Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

топливный

Толковый словарь

прил.

1. соотн. с сущ. топливо, связанный с ним

2. Предназначенный для хранения, подачи и т.п. топлива.

3. Используемый как топливо.

Толковый словарь Ушакова

ТО́ПЛИВНЫЙ, топливная, топливное. прил. к топливо. Топливное снабжение. Топливный кризис. Топливный насос (подающий жидкое топливо; тех.).

Толковый словарь Ожегова

ТО́ПЛИВО, -а, ср. Горючее вещество, дающее тепло, являющееся источником получения энергии. Жидкое т. (нефть и продукты её переработки). Твёрдое т. (древесина, уголь, сланцы, торф). Ядерное т. (смесь веществ, материалов для получения энергии в ядерном реакторе).

Академический словарь

-ая, -ое.

прил. к топливо; используемый как топливо.

Топливные ресурсы страны. Топливный газ.

||

Предназначенный для подачи, перевозки, хранения топлива.

Топливный насос. Топливный

бак. Топливный склад.

||

Относящийся к производству, добыче топлива.

Топливное предприятие. Топливная промышленность.

Орфографический словарь

то́пливный

Словарь ударений

то́пливный

A/ пр; 109 см. Приложение II

Формы слов для слова топливный

то́пливный, то́пливная, то́пливное, то́пливные, то́пливного, то́пливной, то́пливных, то́пливному, то́пливным, то́пливную, то́пливною, то́пливными, то́пливном, то́пливен, то́пливна, то́пливно, то́пливны, то́пливнее, пото́пливнее, то́пливней, пото́пливней

Синонимы к слову топливный

Морфемно-орфографический словарь

то́пл/ив/н/ый.

Грамматический словарь

то́пливный п 1*a

Полезные сервисы

топливный элемент

Энциклопедический словарь

То́пливный элеме́нт - химический источник тока, в котором окислительно-восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, например водорода, и окислителя, например кислорода) из специальных резервуаров. Важнейшая составная часть электрохимического генератора, обеспечивающая прямое преобразование химической энергии в электрическую. Используется в автономных энергетических установках, например на космических аппаратах.

Большой энциклопедический словарь

ТОПЛИВНЫЙ ЭЛЕМЕНТ - гальванический элемент, в котором окислительно-восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть электрохимического генератора, обеспечивающая прямое преобразование химической энергии в электрическую. Используется в автономных энергетических установках, напр., на космических аппаратах.

Энциклопедия Кольера

ТОПЛИВНЫЙ ЭЛЕМЕНТ - электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.

См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ.

Принцип действия. Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

Рис. 1. ВОДОРОДНО-КИСЛОРОДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ. Эти элементы непрерывно снабжаются кислородом и водородом для получения электрической энергии в результате постоянно поддерживающейся химической реакции.

Рис. 1. ВОДОРОДНО-КИСЛОРОДНЫЙ ТОПЛИВНЫЙ ЭЛЕМЕНТ. Эти элементы непрерывно снабжаются кислородом и водородом для получения электрической энергии в результате постоянно поддерживающейся химической реакции.

В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:

ТОПЛИВНЫЙ ЭЛЕМЕНТ

Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

ТОПЛИВНЫЙ ЭЛЕМЕНТ

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH-) с образованием воды и электрона:

ТОПЛИВНЫЙ ЭЛЕМЕНТ

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H-). Результирующую реакцию на катоде можно записать в виде:

ТОПЛИВНЫЙ ЭЛЕМЕНТ

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента. Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен - приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме. Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.

Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.

Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.

Рис. 2. ТОПЛИВНЫЙ ЭЛЕМЕНТ С ИОНООБМЕННОЙ МЕМБРАНОЙ также работает на водороде и кислороде, но вместо жидкого электролита используется полимерная мембрана.

Рис. 2. ТОПЛИВНЫЙ ЭЛЕМЕНТ С ИОНООБМЕННОЙ МЕМБРАНОЙ также работает на водороде и кислороде, но вместо жидкого электролита используется полимерная мембрана.

Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре. Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо "расщепляется" внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.

Коэффициент полезного действия. Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, - процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40-45%.

Применения. Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями. Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей "Аполлон" применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля. Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире.

См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.

ЛИТЕРАТУРА

Багоцкий В.С., Скундин А.М. Химические источники тока. М., 1981 Кромптон Т. Источники тока. М., 1985, 1986

Полезные сервисы