Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

биоэлектрические потенциалы

Энциклопедический словарь

Биоэлектри́ческие потенциа́лы - электрические потенциалы в тканях и клетках (главным образом в клеточных мембранах) живых организмов. Связаны с процессами возбуждения и торможения у животных и человека и раздражимости у растений. Исследования биоэлектрических потенциалов применяют с диагностическими целями (электрокардиография, электроэнцефалография и др.).

* * *

БИОЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ - БИОЭЛЕКТРИ́ЧЕСКИЕ ПОТЕНЦИА́ЛЫ, электрические потенциалы в тканях и клетках (главным образом в клеточных мембранах) живых организмов. Связаны с процессами возбуждения и торможения у животных и человека и раздражимости у растений. Исследования биоэлектрических потенциалов применяют с диагностическими целями (электрокардиография, электроэнцефалография и др.).

* * *

БИОЭЛЕКТРИ́ЧЕСКИЕ ПОТЕНЦИА́ЛЫ (биопотенциалы), электрические потенциалы в тканях и клетках живых организмов. Обусловлены способностью клеток и тканей быть источниками электрического тока и выступать в качестве так называемых электрических проводников второго рода с неоднородной структуройотличие от металлов, являющихся электрическими проводниками первого рода с однородной структурой).

Опыты Гальвани

Приоритет в открытии «животного электричества» принадлежит итальянскому врачу и естествоиспытателю Л. Гальвани (см. ГАЛЬВАНИ Луиджи), описавшему в 1791 сокращение мышцы в ответ на приложение к ней или иннервирующему ее нерву особого пинцета, одна половина которого состояла из меди, а другая - из железа (впоследствии он получил название гальванического пинцета). Гальвани объяснял это явление способностью нерва и мышцы быть источниками электричества, пинцет же, по мнению Гальвани, играл роль проводника, замыкающего электрическую цепь. В подтверждение своей теории Гальвани приводил способность некоторых рыб (электрического ската, электрического угря) вырабатывать электричество и генерировать разряд, подобный молнии, которая была известна еще в далекой древности. На самом деле Гальвани открыл не «животное», а химическое электричество, так как концы его пинцета составили так называемую электрохимическую пару (подобно любой паре химически разнородных металлов, в месте контакта которых возникает электрохимический потенциал, см. Гальванический элемент (см. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ)). Таким образом, в опытах Гальвани источником электричества являлся именно сам пинцет, а не мышца или нерв. Этот факт был убедительно доказан современником Гальвани, выдающимся итальянским физиком А. Вольта (см. ВОЛЬТА Алессандро). Научная дискуссия Гальвани и Вольта о существовании «животного электричества» («великий спор», по воспоминаниям современников), в конце 18 в. дала мощный толчок развитию физики электричества и электробиологии. Гальвани судил об электрических явлениях лишь косвенно - по сокращению лапки лягушки, его же ученик и последователь - Карло Маттеуччи, используя один из первых приборов для измерения электрического тока - струнный гальванометр, в 1837-1841 впервые прямо измерил электрические токи, возникающие и текущие в мышце лягушки. Эти опыты полностью подтвердили и реабилитировали идеи Гальвани о существовании биотоков и биопотенциалов.

Мембранная теория биопотенциалов

Первые систематические исследования природы биопотенциалов и токов в 19 веке принадлежат немецкому электрофизиологу Э. Дюбуа-Реймону. Измеряя с помощью серебряных электродов разность потенциалов между поверхностью мышцы (где устанавливался один электрод) и ее внутренней средой (куда втыкался заостренный второй электрод), он впервые доказал, что в основе биопотенциалов лежит пространственное разделение положительных и отрицательных электрических зарядов между наружной и внутренней поверхностью мембраны любой клетки. В состоянии покоя наружная поверхность клетки всегда заряжена положительно, а внутренняя - отрицательно, и такой трансмембранный «потенциал покоя (см. ПОТЕНЦИАЛ ПОКОЯ составляет порядка 0,05-0,09В. Физико-химическую природу потенциала покоя впервые удалось научно объяснить ученику Дюбуа-Реймона Ю. Бернштейну, разработавшему в 1903-1911«мембранную теорию биопотенциалов». Опираясь на данные физикохимии и коллоидной химии о движении ионов в растворах электролитов и через полупроницаемые органические пленки, а также данные об электролитическом составе цитоплазмы клетки и внеклеточных жидкостей, Бернштейн предположил, что мембрана клетки в состоянии покоя не пропускает органические анионы (которых много внутри клетки) и избирательно проницаема только для ионов калия, концентрация которых в клетке в 50-100 раз выше, чем в межклеточном пространстве. Ионы калия диффундируют через мембрану по концентрационному градиенту наружу, где они скапливаются и придают наружной стороне мембраны положительный заряд. Одновременно неспособные проходить вслед за калием наружу органические анионы - противоионы - скапливаются на внутренней поверхности мембраны и заряжают ее отрицательно. Такой потенциал покоя, возникающий по разные стороны мембраны, называют диффузионным. В 1930-1940-е мембранная теория Бернштейна подверглась ревизии. Было показано, что потенциал покоя обусловлен не только калиевым, но и отчасти натриевым и хлорным диффузионными потенциалами, и может быть описан с помощью уравнения Гольдмана-Ходжкина-Катца (см. Потенциал покоя (см. ПОТЕНЦИАЛ ПОКОЯ)). В 1950-е был установлен новый важный факт, доказывающий, что сохранение стабильного уровня потенциала покоя клетки требует постоянного поддержания трансмембранных ионных градиентов калия, натрия и хлора. Как выяснилось, это происходит за счет работы специальных трансмембранных молекул - так называемых ионных насосов, трансмембранных сопряженных переносчиков ионов калия и натрия. Используя энергию АТФ (см. АДЕНОЗИНТРИФОСФАТ), они постоянно выкачивают ионы натрия из клетки и закачивают ионы калия внутрь клетки, тем самым поддерживая постоянство трансмембранных ионных градиентов.

Открытие потенциала действия

Важнейшим этапом в исследовании природы биопотенциалов в 20 в. стали работы электрофизиологов А. Л. Ходжкина (см. ХОДЖКИН Алан Ллойд), А. Ф. Хаксли (см. ХАКСЛИ Андрю Филдинг) (Великобритания) и Дж. К. Эклса (см. ЭКЛС Джон Кэрью) (Австралия) на гигантских аксонах (см. АКСОН) кальмара. Используя новый метод фиксации мембранного потенциала с помощью электронной схемы с отрицательной обратной связью, они впервые прямо зарегистрировали трансмембранные ионные токи при возбуждении клетки. Было показано, что возбуждение сопровождается реверсией потенциала (перезарядкой мембраны): внутренняя поверхность мембраны становится заряженной положительно, а наружная - отрицательно. Причина перезарядки заключается в том, что в момент возбуждения мембрана клетки становится кратковременно проницаемой к ионам натрия, которые, быстро входя в клетку, перезаряжают мембрану. Ходжкин и Хаксли теоретически, в модельных экспериментах предсказали строение специальных ионных каналов (см. ИОННЫЕ КАНАЛЫ), способных открываться и пропускать ионы натрия внутрь клетки лишь кратковременно и в строгой зависимости от величины потенциала на мембране. Предсказанные свойства молекул натриевых каналов были впоследствии подтверждены в прямых экспериментах. За раскрытие природы трансмембранных электрических процессов, происходящих в нервных и других клетках при возбуждении, Ходжкину, Хаксли и Эклсу в 1963 была присуждена Нобелевская премия. В 1960-1970 годы с помощью техники введения в клетки тонких стеклянных микроэлектродовдиаметром кончика около 0,5 мкм) удалось обнаружить важную роль не только натриевых, но и кальциевых трансмембранных потоков при возбуждении и генерации потенциалов действия в нервных и мышечных клетках. В 1980-е годы в работах Э. Неера и Б. Сакмана был изобретен и впервые использован метод локального присасывания к мембране клетки с помощью стеклянной пипеткидиаметром кончика в несколько микрон), позволивший регистрировать и анализировать ионные токи, текущие через отдельные ионные каналы.

Таким образом, только в 20 в. стало очевидным, что «животное электричество», то есть всевозможные биопотенциалы и биотоки обусловлены движением не электронов, а ионов (натрия, калия, кальция, хлора) через специальные сложно организованные ионные каналы в мембране, а также обусловлены диффузией ионов в межклеточной и внутриклеточной средах, представляющих собой растворы электролитов.

Наряду с потенциалом покоя и потенциалом действия в 1950-1960 годы были описаны синаптические потенциалы (см. СИНАПТИЧЕСКИЕ ПОТЕНЦИАЛЫ), возникающие в синапсах (см. СИНАПС) и предназначенные для передачи возбуждения от клетки к клетке.

Биоэлектрические потенциалы у растений

Биоэлектрические потенциалы характерны не только для животных, но и для растений. В 1950-х годах при помощи микроэлектродов, вводимых в клетку, у нитчатой водоросли нителлы (см. НИТЕЛЛА) были обнаружены такие же значения потенциалов покоя, как и у животных клеток - порядка 0,09-0,05 В. Было установлено, что электрические, механические, химические и другие раздражители умеренной интенсивности вызывают в местах своего приложения к органам растения (листу, корню и т. д.) изменения потенциалов, сходные с местными (подпороговыми) потенциалами у животных клеток. Обнаружены у растений и специальные потенциалы возбуждения, подобные потенциалам действия животных клеток. Наиболее приближаются к классическим потенциалам действия электрические потенциалы, возникающие при распространении волны возбуждения по органам растения. Так, типичные двухфазные токи действия длительностью 0,1-0,2 мс сопровождают быстрые движения насекомоядного растения дианова мухоловка, а также защитную двигательную реакцию складывания листьев у стыдливой мимозы (Mimosa pudica) в ответ на механическое или электрическое раздражение растения.

Таким образом, биопотенциалы лежат в основе нормальной жизнедеятельности любой клетки и особенно важны для процессов возбуждения и торможения у животных и человека и раздражимости у растений. Нарушения проводимости клеточных мембран могут приводить к серьезным патологиям организма (вплоть до смерти). Исследования биоэлектрических потенциалов применяют с диагностическими целями в электрокардиографии (см. ЭЛЕКТРОКАРДИОГРАФИЯ), электроэнцефалографии (см. ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ), электромиографии.

Большой энциклопедический словарь

Новый словарь иностранных слов

Полезные сервисы

биоэлектрический

Толковый словарь

Энциклопедический словарь

Слитно. Раздельно. Через дефис

Орфографический словарь

Формы слов для слова биоэлектрический

Морфемно-орфографический словарь

Полезные сервисы