким способом, обладают удельным сопротивлением до 100 кОм.см и большой диффузионной длиной носителей заряда, имеют низкое содержание кислорода, но однородность распределения электрофизических свойств в объеме такого материала ниже, чем в случае выращивания методом Чохральского. Метод Чохральского является основным методом получения монокристаллов кремния. Установки для выращивания кристаллов кремния полностью автоматизированы и снабжены системами прецизионного поддержания постоянного диаметра слитка. Основным недостатком метода Чохральского при выращивании полупроводникового кремния является загрязнение выращиваемых монокристаллов кислородом и примесями, содержащимися в кварцевых тиглях, из которых обычно производится вытягивание слитка. Для управления электрофизическими свойствами (тип проводимости, удельное сопротивление, время жизни носителей заряда) широко используют процессы легирования электрически активными примесями. Основными легирующими примесями при получении монокристаллов электронного типа проводимости являются P, As, Sb, а при получении монокристаллов дырочного типа проводимости - B и Al. Эти примеси образуют в кремнии твердые растворы замещения и обладают достаточно высокой растворимостью (1018-1019 ат.см-3) в широком интервале температур. Растворимость их носит ретроградный характер с максимумом при температурах 1200-1350 оС. Легирование может быть осуществлено как непосредственно в процессе выращивания, так и на стадиях последующих обработок. Легирование в процессе выращивания производят либо с помощью специальных лигатур сплавов кремния с легирующей примесью, либо из паровой фазы легколетучих соединений легирующей примеси. Для обеспечения равномерного распределения легирующей примеси в объеме кристалла применяют вытягивание из двойного (плавающего) тигля, эффект компенсации накопления примеси в расплаве ее испарением (для летучих примесей), а также различные варианты магнитогидродинамического (МГД) воздействия на расплав с целью управления массопотоками в расплавленной ванне.

Основными структурными дефектами в монокристаллах бездислокационного кремния являются микродефекты (см. МИКРОДЕФЕКТЫ). Именно ростовые микродефекты, содержащиеся в пластинах кремния, оказывают наиболее существенное влияние на рабочие характеристики ультра сверхбыстрых интегральных схем (УСБИС). Наибольшее отрицательное влияние на параметры УСБИС оказывают межузельные дислокационные петли и поры. Основную роль в образовании ростовых микродефектов выращиваемых методом Чохральского монокристаллах играют собственные точечные дефекты (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ) (СТД) - вакансии и междоузельные атомы, а также кислород. Наличие преципитатов, например, фазы SiO2 в Si приводит к образованию механических напряжений и, следовательно, возможному появлению микротрещин.

Применение полупроводникового кремния

Кремний находит широкое применений в микроэлектронике (см. МИКРОЭЛЕКТРОНИКА). На его основе осуществляется производство УСБИС с динамической памятью на 256 Мбит-1Гбит и микропроцессоры с тактовыми частотами на уровне 0,5-1,0 ГГЦ. Усложнение УСБИС сопровождается ужесточением требований к качеству пластин (общая и локальная плоскостность, снижение уровня поверхностного загрязнения, повышение структурного совершенства и однородности исходного материала) при одновременном увеличении их диаметра и снижении стоимости. Резкое увеличение плотности монтажа и уменьшение размеров рабочих элементов УСБИС обусловливает необходимость снижения рабочих токов и напряжений. В этих условиях существенно возрастает роль посторонних шумов. В связи с этим возрастают требования к чистоте, структурному совершенству и микронеоднородности активной области приборной композиции. Особенно высоки требования по содержанию примесей, способных образовывать электрически- и рекомбинационноактивные центры.

В силовой электронике к мощным диодам и тиристорам на основе кремния добавилась широкая гамма мощных транзисторов и разнообразных «силовых» интегральных схем. Сильноточные кремниевые электронные устройства успешно используются для передачи электроэнергии на большие расстояния с минимальными потерями, в энергоемких металлургических и химических производствах, на транспорте, в системах электропривода и электропитания. В солнечной энергетике используются солнечные батареи на основе кремния. Суммарная мощность электроэнергии, вырабатываемой кремниевыми солнечными батареями, превысила уровень тысячи мегаватт. В оптоэлектронике кремний используется в разнообразных сенсорных устройствах, прецизионных микромеханических системах.

Кремний является непрямозонным полупроводником, эффективность межзонной излучательной рекомбинации в нем очень низка. Легирование кремния эрбием позволяет формировать в кристаллической решетке эффективные центры излучательной рекомбинации. Одним из направлений создания эффективных излучателей является наращивание на кремниевые подложки гетероэпитаксиальных структур прямозонных соединений АIIIВV (GaAs, InGaAs).

Для изготовления волноводов используют структуры Si/SiO2, имеющие разницу в величинах коэффициентов преломления составляющих компонентов равную 2, что обеспечивает условие надежного оптического ограничения. В таком волноводе свет распространяется по тонкому слою монокристаллического кремния, который прозрачен для излучения с длиной волны =1,3-1,55 мкм. Данная волноводная структура обеспечивает надежную связь (с минимальными оптическими потерями) с излучателем и фотоприемником.

Полезные сервисы

упаковки плотнейшие

Энциклопедический словарь

УПАКОВКИ ПЛОТНЕЙШИЕ - УПАКО́ВКИ ПЛОТНЕ́ЙШИЕ, в кристаллографии (см. КРИСТАЛЛОГРАФИЯ), формы расположения атомов в кристаллической решетке, которые характеризуются наибольшим числом атомов в единице объема кристалла.

Для устойчивости кристаллической структуры требуется условие минимума ее потенциальной энергии. Реализацию этого условия обеспечивает плотнейшая упаковка структурных единиц при их максимальном сближении. Плотноупакованными называются решетки, в которых при заданном минимальном расстоянии между узлами достигается максимальная концентрация узлов в единице объема. Тенденция к осуществлению плотнейшей упаковки сильнее всего выражена в металлических и ионных структурах, а также характерна для кристаллизованных инертных газов. В этих случаях связи не направлены, и атомы или ионы можно считать сферическими.

Для описания плотноупакованной структуры в кристаллографии принята модель плотной упаковки твердых шаров. Шары рассматриваются как материальные частицы одного сорта, имеют сферическую симметрию, равны по размеру, несжимаемы, притягиваются друг к другу. Шары касаются друг друга, заполняя большую часть пространства. Ионы не поляризуются, т. е. их сферичность не нарушается. Стремление к минимуму потенциальной энергии означает, что каждая частица должна взаимодействовать с возможно большим числом других частиц, координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) должно быть максимальным.

В плоском слое шаров, плотнейшим образом прилегающих друг к другу, каждый шар соприкасается с шестью шарами и окружен шестью лунками (пустотами), а каждая из лунок - тремя шарами. Такое расположение атомов характерно для плоскостей {111} гранецентрированной кубической структуры и плоскости базиса (0001) гексагональной плотноупакованной структуры.

При наложении второго слоя таким образом, чтобы над лункой первого слоя находился шар второго слоя, можно выделить два типа пустот, различающихся по координационному окружению:

- над лункой первого слоя находится шар второго слоя - тетраэдрическая пустота - Т;

- пустота второго слоя находится над пустотой первого слоя - октаэдрическая пустота - О.

Число пустот О равно числу шаров, а число пустот Т вдвое больше.

Если шары третьего слоя уложены в лунки Т, то третий слой повторяет укладку первого. Обозначив первый слой А, а второй В, получаем упаковку:

….АВАВАВ…

Если шары третьего слоя уложены в лунки О, то третий слой не повторяет первый слой, и получаем упаковку:

….АВСАВх.

Дальнейшие слои можно укладывать, получая любое чередование слоев, но плотнейшей упаковкой оказываются только две:

- двухслойная ….АВАВАВ… и

- трехслойная …..АВСАВСАВх..

Коэффициент компактности структуры определяется отношением объема шаров к общему объему (шары +пустоты). В обеих этих упаковках коэффициент компактности максимален и равен К=0,74. У всех остальных структур коэффициент компактности меньше.

Координационное число 12 - обязательный признак плотнейшей упаковки. Для шаров кубической упаковки координационный полиэдр (см. КООРДИНАЦИОННЫЙ ПОЛИЭДР) (многогранник) - кубооктаэдр, а для гексагональной - гексагональный кубооктаэдр.

Двухслойная гексагональная плотная упаковка или ГПУ, соответствующая чередованию слоев ABAB... очень распространена. Она характерна для Be, Mg, Zn, Ti. (см. Структурные типы кристаллов (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ)).

Набор слоев шаров типа …ABCABC... представляет собой кубическую плотную упаковку (КПУ) атомов в структуре золота. Благородные металлы Ag, Au, Pt, a также Cu, Al, Pb, -Fe характеризуются трёхслойной - кубической плотнейшей упаковкой атомов. Атомы в ней лежат в вершинах куба и центрах его граней: поэтому ее часто называют гранецентрированной кубической или ГЦК. ГЦК структуру имеют многие простые металлы.

Третий распространенный тип кристаллической структуры называется объемно-центрированный кубический или ОЦК. Атомы в такой структуре занимают вершины и центр куба. ОЦК-структура немного менее плотно упакована, чем ГЦК или ГПУ и часто это высокотемпературная форма металлов, которые более плотно упакованы при низких температурах. К примеру, структура железа (Fe) может быть либо ГЦК либо ОЦК в зависимости от температуры, тогда как металлы, такие как хром, всегда имеют ОЦК-структуру. Коэффициент компактности для ОЦК равен К =0,68. Все пустоты ОЦК - тетраэдрические. Плотные упаковки характерны для структур с ненаправленными связями.

Существуют упаковки четырехслойные, пятислойные и т. п. Четырехслойная упаковка характерна для редкоземельных металлов La, Ce и др. Известны структуры с многослойной упаковкой, состоящей из десятков и сотен слоев (политипия (см. ПОЛИТИПИЗМ)). Весьма часто полиморфизм (см. ПОЛИМОРФИЗМ (в минералогии)) (уже не только чистых металлов, но и соединений с простейшей формулой АХ) сводится к смене многослойных плотнейших упаковок (6-, 8-, 15-слойных) вплоть до числа слоев в несколько десятков, как например, в карбиде кремния (см. КРЕМНИЯ КАРБИД) SiC.

Формирование типа упаковки определяется силами дальнодействия между атомами.

Структуры многих неорганических (ионных) кристаллов представляют собой плотнейшие упаковки шаровых анионов (с большими ионными радиусами), в пустотах которых распределяются мелкие катионы.

Полезные сервисы

аморфные и стеклообразные полупроводниковые материалы

Энциклопедический словарь

АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ - АМО́РФНЫЕ И СТЕКЛООБРА́ЗНЫЕ ПОЛУПРОВОДНИКО́ВЫЕ МАТЕРИА́ЛЫ, аморфные и стеклообразные вещества, проявляющие полупроводниковые (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) свойства. Характеризуются наличием ближнего порядка (см. ДАЛЬНИЙ ПОРЯДОК И БЛИЖНИЙ ПОРЯДОК) и отсутствием дальнего порядка. Для стеклообразного полупроводникового материала, который можно рассматривать как особый вид аморфного вещества, характерным является наличие пространственной решетки (см. ПРОСТРАНСТВЕННАЯ РЕШЕТКА), в которой кроме ковалентно связанных атомов имеются полярные группировки ионов. В таких материалах связь между группами атомов и ионов осуществляется за счет короткодействующих ковалентных ван-дер-ваальсовых сил (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ). Неорганические стеклообразные полупроводники обладают электронной проводимостью. В отличие от кристаллических полупроводников у стеклообразных полупроводников отсутствует примесная проводимость. Примеси в стеклообразных полупроводниках влияют на отклонение от стехиометрии (см. СТЕХИОМЕТРИЯ), и тем самым изменяют их электрофизические свойства. Эти полупроводники окрашены и непрозрачны в толстых слоях. Стеклообразные полупроводниковые материалы характеризуются разориентированностью структуры и ненасыщенными химическими связями.

Аморфные и стеклообразные полупроводники по составу и структуре подразделяются на оксидные, халькогенидные, органические, тетраэдрические.

Оксидные кислородсодержащие стекла получают сплавлением оксидов металлов с переменной валентностью, например, V2O5-P2O5-ZnO. Оксиды металлов, образующие эти стекла, имеют одновременно не менее двух разновалентных состояний одного и того же элемента, что и обусловливает их электронную проводимость. Бескислородные халькогенидные стекла получают путем сплавления халькогенов (S, Se, Te) с элементами III, IV, V групп периодической системы. Халькогенидные стеклообразные полупроводники получают в основном либо охлаждением расплава, либо испарением в вакууме. Типичные представители -сульфид и селенид мышьяка. К ним относятся также двух- и многокомпонентные стеклообразные сплавы халькогенидов (сульфидов, селенидов и теллуридов) различных металлов (например, Ge-S, Ge- Se, As- S, As- Se, Ge- S P, Ge-As- Se, As-S-Se, As-Ge-Se-Те, As-Sb-S-Se, Ge-S-Se, Ge-Pb-S). Халькогенидные стекла обладают высокой прозрачностью в ИК-области спектра от 1 до 18 мкм. Аморфные пленки сложных халькогенидных соединений обладают большими возможностями вариации их физико-химических свойств.

Аморфные пленки Si, Ge, GaAs и других полупроводниковых веществ по своим свойствам не представляют практического интереса. Отсутствие в этих полупроводниках дальнего порядка и наличие большого количества дефектов типа микропор приводит к наличию у многих атомов ненасыщенных болтающихся связей. Следствием этого является высокая плотность локализованных состояний (1020см-3) в запрещенной зоне. В связи со спецификой процесса электропроводности в аморфных полупроводниках управлять электрическими свойствами таких материалов практически невозможно.

Введение водорода в аморфные пленки кремния существенным способом изменяет его электрофизические свойства. Растворяясь в аморфном кремнии, водород замыкает на себе болтающиеся связи (насыщает их), в результат в таком «гидрированном» материале, названном Si:H, резко снижается плотность состояний в запрещенной зоне (до 1016-1017см-3). Такой материал можно легировать традиционными донорными (P, As) и акцепторными (В) примесями, придавая ему электронный или дырочный тип проводимости, создавать в нем p-n-переходы (см. ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД). На основе кремния синтезирован ряд гидрированных аморфных полупроводников, обладающих интересными электрическими и оптическими свойствами Si1-xCx:H, Si1-xGex:H, Si1-xNx:H, Si1-xSnx:H.

Практическое применение аморфных и стеклообразных полупроводников разнообразно. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому, например, при изготовлении на его основе солнечных элементов. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки -Si:Н толщиной 0,5-1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. По сравнению с поликристаллическими кремниевыми элементами изделия на основе -Si:Н производят при более низких температурах (300 °С). Гидрированный кремний является прекрасным материалом для создания светочувствительных элементов в ксерографии, датчиков первичного изображения (сенсоров), мишеней видеконов для передающих телевизионных трубок. Оптические датчики из гидрированного аморфного кремния используются для записи в памяти видеоинформации, для целей дефектоскопии в текстильной и металлургической промышленности, в устройствах автоматической экспозиции и регулирования яркости. Стеклообразные полупроводники являются фотопроводящими полуизоляторами и используются в электрофотографии, системах записи информации и ряде других областей. Благодаря прозрачности в длинноволновой области спектра халькогенидные стеклообразные полупроводники применяются в оптическом приборостроении и т. д.

Полезные сервисы