сущ., кол-во синонимов: 2
газовая артерия (2)
газопровод (12)
То́пливная промы́шленность - комплекс отраслей горнодобывающей промышленности, занятых добычей и переработкой различных видов топливно-энергетического сырья. Включает нефтеперерабатывающую, газовую, угольную, сланцевую, торфяную и горнодобывающую промышленность.
* * *
ТОПЛИВНАЯ ПРОМЫШЛЕННОСТЬ - ТО́ПЛИВНАЯ ПРОМЫ́ШЛЕННОСТЬ, совокупность отраслей горнодобывающей промышленности, занятых добычей и переработкой различных видов топливно-энергетического сырья. Включает нефтеперерабатывающую, газовую, угольную, сланцевую, торфяную и горнодобывающую промышленность.
ТОПЛИВНАЯ промышленность - совокупность отраслей горнодобывающей промышленности, занятых добычей и переработкой различных видов топливно-энергетического сырья. Включает нефтеперерабатывающую, газовую, угольную, сланцевую, торфяную и горнодобывающую промышленность.
ТО́ПЛИВНИК -а; м. Разг. Работник топливной промышленности. Старейший, опытный т. Коллектив топливников. Успехи, достижения топливников.
то́пливник, то́пливники, то́пливника, то́пливников, то́пливнику, то́пливникам, то́пливником, то́пливниками, то́пливнике, то́пливниках
То́пливно-энергети́ческие ресу́рсы (первичные), совокупность различных видов топлива и энергии (продукция нефтедобывающей, газовой, угольной, торфяной и сланцевой промышленности, электроэнергия атомных и гидроэлектростанций, а также местные виды топлива), которыми располагает страна для обеспечения производственных, бытовых и экспортных потребностей.
* * *
ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ - ТО́ПЛИВНО-ЭНЕРГЕТИ́ЧЕСКИЕ РЕСУ́РСЫ (первичные), совокупность различных видов топлива (см. ТОПЛИВО) и энергии (продукция нефтедобывающей, газовой, угольной, торфяной и сланцевой промышленности, электроэнергия атомных (см. АТОМНАЯ ЭЛЕКТРОСТАНЦИЯ (АЭС)) и гидроэлектростанций (см. ГИДРОЭЛЕКТРОСТАНЦИЯ (ГЭС)) , а также местные виды топлива), которыми располагает страна для обеспечения производственных, бытовых и экспортных потребностей.
ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ (первичные) - совокупность различных видов топлива и энергии (продукция нефтедобывающей, газовой, угольной, торфяной и сланцевой промышленности, электроэнергия атомных и гидроэлектростанций, а также местные виды топлива), которыми располагает страна для обеспечения производственных, бытовых и экспортных потребностей.
ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ (первичные), совокупность различных видов топлива и энергии (продукция нефтедобывающей, газовой, угольной, торфяной и сланцевой промышленности, электроэнергия атомных и гидроэлектростанций, а также местные виды топлива), которыми располагает страна для обеспечения производственных, бытовых потребностей и экспорта.
ТОПЛИВНЫЕ ЭЛЕМЕНТЫ - ТО́ПЛИВНЫЕ ЭЛЕМЕ́НТЫ, гальванические элементы, в котором окислительно-восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть электрохимического генератора, обеспечивающая прямое преобразование химической энергии в электрическую. Используются в автономных энергетических установках, напр., на космических аппаратах.
Неоспоримым достоинством топливных элементов является то, что они не загрязняют окружающую среду, работают бесшумно и не подвержены механическим повреждениям, так как их детали во время работы неподвижны. Кроме того, они просты в изготовлении, а их кпд, или доля химической энергии, преобразующейся в тепловую и электрическую, а в автомобилях - в кинетическую, достигает 45 - 60% (для сравнения: кпд двигателя внутреннего сгорания около 15%).
В 1839 г. английский ученый У. Р. Грове (см. ГРОВЕ Уильям Роберт) доказал, что процесс электролиза обратим, и при электрохимической реакции водорода с кислородом можно генерировать электрический ток. Элемент Грове стал использоваться лишь в ХХ веке в пилотируемых космических полетах (питание бортовых радиостанций и обеспечение водой).
Суть реакции
В топливном элементе происходит реакция кислорода с водородом (2H + O2 = 2H2O), при которой не происходит горения, поэтому она безопасна.
Водород концентрируется вблизи положительного электрода - анода, а кислород вблизи отрицательного - катода. Поверхность анода обычно покрывают платиной - высокоэффективным катализатором, но в некоторых типах элементов используется никель или перовскит ( сложный окисел кальция и титана CaTiO3). Катализатор отрывает электрон от атома водорода, вызывая его ионизацию. В результате из электрически нейтрального атома водорода образуются положительно заряженный ион и свободный электрон.
Электроны и ионы водорода движутся к катоду: ионы через электролит, электроны через контур элемента, генерируя в нем электрический ток. Побочным продуктом реакции является вода, а в высокотемпературных элементах - тепловая энергия.
Электролит и электроды
Вместо жидкого электролита используются другие среды, например, керамический материал или мембраны. Проводимость ионов зависит от температуры, которая может меняться от комнатной до 1000 °C. При такой высокой температуре возникают дополнительные проблемы.
Анод и катод изготавливаются из пористого материала, например меди или никеля, с большим числом микроканалов, чтобы газ взаимодействовал с электролитом на максимально большой поверхности (чем больше поток газа и его давление, тем больше энергии генерирует элемент).
Топливный элемент генерирует постоянный ток напряжением 0,6 - 0,9 В и мощностью 0,3 - 0,6 Вт. Элементы объединяют в батареи. Напряжение будет зависеть от числа элементов в батарее, а сила тока - от их суммарной поверхности. Мощность батареи может достигать 30 - 50 кВТ при размерах устройства, позволяющих разместить его в легковом автомобиле.
Типы элементов
1. Топливный элемент на ортофосфорной кислоте (PAFC). Наличие кислоты в электролите позволяет работать при средней для топливных элементов температуре до 200 °C. Отличает высокий кпд (до 80%), возможность использования водорода с примесью окиси углерода.
Применяемый едкий электролит затрудняет подключение других устройств. Топливный элемент данного типа используется для снабжения зданий электрическим током.
2. Щелочной топливный элемент (AFC). В качестве электролита используется раствор едкого натрия или едкого калия. Рабочая температура устройства ниже 100 °C.
Щелочные топливные элементы делают из сравнительно дешевых материалов, их отличает более низкое содержание платины, чем в кислотных элементах.
К недостаткам относятся большие размеры; потребность в чистом кислороде и чистом водороде; жидкий электролит вызывает коррозию.
Применяются в космических аппаратах.
3. Топливный элемент с расплавленным карбонатом (MCFC). Электролитом служит калиево-литиевый карбонат, проводящий ионы при температуре до 650 °C.
Это элемент с самым высоким кпд; к достоинствам относится отсутствие платинового катализатора; водород может содержать примесь окиси углерода либо извлекаться из природного газа, пропана и др.
Недостатки - из-за высоких температур имеются конструктивные проблемы.
Применяется для обогрева зданий и запуска турбин.
4. Топливный элемент с твердым электролитом (SOFC). Вместо жидкого электролита используется керамический материал. Вода, образующаяся при температуре около1000 °C, находится в состоянии перегретого пара.
Топливный элемент с высоким кпд и высокой мощностью. Можно использовать богатый водородом газ без реформинга.
Применение ограничено из-за высокой стоимости (термостойкие материалы пока чоень дороги). Используется дляобогрева зданий и как источник тока. На крупных электростанциях для запуска паровых турбин.
5. Топливный элемент с протонно-обменной мембраной (PEM). Электролитом служит органическая мембрана, пропускающая в одном направлении.
Один из самых перспективных типов топливных элементов, отличается маленькими размерами, высоким кпд, низкой рабочей температурой (около 100 °C).
Недостатки - высокая стоимость, необходимость специального приготовления топлива (водорода, который должен быть очень чистым и не содержать примесей окиси углерода). Короткое время жизни.
Используется в бытовых приборах, так как материалы (кроме дорогих катализаторов) дешевле, чем в высокотемпературных элементах: для производства элементов питания, используемых в маленьких переносных устройствах (мобильные телефоны, системы автономного питания), для использования в средствах передвижения, где необходим быстрый запуск двигателя.
6. Метаноловый топливный элемент прямого действия (DMFC). Разработан в 1999 г. канадской фирмой «Баллард Пауэр Систем». Электролитом служит полимерная мембрана. Водород поступает непосредственно из метанола. В реакции метанола CH3OH с водой образуется метан (удаляемый из устройства) и водород.
Малые размеры сочетаются с отсутствием реформинга, легкостью хранения метанола.
К недостаткам можно отнести высокую стоимость платинового катализатора; сравнительно низкое напряжение, невысокий кпд (около 40%).
Перспективный элемент для использования в автомобилях.
Водород
Кислород для топливного элемента обычно берется из воздуха, тогда как водород поставляется либо чистый (жидкий или газообразный), либо с примесью окиси углерода, либо его извлекают из метанола, аммиака, природного газа, пропана и других углеводородов посредством химического процесса, называемого реформингом.
Поскольку чистый водород трудно хранить, лучше извлекать его из метанола, который, во-первых, легко хранить при комнатой температуре и, во-вторых, водород в его молекуле связан слабее всего и его легче всего оторвать от атома углерода. Однако в ходе реформинга появляются нежелательные примеси, такие, как окись и двуокись углерода, остатки метанола и формальдегид. Для их удаления необходимо дополнительное оборудование, что повышает стоимость топливных элементов и увеличивает их размеры.
Применение
Топливные элементы в будущем могут использоваться: а) в автомобилях для запуска двигателей (экспериментальные устройства есть уже сегодня); б) в энергетике, где отказываются от мощных электростанций в пользу небольших местных электростанций; в) в электронике (в качестве источников питания для сотовых телефонов, ноутбуков и других мобильных устройств).
В 2001 г. в Германии был создан первый легковой автомобиль на топливных элементах - «Мерседес Спринтер» фирмы «Даймлер - Крайслер». Первые серийные легковые автомобили «Хонда FCX» и «Тойота FCHV-4» появились на рынке в 2002 г. В Германии на некоторых линиях используют автобусы на топливных элементах.
прил.
1. соотн. с сущ. топливо, связанный с ним
2. Предназначенный для хранения, подачи и т.п. топлива.
3. Используемый как топливо.
ТО́ПЛИВНЫЙ, топливная, топливное. прил. к топливо. Топливное снабжение. Топливный кризис. Топливный насос (подающий жидкое топливо; тех.).
ТО́ПЛИВО, -а, ср. Горючее вещество, дающее тепло, являющееся источником получения энергии. Жидкое т. (нефть и продукты её переработки). Твёрдое т. (древесина, уголь, сланцы, торф). Ядерное т. (смесь веществ, материалов для получения энергии в ядерном реакторе).
-ая, -ое.
прил. к топливо; используемый как топливо.
Топливные ресурсы страны. Топливный газ.
||
Предназначенный для подачи, перевозки, хранения топлива.
Топливный насос. Топливный
бак. Топливный склад.
||
Относящийся к производству, добыче топлива.
Топливное предприятие. Топливная промышленность.
A/ пр; 109 см. Приложение II
то́пливный, то́пливная, то́пливное, то́пливные, то́пливного, то́пливной, то́пливных, то́пливному, то́пливным, то́пливную, то́пливною, то́пливными, то́пливном, то́пливен, то́пливна, то́пливно, то́пливны, то́пливнее, пото́пливнее, то́пливней, пото́пливней
То́пливный элеме́нт - химический источник тока, в котором окислительно-восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, например водорода, и окислителя, например кислорода) из специальных резервуаров. Важнейшая составная часть электрохимического генератора, обеспечивающая прямое преобразование химической энергии в электрическую. Используется в автономных энергетических установках, например на космических аппаратах.
ТОПЛИВНЫЙ ЭЛЕМЕНТ - гальванический элемент, в котором окислительно-восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть электрохимического генератора, обеспечивающая прямое преобразование химической энергии в электрическую. Используется в автономных энергетических установках, напр., на космических аппаратах.
ТОПЛИВНЫЙ ЭЛЕМЕНТ - электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.
См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ.
Принцип действия. Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

Рис. 1. ВОДОРОДНО-КИСЛОРОДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ. Эти элементы непрерывно снабжаются кислородом и водородом для получения электрической энергии в результате постоянно поддерживающейся химической реакции.
В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:

Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH-) с образованием воды и электрона:

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H-). Результирующую реакцию на катоде можно записать в виде:

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента. Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен - приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме. Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.
Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.
Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.

Рис. 2. ТОПЛИВНЫЙ ЭЛЕМЕНТ С ИОНООБМЕННОЙ МЕМБРАНОЙ также работает на водороде и кислороде, но вместо жидкого электролита используется полимерная мембрана.
Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре. Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо "расщепляется" внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.
Коэффициент полезного действия. Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, - процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40-45%.
Применения. Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями. Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей "Аполлон" применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля. Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.
ЛИТЕРАТУРА
Багоцкий В.С., Скундин А.М. Химические источники тока. М., 1981 Кромптон Т. Источники тока. М., 1985, 1986