Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

черная дыра

Энциклопедия Кольера

ЧЕРНАЯ ДЫРА - область в пространстве, возникшая в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют "горизонтом событий". Поскольку до сих пор имеются лишь косвенные указания на существование черных дыр на расстояниях в тысячи световых лет от Земли, наше дальнейшее изложение основывается главным образом на теоретических результатах. Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Их открытие и изучение может принципиально изменить наши представления о пространстве и времени.

Образование черных дыр. Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет "битву с гравитацией": ее гравитационный коллапс будет остановлен давлением "вырожденного" вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой. У сферической черной дыры массы M горизонт событий образует сферу с окружностью по экватору в 2p раз большей "гравитационного радиуса" черной дыры RG = 2GM/c2, где c - скорость света, а G - постоянная тяготения. Черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

ЧЕРНАЯ ДЫРА ИСКРИВЛЯЕТ ВОКРУГ СЕБЯ ГЕОМЕТРИЮ ПРОСТРАНСТВА. Согласно общей теории относительности Альберта Эйнштейна (1915), гравитация, т.е. взаимное притяжение между всеми материальными телами, - это вовсе не сила, а результат искривления пространства-времени. Чем больше плотность объекта, тем сильнее его гравитационное притяжение, т.е. больше искривление пространства-времени. Вещество в ядрах некоторых коллапсирующих звезд достигает такой плотности, что пространство в их окрестности сильно искривлено, как показывают кривые линии на рисунке. Сильно искривленные области пространства-времени и есть черные дыры.

ЧЕРНАЯ ДЫРА ИСКРИВЛЯЕТ ВОКРУГ СЕБЯ ГЕОМЕТРИЮ ПРОСТРАНСТВА. Согласно общей теории относительности Альберта Эйнштейна (1915), гравитация, т.е. взаимное притяжение между всеми материальными телами, - это вовсе не сила, а результат искривления пространства-времени. Чем больше плотность объекта, тем сильнее его гравитационное притяжение, т.е. больше искривление пространства-времени. Вещество в ядрах некоторых коллапсирующих звезд достигает такой плотности, что пространство в их окрестности сильно искривлено, как показывают кривые линии на рисунке. Сильно искривленные области пространства-времени и есть черные дыры.

Если астроном будет наблюдать звезду в момент ее превращения в черную дыру, то сначала он увидит, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть, пока не потухнет совсем. Это происходит потому, что в борьбе с гигантской силой тяжести свет теряет энергию и ему требуется все больше времени, чтобы достичь наблюдателя. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь наблюдателя (и при этом фотоны полностью потеряют свою энергию). Следовательно, астроном никогда не дождется этого момента и тем более не увидит того, что происходит со звездой под горизонтом событий. Но теоретически этот процесс исследовать можно. Расчет идеализированного сферического коллапса показывает, что за короткое время звезда сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, общий математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако все это верно лишь в том случае, если общая теория относительности применима вплоть до очень маленьких пространственных масштабов, в чем мы пока не уверены. В микромире действуют квантовые законы, а квантовая теория гравитации пока не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы. Современная теория звездной эволюции и наши знания о звездном населении Галактики указывают, что среди 100 млрд. ее звезд должно быть порядка 100 млн. черных дыр, образовавшихся при коллапсе самых массивных звезд. К тому же черные дыры очень большой массы могут находиться в ядрах крупных галактик, в том числе и нашей. Как уже отмечалось, в нашу эпоху черной дырой может стать лишь масса, более чем втрое превышающая солнечную. Однако сразу после Большого взрыва, с которого ок. 15 млрд. лет назад началось расширение Вселенной, могли рождаться черные дыры любой массы. Самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. Но "первичные черные дыры" с массой более 1015 г могли сохраниться до наших дней. Все расчеты коллапса звезд делаются в предположении слабого отклонения от сферической симметрии и показывают, что горизонт событий формируется всегда. Однако при сильном отклонении от сферической симметрии коллапс звезды может привести к образованию области с бесконечно сильной гравитацией, но не окруженной горизонтом событий; ее называют "голой сингулярностью". Это уже не черная дыра в том смысле, как мы обсуждали выше. Физические законы вблизи голой сингулярности могут иметь весьма неожиданный вид. В настоящее время голая сингулярность рассматривается как маловероятный объект, тогда как в существование черных дыр верит большинство астрофизиков.

Свойства черных дыр. Для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой. В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с неоднородностью исходной звезды, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, имела ли она форму сигары или блина и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса. Единственность указанных выше типов стационарных черных дыр была доказана в рамках общей теории относительности В. Израэлем, Б. Картером, С. Хокингом и Д. Робинсоном. Согласно общей теории относительности, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно назвать "интервалом времени". Замечательно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки - что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория. Любое тело, падающее на черную дыру, задолго до пересечения горизонта событий будет разорвано на части мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра. Черная дыра всегда готова поглотить вещество или излучение, увеличив этим свою массу. Ее взаимодействие с окружающим миром определяется простым принципом Хокинга: площадь горизонта событий черной дыры никогда не уменьшается, если не учитывать квантового рождения частиц. Дж. Бекенстейн в 1973 предположил, что черные дыры подчиняются тем же физическим законам, что и физические тела, испускающие и поглощающие излучение (модель "абсолютно черного тела"). Под влиянием этой идеи Хокинг в 1974 показал, что черные дыры могут испускать вещество и излучение, но заметно это будет лишь в том случае, если масса самой черной дыры относительно невелика. Такие черные дыры могли рождаться сразу после Большого взрыва, с которого началось расширение Вселенной. Массы этих первичных черных дыр должны быть не более 1015 г (как у небольшого астероида), а размер 10-15 м (как у протона или нейтрона). Мощное гравитационное поле вблизи черной дыры рождает пары частица-античастица; одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Черная дыра с массой 1015 г должно вести себя как тело с температурой 1011 К. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

Поиск черных дыр. Расчеты в рамках общей теории относительности Эйнштейна указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире; открытие настоящей черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе безнадежно труден: мы не сможем заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них. Сверхмассивные черные дыры могут находиться в центрах галактик, непрерывно пожирая там звезды. Сконцентрировавшись вокруг черной дыры, звезды должны образовать центральные пики яркости в ядрах галактик; их поиски сейчас активно ведутся. Другой метод поиска состоит в измерении скорости движения звезд и газа вокруг центрального объекта в галактике. Если известно их расстояние от центрального объекта, то можно вычислить его массу и среднюю плотность. Если она существенно превосходит плотность, возможную для звездных скоплений, то полагают, что это черная дыра. Этим способом в 1996 Дж.Моран с коллегами определили, что в центре галактики NGC 4258, вероятно, находится черная дыра с массой 40 млн. солнечных. Наиболее перспективным является поиск черной дыры в двойных системах, где она в паре с нормальной звездой может обращаться вокруг общего центра масс. По периодическому доплеровскому смещению линий в спектре звезды можно понять, что она обращается в паре с неким телом и даже оценить массу последнего. Если эта масса превышает 3 массы Солнца, а заметить излучение самого тела не удается, то очень возможно, что это черная дыра. В компактной двойной системе черная дыра может захватывать газ с поверхности нормальной звезды. Двигаясь по орбите вокруг черной дыры, этот газ образует диск и, приближаясь по спирали к черной дыре, сильно нагревается и становится источником мощного рентгеновского излучения. Быстрые флуктуации этого излучения должны указывать, что газ стремительно движется по орбите небольшого радиуса вокруг крохотного массивного объекта. С 1970-х годов обнаружено несколько рентгеновских источников в двойных системах с явными признаками присутствия черных дыр. Самой перспективной считается рентгеновская двойная V 404 Лебедя, масса невидимого компонента которой оценивается не менее чем в 6 масс Солнца. Другие замечательные кандидаты в черные дыры находятся в двойных рентгеновских системах Лебедь X-1, LMCX-3, V 616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. За исключением LMCX-3, расположенной в Большом Магеллановом Облаке, все они находятся в нашей Галактике на расстояниях порядка 8000 св. лет от Земли.

См. также

КОСМОЛОГИЯ;

ТЯГОТЕНИЕ;

ГРАВИТАЦИОННЫЙ КОЛЛАПС;

ОТНОСИТЕЛЬНОСТЬ;

ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ.

ЛИТЕРАТУРА

Черепащук А.М. Массы черных дыр в двойных системах. Успехи физических наук, т. 166, с. 809, 1996

Полезные сервисы

космическая станция

Энциклопедия Кольера

КОСМИЧЕСКАЯ СТАНЦИЯ - обитаемый долговременный летательный аппарат, предназначенный для исследований на околоземной орбите или в открытом космосе. Космическая станция может служить как космический корабль, долговременное место пребывания космонавтов, лаборатория, телекоммуникационный центр, мастерская, космический порт, база для заправки топливом и строительная площадка. Следующие признаки отличают космическую станцию от других объектов космической техники: 1) способность поддерживать жизнеобеспечение присутствующих на ней людей в течение долгого периода времени; 2) длительное существование (до ее оставления или демонтажа) на орбите вокруг Земли или какого-либо тела Солнечной системы.

КОНЦЕПЦИИ ДОСПУТНИКОВОЙ ЭРЫ

Станция дозаправки топливом и проживание в космическом пространстве. В своей небольшой книге Ракета в космическом пространстве (Die Rakete zu den Planetenrumen) Г.Оберт высказал мысль, что, используя стандартную технику полярных экспедиций - поэтапного движения из базового лагеря и/или использования складов, исследователям космоса не нужно будет совершать весь путь от Земли до Луны или Марса в одной большой ракете. Он пришел к выводу, что полет к Луне или Марсу был бы возможен, если бы удалось разработать достаточно мощный ракетный двигатель для достижения заправочной станции, расположенной в некоторой промежуточной точке на низкой околоземной орбите, используя существующие топлива и материалы. В 1920-х годах вместе с другими энтузиастами космических полетов, главным образом из Австрии и Германии, Оберт развил концепцию космической станции и предложил использовать такую станцию как орбитальный вокзал, который может использоваться для решения широкого круга военных и экономических задач, включая разведку, стратегические военные действия, связь, метеорологию, и иметь широкое научно-техническое применение. См. также ОБЕРТ, ГЕРМАН. Облик, назначение, состав, стоимость. Потенциальная возможность многоцелевого использования космической станции привела к жарким теоретическим дебатам по ряду вопросов. Какой должна быть космическая станция и что на ней делать? Сколько станций необходимо иметь, когда и где? Единственного ответа на любой из этих вопросов не существует. При разработке космической станции, как и при разработке любого крупного технического проекта, всегда приходится делать выбор и идти на компромиссы. С 1929 до 1957 теоретики космических станций обсуждали четыре взаимосвязанных аспекта их проектирования: облик, назначение, состав и стоимость. С вращением или без вращения. Самый старый и наиболее обсуждаемый вопрос проектирования космической станции состоит в следующем. Должны ли конструкторы пытаться создать внутри станции условия, похожие на земные, для удобства экипажа и других форм жизни, или же экипаж должен приспосабливаться к условиям космического пространства, чтобы лучше изучить новую среду обитания? В зависимости от ответа на этот вопрос были

выдвинуты концепции вращающейся и невращающейся станции. На станции с вращением используется эффект центростремительного ускорения для создания искусственной силы тяжести, величина которой может быть в диапазоне от 0,1 до 1,0 g, где g - ускорение силы тяжести на поверхности Земли. На космической станции, не имеющей собственного вращения, существуют условия невесомости (точнее, микрогравитации, для которой характерны величины ускорений от 0,001 до 0,000001 g). Г. Поточник (1892-1929), капитан австрийской армии, выступая под псевдонимом Герман Нордунг, впервые описал в популярной форме станцию с вращением в своей книге Проблема путешествия в мировое пространство (Das Problem der Befahrung des Weltraums, 1929). Его "жилое колесо" было очень похоже на камеру большой автомобильной шины. Журнал "Кольерс" 22 марта 1952 опубликовал статью известного конструктора ракет Вернера фон Брауна, озаглавленную "Через последнюю границу", в которой описывалась огромная вращающаяся космическая станция и полный набор средств космической техники, включая космические многоразовые корабли, космические буксиры, астронавтов в скафандрах и зонды для исследования дальнего космоса.

См. также БРАУН, ВЕРНЕР ФОН; РАКЕТА. Концепция наращивания и добавления модулей. Два наиболее многообещающих подхода к проектированию космических станций, которые были выдвинуты еще в доспутниковую эру, - применение наращиваемых конструкций и добавление модулей. Хотя фон Браун популяризировал огромные космические станции в форме колеса, он считал, что их создание на начальном этапе освоения космоса нецелесообразно. Он высказывался за разработку спутников-автоматов, затем одно-двухместных пилотируемых космических кораблей, а после - небольших космических станций с экипажем из четырех человек. Он полагал, что только после создания достаточно мощной космической индустрии, соответствующих технологий и знаний можно будет создать большие космические станции. Г. Келле и Д. Ромик, работая независимо в Западной Европе и США, представили теоретическое обоснование концепции постепенного наращивания и добавления модулей. При таком подходе неотложные и долгосрочные операции сочетаются с практическими потребностями космического строительства, безопасности и развития долговременной станции. Начиная с 1930-х годов аналогичные исследования велись в Советском Союзе энтузиастами ГИРД и ГДЛ, но результаты их исследований не публиковались.

КОСМИЧЕСКИЕ СТАНЦИИ ВРЕМЕН ХОЛОДНОЙ ВОЙНЫ

В конце 1950-х годов специалисты как в Соединенных Штатах, так и в Советском Союзе не имели ясного представления о влиянии микрогравитации на человеческий организм и другие формы жизни. Аэрокосмические круги в обеих странах в какой-то момент пришли к выводу, что необходимо создать орбитальные лаборатории для исследования возможностей пребывания человека в условиях микрогравитации и работоспособности человека в таких условиях.

Пилотируемые орбитальные лаборатории. Хотя администрация президента Джонсона в 1965 поставила перед ВВС США задачу создания пилотируемой орбитальной лаборатории (MOL), действующая американская космическая станция так и не была создана. К концу 1960-х годов робототехника и микроэлектроника достигли такого уровня, что беспилотные спутники начали выполнять некоторые военные задачи, особенно разведывательные, которые раньше возлагались на космические станции. При этом, даже несмотря на все более широкое использование космических систем в военных операциях, необходимость присутствия человека в космосе для таких операций становилась все менее очевидной.

См. также ВОЕННО-КОСМИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ. В результате проект орбитальной станции превратился в выводимую на орбиту "больничную палату", предназначенную для получения медицинских данных о влиянии микрогравитации на двух космонавтов, которые должны были находиться на станции в течение двух недель. Эта программа постоянно испытывала недостаток финансирования и откладывалась. После оценки ее стоимости в 1,3 млрд. долл. и пятилетней подготовки космонавтов министерство обороны США отменило проект в 1969, когда рабочий прототип находился на стартовой позиции.

Станция "Скайлэб". Когда в середине 1960-х годов приобрела конкретные очертания программа "Аполлон", научные центры НАСА и их подрядчики провели обширные поисковые исследования возможности использования технологий, разработанных для ракеты-носителя "Сатурн" и космического корабля "Аполлон", применительно к космической станции.

См. также КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ. К концу 1966 в Центре космических полетов им. Маршалла (Хантсвилл, шт. Алабама) был разработан проект т.н. "мокрой" орбитальной лаборатории. Бак жидкого водорода отработавшей второй ступени S-4B ракеты "Сатурн-1B", запущенной на околоземную орбиту, предполагалось продуть и загерметизировать, чтобы предоставить космонавтам достаточно большое пространство для экспериментов в условиях невесомости. Космонавты, после выведения на орбиту основного блока корабля "Аполлон" другой ракетой "Сатурн-1B" и стыковки с лабораторией, должны были войти внутрь через причальную конструкцию и шлюзовую камеру. Последующие экспедиции должны были доставить комплект астрономических приборов (ATM) - лунный модуль корабля "Аполлон", на котором вместо спускаемой ступени установлен комплект солнечных телескопов. Экипаж должен был использовать основной блок КК "Аполлон" в качестве жилого отсека и для проведения медико-биологических экспериментов. Оборудование "мокрой" лаборатории потребовало бы значительного объема работ в открытом космосе. Однако опыт пилотируемых космических полетов, в частности в рамках программы "Джемини", показал специалистам НАСА, что работа в открытом космосе предъявляет к экипажу более высокие требования, чем ожидалось. В связи с этим, а также из-за недостатка финансирования и доступных технических средств НАСА в 1969 переключилось на "сухой" вариант космической станции "Скайлэб", полностью оборудуемой на Земле и запускаемой двухступенчатой ракетой "Сатурн-5". "Скайлэб" состоял из четырех основных модулей: орбитальной лаборатории (ступень S-4В ракеты "Сатурн-5") длиной 27 м и диаметром 7 м, шлюзовой камеры, причальной конструкции и комплекта астрономических приборов. На станции предполагалось развернуть панели солнечных батарей и телескопы, а через сутки доставить экипаж и приступить к работе. Цель программы состояла в исследовании возможности пребывания человека в условиях микрогравитации и его работоспособности в 30-, 60- и 90-суточном полетах.

КОСМИЧЕСКАЯ СТАНЦИЯ СКАЙЛЭБ на околоземной орбите, фотоснимок сделан с КК Аполлон.

КОСМИЧЕСКАЯ СТАНЦИЯ "СКАЙЛЭБ" на околоземной орбите, фотоснимок сделан с КК "Аполлон".

ВНУТРИ СТАНЦИИ командир экспедиции Дж.Карр указательным пальцем держит на весу пилота У.Поуга - наглядная иллюстрация невесомости в космосе. Фотоснимок сделан Э.Гибсоном. Три космонавта провели почти три месяца в 1973-1974 на борту космической станции Скайлэб. Этого времени им вполне хватило, чтобы отрастить бороды.

ВНУТРИ СТАНЦИИ командир экспедиции Дж.Карр указательным пальцем держит на весу пилота У.Поуга - наглядная иллюстрация невесомости в космосе. Фотоснимок сделан Э.Гибсоном. Три космонавта провели почти три месяца в 1973-1974 на борту космической станции "Скайлэб". Этого времени им вполне хватило, чтобы отрастить бороды.

Программа "Скайлэб" была успешной. Продолжительность трех экспедиций программы составила: первой - 28 сут (25 мая - 22 июня 1973), второй - 59 сут (28 июля - 25 сентября 1973) и третьей - 89 сут (16 ноября 1973 - 8 февраля 1974). Космонавты выполнили большой объем научных и технологических экспериментов, в том числе по поведению материалов в условиях микрогравитации, астрофизике, физике Солнца, исследованию земных ресурсов и космической технологии. Астрономические наблюдения, по мнению специалистов, позволили удвоить объем информации по физике Солнца и привели к открытию нескольких неизвестных физических процессов в солнечной короне. Данные по адаптации человека к условиям невесомости служили отправной точкой для космической медицины в течение более десяти последующих лет. Стоившая более 2,4 млрд. долл. (в ценах 1974) программа "Скайлэб" развеяла последние сомнения специалистов в США в том, что долговременная невращающаяся космическая станция со сменой экипажа каждые 90 сут вполне реальна. См. также ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ.

"Салют". Советский Союз в 1964 начал разработку военной космической станции "Алмаз", рассчитанной на пребывание на орбите двух или трех космонавтов в течение одно-двухлетнего периода. При проектировании возникли проблемы, и конструкторам пришлось заимствовать ряд систем (двигательную установку и солнечные батареи) с корабля "Союз", который первоначально разрабатывался для национальной программы высадки человека на Луну. После постепенного свертывания последней (1969-1972) "Алмаз" получил дополнительное финансирование и в конце концов превратился в многоплановую программу. Целью этой программы являлось предоставление советским инженерам, ученым и медикам возможности исследования влияния микрогравитации на человеческий организм и другие формы жизни и выполнения программ экспериментов во время длительного пребывания в космосе. Первоначально станция состояла из трех основных элементов: 1) корабля "Союз" для доставки экипажа на станцию и обратно; 2) стыковочного устройства и 3) основного жилого модуля "Салют", который имел собственный источник электроэнергии - солнечные батареи. Применяя концепцию постепенного наращивания и добавления модулей при проектировании и строительстве станции, советские конструкторы использовали новые знания и опыт, полученные при эксплуатации каждой станции, для проектирования новой. После предварительного полета двух космонавтов на корабле "Союз-9" (1-19 июня 1970), очевидно, с медицинскими целями для планирования долгосрочных операций на борту космической станции, 19 апреля 1971 (на два года раньше "Скайлэба") был запущен "Салют-1". Технические неполадки не позволили экипажу "Союза-10" (22-24 апреля 1971) попасть внутрь станции после стыковки, однако следующий экипаж корабля "Союз-11" (Г.Т.Добровольский, В.Н.Волков и В.И.Пацаев) осуществил успешную стыковку и проработал на станции 24 дня (6-29 июня 1971). Однако при возвращении на Землю во время спуска в атмосфере клапан выравнивания давления между орбитальным отсеком (который вместе с приборно-агрегатным отсеком отстреливался после включения тормозной установки) и спускаемым аппаратом полностью не закрылся. Из-за этой неисправности весь воздух из аппарата вышел наружу, и экипаж в течение нескольких секунд погиб от удушья. Всего было запущено шесть станций типа "Алмаз": одна не вышла на орбиту (1972); "Салют-2" (3-14 апреля 1973) и "Космос-557" (14-22 мая 1973) прекратили существование вскоре после выведения на орбиту; "Салют-3" (24 июня 1974 - 24 января 1975) и "Салют-5" (22 июня 1976 - 8 августа 1977) были военными станциями; на "Салюте-4" (26 декабря 1974 - 2 февраля 1977) выполнялись в основном научные исследования. "Салют-6" (29 сентября 1977 - 29 июля 1982), в конструкцию которого был внесен ряд усовершенствований и учтен опыт предыдущих станций, стал станцией нового поколения и продемонстрировал возросший уровень советской космической программы. Станция имела больше солнечных батарей, объединенную двигательную установку, включающую два корректирующих ракетных двигателя с тягой по КОСМИЧЕСКАЯ СТАНЦИЯ3 кН и исполнительные органы системы ориентации и стабилизации, а также более благоприятные условия для проведения научных экспериментов. На агрегатном отсеке был установлен второй стыковочный узел, который позволял стыковаться второму кораблю "Союз" или автоматическому грузовому кораблю "Прогресс" при одном пристыкованном корабле "Союз". Это изменение конструкции позволило варьировать доставку и замену экипажей и грузов и тем самым продлить время непрерывного пребывания космонавтов на станции. На "Салюте-6" побывало 16 экипажей в ходе пяти экспедиций, которые расширили время пребывания человека в космосе до 185 сут. В конструкцию станции "Салют-7" (19 апреля 1982 - 7 февраля 1991) были, в частности, внесены некоторые изменения для повышения ее комфортабельности. Советские специалисты также стали более широко использовать модули серии "Космос" (некоторые из них по своим размерам были почти такими же, как сама станция) для доставки больших систем или для увеличения внутреннего рабочего пространства. На станции "Салют-7" побывало шесть экспедиций в период с 25 июня 1982 по 21 ноября 1985; продолжительность пребывания человека в космосе была доведена до 237 сут.

РОССИЙСКАЯ КОСМИЧЕСКАЯ СТАНЦИЯ МИР перед стыковкой с многоразовым космическим кораблем Атлантис в июне 1995.

РОССИЙСКАЯ КОСМИЧЕСКАЯ СТАНЦИЯ "МИР" перед стыковкой с многоразовым космическим кораблем "Атлантис" в июне 1995.

ПОСЛЕ СТЫКОВКИ КОРАБЛЕЙ американец Ч.Прекурт вплывает из Атлантиса в Мир во время исторического одиннадцатидневного полета пяти американских и пяти российских космонавтов.

ПОСЛЕ СТЫКОВКИ КОРАБЛЕЙ американец Ч.Прекурт вплывает из "Атлантиса" в "Мир" во время исторического одиннадцатидневного полета пяти американских и пяти российских космонавтов.

Станция "Мир". К концу программы "Салют" советские специалисты убедились, что пребывание в космосе более шести месяцев не приводит к сколько-нибудь серьезным отрицательным последствиям, хотя и становится довольно утомительным. Поэтому следующим этапом было проведение практически непрерывной работы в космосе на борту новой станции, названной "Мир", которая была запущена 19 февраля 1986. На ней побывало несколько экспедиций, наиболее длительная из которых продолжалась 423 сут. Станция "Мир" имела более совершенные солнечные батареи, а связь осуществлялась через ретрансляционный спутник. Самым значительным изменением конструкции было создание нового переходного отсека с пятью стыковочными узлами, расположенного в передней части станции. В 1997 масса комплекса более чем в шесть раз превышала первоначальную и составляла около 120 т без учета массы грузового корабля и корабля "Союз". В 1999 станция "Мир" продолжала функционировать, хотя один из ее блоков в результате аварии утратил герметичность и, таким образом, вышел из строя.

Группа космического планирования. 13 февраля 1969, незадолго до первой посадки космического корабля "Аполлон" на Луне, в США была создана группа космического планирования под руководством вице-президента С. Агню для планирования космических исследований после выполнения программы "Аполлон". Несмотря на успешный облет Луны кораблем "Аполлон-8" в декабре 1968 и высадку на Луне "Аполлона-11" в июле 1969, администрация Никсона из всех предложенных группой систем в конце концов одобрила (1972) многоразовый космический корабль. См. КОСМИЧЕСКИЙ КОРАБЛЬ "ШАТТЛ".

Станция "Фридом". К 1981 Советский Союз опередил Соединенные Штаты в области создания космических станций, как в свое время с запуском первого космонавта. Обладание орбитальными космическими станциями могло стать важным стратегическим преимуществом. Поэтому администрация Рейгана-Буша выдвинула новую доктрину. Суть ее состояла в выигрыше Соединенными Штатами холодной войны за счет более высоких затрат в гонке вооружений, что заставило бы Советский Союз сойти с дистанции. Предполагалось, что этот образ действий должен привести к банкротству Советского Союза, возникновению внутренних конфликтов и революции. Программа стратегической оборонной инициативы, объявленная в марте 1983, была ключевым моментом рейгановского плана. См. также ВОЙНЫ ЗВЕЗДНЫЕ. Чтобы выполнить многообразные требования к долговременной космической станции, НАСА и его партнеры из космической промышленности разработали проект космической станции третьего поколения "Фридом", которая значительно превосходила все, что мог сделать Советский Союз в обозримом будущем. Первоначальная конструкция энергетической установки башенного типа базировалась на 140-метровой ферме, к которой крепился обычный набор функциональных модулей. Эта конструкция обеспечивала от 75 до 150 кВт электрической мощности и хорошие условия для различных научных экспериментов. В 1985 вместо этой конструкции была предложена двухкилевая для выполнения жестких требований по микрогравитации и динамической устойчивости. Большинство технологий, предложенных для строительства и функционирования такой конструкции, были не только не апробированы, но даже еще не разработаны. В результате стоимость создания космической станции стремительно выросла с первоначально планировавшихся 8 до 14 млрд. долл. Катастрофа с многоразовым космическим кораблем "Челленджер" в 1986 губительно отразилась на всей программе космической станции, поскольку стало ясно, что разрабатываемая космическая транспортная система далеко не столь надежна для доставки людей и грузов, как предполагали многие официальные лица и специалисты. Руководство НАСА было вынуждено пойти на сокращение программы.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ

В 1993 администрация Клинтона предложила коренным образом пересмотреть программу "Фридом", отчасти из-за того, что главная побудительная причина создания станции потеряла свою актуальность. С распадом Советского Союза стратегическая цель, с точки зрения администрации, состояла в поддержке капиталистической демократии в России. Одним из методов достижения экономической стабильности (и, возможно, военной безопасности США) была бы поддержка аэрокосмической промышленности России за счет приглашения ее к участию в программе создания международной космической станции. Возможными побочными следствиями были бы облегчение финансового бремени США и их партнеров, а также доступ к ценным российским космическим технологиям и опыту, включая использование ракет-носителей. С учетом этих соображений концепция программы "Фридом" была радикально изменена и рассчитывалась теперь на совместные усилия ряда партнеров, включая Россию. Первый этап этой программы (1994-1997) предусматривал накопление опыта совместных полетов для повышения безопасности при сборке и работе станции, а также для как можно более раннего начала широких научных экспериментов. Он включал участие российских космонавтов в полетах на кораблях "Шаттл", посещение американцами станции "Мир" и стыковки "Шаттла" с "Миром" для смены экипажей и приборной модернизации станции.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ. Виден пристыкованный к станции корабль Шаттл. На рисунке, полученном средствами компьютерной графики, показана полностью собранная работающая станция. На этом заключительном этапе станция содержит конструктивные блоки разработки Соединенных Штатов, России, Европы, Канады и Японии.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ. Виден пристыкованный к станции корабль "Шаттл". На рисунке, полученном средствами компьютерной графики, показана полностью собранная работающая станция. На этом заключительном этапе станция содержит конструктивные блоки разработки Соединенных Штатов, России, Европы, Канады и Японии.

На втором этапе (1998-1999) было создано ядро международной космической станции (МКС). После запуска российского сегмента, состоящего из функционально-грузового блока и служебного модуля, представляющего собой модификацию "Мира", к станции должен быть пристыкован научный модуль разработки США, после чего предполагается начать проведение научных экспериментов и исследований. Создание станции планируется завершить на третьем этапе (1999-2002) после присоединения канадского дистанционного манипулятора, японского экспериментального модуля, орбитального блока Европейского космического агентства, американского модуля аккомодации на центрифуге, двух российских научных модулей и последних солнечных батарей и элементов несущей фермы. Второй и третий этапы требуют 27 полетов кораблей "Шаттл" (21 для сборки и 6 для доставки снаряжения), 44 полета российских носителей (15 для сборки, 10 для доставки экипажей и 19 для доставки топлива на станцию с целью поддержания ее средней высоты 350 км) и один полет европейской ракеты "Ариан-5". Общие расходы программы на разработку и строительство станции оцениваются в 27,5 млрд. долл. После окончания строительства станция будет иметь размеры 110 на 88 м (с учетом солнечных батарей), массу 462 т, объем герметичных отсеков 1 300 м3 и экипаж из шести человек.

ЛИТЕРАТУРА

Вопросы ракетной техники. М., 1965-1974 Глушко В.П. и др. Космонавтика: энциклопедия. М., 1985 Гэтланд К. и др. Космическая техника: иллюстрированная энциклопедия. М., 1985 Глушко В.П. Развитие ракетостроения и космонавтики в СССР. М., 1987 Раушенбах Б.В. Герман Оберт. М., 1994

Полезные сервисы

тяготение

Энциклопедия Кольера

ТЯГОТЕНИЕ - или гравитация, свойство материи, которое состоит в том, что между любыми двумя частицами существуют силы притяжения. Тяготение - универсальное взаимодействие, охватывающее всю доступную наблюдению Вселенную и потому называемое всемирным. Как мы увидим из дальнейшего, тяготение играет первостепенную роль в определении структуры всех астрономических тел во Вселенной, кроме мельчайших. Оно организует астрономические тела в системы, подобные нашей Солнечной системе или Млечному Пути, и лежит в основе структуры самой Вселенной. Под "силой тяжести" принято понимать силу, создаваемую тяготением массивного тела, а под "ускорением силы тяжести" - ускорение, создаваемое этой силой. (Слово "массивное" употребляется здесь в смысле "обладающее массой", но рассматриваемое тело не обязательно должно обладать очень большой массой.) В еще более узком смысле под ускорением силы тяжести понимают ускорение тела, свободно падающего (без учета сопротивления воздуха) на поверхность Земли. В этом случае, поскольку вся система "Земля плюс падающее тело" вращается, в действие вступают силы инерции. Центробежная сила противодействует гравитационной силе и уменьшает эффективный вес тела на малую, но доступную измерению величину. Этот эффект падает до нуля на полюсах, через которые проходит ось вращения Земли, и достигает максимума на экваторе, где поверхность Земли отстоит от оси вращения на наибольшее расстояние. В любом локально проведенном эксперименте действие этой силы неотличимо от истинной силы тяжести. Поэтому под выражением "сила тяжести на поверхности Земли" обычно понимается совместное действие истинной силы тяжести и центробежной реакции. Термин "сила тяжести" удобно распространить и на другие небесные тела, говоря, например, "сила тяжести на поверхности планеты Марс". Ускорение силы тяжести на поверхности Земли составляет 9,81 м/с2. Это означает, что любое тело, свободно падающее вблизи поверхности Земли, увеличивает свою скорость (ускоряется) на 9,81 м/с за каждую секунду падения. Если тело начинало свободное падение из состояния покоя, то к концу первой секунды оно будет иметь скорость 9,81 м/с, к концу второй - 18,62 м/с и т.д.

Тяготение как важнейший фактор структуры Вселенной. В структуре окружающего нас мира тяготение играет чрезвычайно важную, фундаментальную роль.

По сравнению с электрическими силами притяжения и отталкивания между двумя заряженными элементарными частицами тяготение очень слабо. Отношение электростатической силы к гравитационной, действующей между двумя электронами, составляет около 4Ч1046, т.е. 4 с 46 нулями. Причина, по которой столь большой разрыв по величине не обнаруживается на каждом шагу в повседневной жизни, заключается в том, что преобладающая часть вещества в своей обычной форме электрически почти нейтральна, поскольку число положительных и отрицательных зарядов в его объеме одинаково. Поэтому огромные электрические силы объема просто не имеют возможности полностью развиться. Даже в таких "фокусах", как прилипание потертого воздушного шарика к потолку и вздыбливание волос при их расчесывании в сухой день электрические заряды разделяются лишь незначительно, но этого уже достаточно, чтобы преодолеть силы тяготения. Сила гравитационного притяжения настолько невелика, что измерить ее действие между телами обычных размеров, в лабораторных условиях, удается только при соблюдении особых предосторожностей. Например, сила гравитационного притяжения между двумя людьми массой по 80 кг, стоящих вплотную спиной друг к другу, составляет несколько десятых дины (менее 10 -5 Н). Измерения столь слабых сил затрудняются необходимостью их выделения на фоне разного рода посторонних сил, которые могут превышать измеряемую. По мере увеличения масс гравитационные эффекты становятся все более заметными и в конце концов начинают доминировать над всеми остальными. Представим себе условия, царящие на одном из малых астероидов Солнечной системы - на шаровидной каменной глыбе радиусом 1 км. Сила тяжести на поверхности такого астероида составляет 1/15 000 силы тяжести на поверхности Земли, где ускорение свободного падения равно 9,81 м/с2. Масса, весящая на поверхности Земли одну тонну, на поверхности такого астероида весила бы около 50 г. Скорость отрыва (при которой тело, двигаясь по радиусу от центра астероида, преодолевает созданное последним гравитационное поле) составила бы всего лишь 1,2 м/с, или 4 км/ч (скорость не очень быстро идущего пешехода), так что, гуляя по поверхности астероида, приходилось бы избегать резких движений и не превышать указанную скорость, чтобы не улететь навсегда в космическое пространство. Роль самогравитации растет по мере перехода ко все более крупным телам - Земле, большим планетам, вроде Юпитера, и, наконец, к звездам, например Солнцу. Так, самогравитация поддерживает сферическую форму жидкого ядра Земли и окружающей это ядро ее твердой мантии, как и земную атмосферу. Межмолекулярные силы сцепления, удерживающие вместе частицы твердых тел и жидкостей, в космических масштабах уже не эффективны, и только самогравитация позволяет существовать как единому целому таким гигантским газовым шарам, как звезды. Без гравитации этих тел просто не было бы, как не было бы и миров, пригодных для жизни. При переходе к еще большим масштабам гравитация организует отдельные небесные тела в системы. Размеры таких систем разные - от сравнительно небольших (с астрономической точки зрения) и простых систем, как, например, система Земля - Луна, Солнечная система и двойные или кратные звезды, до насчитывающих сотни тысяч звезд больших звездных скоплений. "Жизнь", или эволюцию, отдельного звездного скопления можно рассматривать как балансирование между взаимным расхождением звезд и тяготением, которое стремится удержать скопление как единое целое. Время от времени какая-нибудь звезда, двигаясь в направлении других звезд, приобретает от них импульс и скорость, позволяющие ей вылететь из скопления и навсегда покинуть его. Оставшиеся звезды образуют еще более тесное скопление, и тяготение связывает их еще сильнее, чем прежде. Тяготение помогает также удерживаться вместе в космическом пространстве газовым и пылевым облакам, а иногда даже сжимает их в компактные и более или менее шарообразные сгустки материи. Темные силуэты многих таких объектов можно наблюдать на более ярком фоне Млечного Пути. Согласно принятой сегодня теории формирования звезд, если масса такого объекта достаточно велика, то давление в его недрах достигает уровня, при котором становятся возможными ядерные реакции, и плотный сгусток материи превращается в звезду. Астрономам удалось получить снимки, подтверждающие образование звезд в тех местах космического пространства, где ранее наблюдались только облака материи, что свидетельствует в пользу существующей теории.

См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС. Тяготение играет важнейшую роль во всех теориях происхождения, развития и строения Вселенной в целом. Почти все они опираются на общую теорию относительности. В этой теории, созданной Эйнштейном в начале 20 в., тяготение рассматривается как свойство четырехмерной геометрии пространства-времени, как нечто подобное кривизне сферической поверхности, обобщенной на большее число измерений. "Искривленность" пространства-времени тесно связана с распределением находящейся в нем материи. Во всех космологических теориях принимается, что тяготение - свойство любого вида материи, проявляющееся повсюду во Вселенной, хотя отнюдь не предполагается, что создаваемые тяготением эффекты везде одни и те же. Например, гравитационная постоянная G (о которой мы расскажем дальше) в зависимости от места и времени может изменяться, хотя прямых данных наблюдения, которые подтверждали бы это, пока нет. Гравитационная постоянная G - одна из физических констант нашего мира, равно как скорость света либо электрический заряд электрона или протона. С той точностью, с которой позволяют измерить эту постоянную современные экспериментальные методы, ее значение не зависит от того, какой разновидностью материи создано тяготение. Существенна только масса. Массу можно понимать двояко: как меру способности притягивать другие тела, - это свойство имеют в виду, когда говорят о тяжелой (гравитационной) массе, - или как меру сопротивления тела попыткам его ускорить (привести в движение, если тело покоится, остановить, если тело движется, или изменить его траекторию), - это свойство массы имеют в виду, когда говорят об инертной массе. Интуитивно эти две разновидности массы не кажутся одним и тем же свойством материи, однако общая теория относительности постулирует их тождество и строит картину мира, исходя из этого постулата.

См. также МАССА. Тяготение имеет и еще одну особенность; по-видимому, не существует никакого мыслимого способа избавиться от эффектов гравитации, кроме как удалиться на бесконечно большое расстояние от всякой материи. Ни одно известное вещество не обладает отрицательной массой, т.е. свойством быть отталкиваемым полем тяготения. Даже антиматерия (позитроны, антипротоны и т.п.) имеет положительную массу. От гравитации невозможно избавиться с помощью некоего экрана, как от электрического поля. Во время лунных затмений Луна "заслоняется" Землей от притяжения Солнца, и эффект от такой экранировки накапливался бы от одного затмения к другому, но этого нет.

История представлений о тяготении. Как показано выше, тяготение - одно из наиболее распространенных взаимодействий материи с материей и в то же время одно из наиболее таинственных и загадочных. К объяснению феномена тяготения современные теории сколько-нибудь существенно не приблизились. Тем не менее тяготение всегда явно или неявно переплеталось с космологией, так что оба эти предмета неразделимы. Первые космологии, такие, как космологии Аристотеля и Птолемея, просуществовавшие вплоть до 18 в. во многом благодаря авторитету этих мыслителей, вряд ли были чем-нибудь большим, чем систематизацией наивных взглядов древних. В этих космологиях материя подразделялась на четыре класса, или "элемента": землю, воду, воздух и огонь (в порядке от тяжелого к легкому). Слова "сила тяжести" первоначально означали просто "тяжесть"; объекты, состоявшие из элемента "земля", обладали свойством "тяжести" в большей степени, чем объекты, состоявшие из других элементов. Естественным местоположением тяжелых объектов был центр Земли, которая считалась центром мироздания. Наименее других "тяжестью" наделен был элемент "огонь"; более того, огню была присуща своего рода отрицательная тяжесть, действие которой проявлялось не в тяготении, а в "левитации". Естественным местом для огня были внешние границы земной части мира. В последних вариантах этой теории постулировалось существование пятой сущности ("квинтэссенции", иногда называемой "эфиром", которая была свободна от эффектов тяжести). Постулировалось также, что из квинтэссенции состоят небесные тела. Если земное тело каким-то образом оказывалось не на своем естественном месте, то оно стремилось вернуться туда путем естественного движения, свойственного ему точно так же, как животному свойственно целенаправленное передвижение с помощью ног или крыльев. Сказанное относится к движению камня в пространстве, пузырька в воде и пламени в воздухе. Галилей (1564-1642), исследуя движение тел под действием силы тяжести, обнаружил, что период колебаний маятника не зависит от того, велико или мало было первоначальное отклонение маятника от положения равновесия. Галилей экспериментально установил также, что в отсутствие сопротивления воздуха тяжелые и легкие тела падают на землю с одинаковым ускорением. (Аристотель утверждал, что тяжелые тела падают быстрее легких, причем тем быстрее, чем они тяжелее.) Наконец, Галилей высказал идею о постоянстве ускорения свободного падения и сформулировал утверждения, которые по существу являются предшественниками законов движения Ньютона. Именно Галилей первым понял, что для тела, на которое не действуют силы, равномерное прямолинейное движение столь же естественно, как и состояние покоя. Объединить разрозненные фрагменты и построить логичную и непротиворечивую теорию выпало на долю блестящего английского математика И.Ньютона (1643-1727). Эти разрозненные фрагменты были созданы усилиями многих исследователей. Здесь и гелиоцентрическая теория Коперника, воспринятая Галилеем, Кеплером и другими как подлинная физическая модель мира; и подробные и точные астрономические наблюдения Браге; и концентрированное выражение этих наблюдений в трех законах движения планет Кеплера; и начатая Галилеем работа по формулировке законов механики на основе четко определенных понятий, а также гипотезы и частичные решения проблем, найденные такими современниками Ньютона, как Х.Гюйгенс, Р.Гук и Э. Галлей. Чтобы осуществить свой величественный синтез, Ньютону понадобилось завершить создание новой математики, получившей название дифференциального и интегрального исчислений. Параллельно с Ньютоном над созданием дифференциального и интегрального исчислений независимо работал его современник Г.Лейбниц. Хотя принадлежащий Вольтеру анекдот о яблоке, упавшем на голову Ньютона, скорее всего, не соответствует действительности, тем не менее он в какой-то мере характеризует тот тип мышления, который был продемонстрирован Ньютоном в его подходе к проблеме тяготения. Ньютон настойчиво задавался вопросами: "Является ли сила, удерживающая Луну на ее орбите при движении вокруг Земли, той же самой силой, которая заставляет тела падать на земную поверхность? Сколь интенсивным должно быть земное тяготение, чтобы искривить орбиту Луны так, как это происходит в действительности?" Чтобы найти ответ на эти вопросы, Ньютону необходимо было прежде всего дать определение понятия силы, которое охватывало бы и фактор, вызывающий отклонение тела от исходной траектории движения, а не просто ускорение или замедление при движении вверх или вниз. Ньютону было необходимо также точно знать размеры Земли и расстояние от Земли до Луны. Он предполагал, что притяжение, создаваемое земным тяготением, убывает с увеличением расстояния от притягивающего тела как обратный квадрат расстояния, т.е. при увеличении расстояния. Истинность такого заключения для круговых орбит легко может быть выведена из законов Кеплера без обращения к дифференциальному исчислению. Наконец, когда в 1660-х годах Пикар произвел геодезическую съемку северных областей Франции (одну из первых геодезических съемок), он смог уточнить значение длины одного градуса широты на земной поверхности, что позволило точнее определить размеры Земли и расстояние от Земли до Луны. Измерения Пикара еще более укрепили Ньютона во мнении, что он находится на правильном пути. Наконец, в 1686-1687 в ответ на запрос незадолго до того образованного Королевского общества Ньютон опубликовал свои знаменитые Математические начала натуральной философии (Philosophiae naturalis principia mathematica), ознаменовавшие рождение современной механики. В этой работе Ньютон сформулировал свой знаменитый закон всемирного тяготения; в современных алгебраических обозначениях этот закон выражается формулой

ТЯГОТЕНИЕ

где F - сила притяжения между двумя материальными телами с массами М1 и М2, а R - расстояние между этими телами. Коэффициент G называется гравитационной постоянной. В метрической системе масса измеряется в килограммах, расстояние - в метрах, а сила - в ньютонах и гравитационная постоянная G имеет значение G = 6,67259Ч10-11 м3Чкг-1Чс-2. Малостью гравитационной постоянной и объясняется то, что гравитационные эффекты становятся заметными только при большой массе тел. Методами математического анализа Ньютон показал, что сферическое тело, например Луна, Солнце или планета, создает тяготение так же, как и материальная точка, которая находится в центре сферы и имеет эквивалентную ей массу. Дифференциальное и интегральное исчисления позволили и самому Ньютону, и его последователям успешно решить новые классы задач, например обратную задачу определения силы по неравномерному или криволинейному движению тела, движущегося под ее воздействием; предсказать скорость и положение тела в любой момент времени в будущем, если известна сила как функция положения; решить задачу о полной силе притяжения любого тела (не обязательно сферической формы) в любой заданной точке пространства. Новые мощные математические средства открыли путь к решению многих сложных, прежде неразрешимых задач не только для гравитационного, но и для других полей. Ньютон показал также, что из-за 24-часового периода вращения вокруг собственной оси Земля должна иметь не строго сферическую, а несколько сплющенную форму. Следствия, вытекающие из исследований Ньютона в этой области, ведут нас в область гравиметрии - науки, занимающейся измерением и интерпретацией силы тяжести на поверхности Земли.

Дальнодействие. Однако в ньютоновских Началах имеется пробел. Дело в том, что, определив силу тяжести и дав описывающее ее математическое выражение, Ньютон не объяснил, что такое тяготение и как оно действует. Вопросы, которые вызывали и продолжают вызывать множество споров с 18 в. до последнего времени, заключается в следующем: каким образом тело, находящееся в одном месте (например, Солнце), притягивает тело (например, Землю), находящееся в другом месте, если между телами нет никакой материальной связи? Как быстро распространяются гравитационные эффекты? Мгновенно? Со скоростью света и других электромагнитных колебаний или с какой-нибудь другой скоростью? Ньютон не верил в возможность дальнодействия, он просто проводил вычисления так, как если бы закон обратной пропорциональности квадрату расстояния был признанным фактом. Многие, в том числе Лейбниц, епископ Беркли и последователи Декарта, соглашались с ньютоновской точкой зрения, но пребывали в убеждении, что явления, оторванные в пространстве от вызывающих их причин, немыслимы без какого-нибудь физического агента-посредника, замыкающего причинно-следственную связь между ними. Позднее все эти и другие вопросы перешли по наследству к аналогичным теориям, объяснявшим распространение света. Светоносная среда получила название эфира, и, следуя более ранним философам, в частности Декарту, физики пришли к заключению, что гравитационные (а также электрические и магнитные) силы передаются как своего рода давление в эфире. И лишь когда все попытки сформулировать непротиворечивую теорию эфира оказались безуспешными, стало ясно, что хотя эфир и давал ответ на вопрос о том, как осуществляется действие на расстоянии, этот ответ не был правильным.

Теория поля и относительность. Собрать воедино разрозненные фрагменты теорий, изгнать эфир и постулировать, что в действительности не существует ни абсолютного пространства, ни абсолютного времени, поскольку ни один эксперимент не подтверждает их существования, выпало на долю А.Эйнштейна (1879-1955). В этом его роль была аналогична роли Ньютона. Для создания своей теории Эйнштейну, как некогда Ньютону, понадобилась новая математика - тензорный анализ. То, что Эйнштейну удалось сделать, до некоторой степени является следствием нового образа мыслей, формировавшегося на протяжении 19 в. и связанного с появлением понятия поля. Поле в том смысле, в каком употребляет этот термин современный физик-теоретик, есть область идеализированного пространства, в котором посредством указания некоторой системы координат задаются положения точек вместе с зависящей от этих положений физической величиной или некоторой совокупностью величин. При переходе от одной точки пространства к другой, соседней, она должна гладко (непрерывно) убывать или возрастать, а также может изменяться со временем. Например, скорость воды в реке изменяется как с глубиной, так и от берега к берегу; температура в комнате выше у печки; интенсивность (яркость) освещения убывает при увеличении расстояния от источника света. Все это - примеры полей. Физики считают поля реальными вещами. В подтверждение своей точки зрения они ссылаются на физический довод: восприятие света, тепла или электрического заряда столь же реально, как и восприятие физического объекта, в существовании которого все убеждены на том основании, что его можно осязать, ощутить его тяжесть или видеть. Кроме того, эксперименты, например, с рассыпанными железными опилками вблизи магнита, их выстраивание вдоль определенной системы искривленных линий делают магнитное поле непосредственно воспринимаемым до такой степени, что никто не усомнится, что вокруг магнита есть "нечто" и после того, как убраны железные опилки. Магнитные "силовые линии", как назвал их Фарадей, образуют магнитное поле. До сих пор мы избегали упоминаний о гравитационном поле. Ускорение свободного падения g на поверхности Земли, которое меняется от точки к точке на земной поверхности и убывает с высотой, и есть такое поле. Но огромный шаг вперед, который совершил Эйнштейн, состоял не в манипулировании с гравитационным полем нашего повседневного опыта. Вместо того чтобы следовать Фицджеральду и Лоренцу и рассматривать взаимодействие между вездесущим эфиром и движущимися сквозь него измерительными стержнями и часами, Эйнштейн ввел физический постулат, согласно которому любой наблюдатель А, измеряющий скорость света с помощью мерных стержней и часов, которые он носит с собой, неизменно получит один и тот же результат c = 3*10 8 м/с независимо от того,

как быстро движется наблюдатель; мерные стержни любого другого наблюдателя В, движущегося относительно А со

скоростью v, будут выглядеть для наблюдателя А сокращенными в

Энциклопедия Кольера ТЯГОТЕНИЕ раз;

часы наблюдателя В будут выглядеть для наблюдателя А идущими медленнее в

Энциклопедия Кольера ТЯГОТЕНИЕ раз;

отношения между наблюдателями А и В в точности взаимны, поэтому мерные стержни наблюдателя А и его часы

будут для наблюдателя В соответственно столь же более короткими и идущими медленнее; каждый из наблюдателей может

считать себя неподвижным, а другого движущимся. Еще одно следствие из частной (специальной) теории относительности

состояло в том, что масса m тела, движущегося со скоростью v относительно наблюдателя, увеличивается (для наблюдателя)

и становится равной

Энциклопедия Кольера ТЯГОТЕНИЕ,

где m0 - масса того же тела, движущегося относительно наблюдателя очень медленно. Увеличение инертной массы

движущегося тела означало, что не только энергия движения (кинетическая энергия), но и вся энергия обладает инертной

массой и что если энергия обладает инертной массой, то она обладает и тяжелой массой и, следовательно, подвержена

гравитационным эффектам. Кроме того, как ныне хорошо известно, при определенных условиях в ядерных процессах масса

может превращаться в энергию. (Вероятно, точнее было бы говорить о высвобождении энергии.) Если принятые допущения

верны (а ныне для такой уверенности у нас имеются все основания), то, стало быть, масса и энергия - различные

аспекты одной и той же более фундаментальной сущности.

alt=", где m0 - масса того же тела, движущегося относительно наблюдателя очень медленно. Увеличение инертной

массы движущегося тела означало, что не только энергия движения (кинетическая энергия), но и вся энергия обладает

инертной массой и что если энергия обладает инертной массой, то она обладает и тяжелой массой и, следовательно,

подвержена гравитационным эффектам. Кроме того, как ныне хорошо известно, при определенных условиях в ядерных

процессах масса может превращаться в энергию. (Вероятно, точнее было бы говорить о высвобождении энергии.) Если

принятые допущения верны (а ныне для такой уверенности у нас имеются все основания), то, стало быть,

масса и энергия - различные аспекты одной и той же более фундаментальной сущности." >

,

Приведенная выше формула указывает также на то, что ни одно материальное тело и ни один несущий энергию объект (например, волна), не могут двигаться относительно наблюдателя быстрее, чем со скоростью света с, т.к. в противном случае для такого движения потребовалась бы бесконечно большая энергия. Следовательно, гравитационные эффекты должны распространяться со скоростью света (доводы в пользу этого приводились еще до создания теории относительности). Примеры таких гравитационных явлений позднее были обнаружены и вошли в общую теорию. В случае равномерного и прямолинейного относительного движения наблюдаемые сокращения мерных стержней и замедление хода часов приводят к частной теории относительности. Позднее понятия этой теории были обобщены и на ускоренное относительное движение, для чего потребовалось ввести еще один постулат - так называемый принцип эквивалентности, позволивший включить в модель гравитацию, отсутствовавшую в частной теории относительности. Долгое время считалось, а очень тщательные измерения, произведенные в конце 19 в. венгерским физиком Л.Этвешем, подтвердили, что в пределах ошибки эксперимента тяжелая и инертная массы численно равны. (Напомним, что тяжелая масса тела служит мерой силы, с которой это тело притягивает другие тела, тогда как инертная масса есть мера сопротивления тела ускорению.) В то же время ускорение свободно падающих тел не было бы совершенно независимым от их массы, если бы инертная и тяжелая массы тела не были абсолютно равны. Эйнштейн постулировал, что эти две разновидности массы, которые кажутся разными, поскольку измеряются в разных экспериментах, в действительности одно и то же. Отсюда тотчас же следовало, что не существует физического различия между силой тяжести, которую мы ощущаем подошвами своих ног, и силой инерции, которая отбрасывает нас к спинке кресла, когда автомашина ускоряется, или бросает нас вперед, когда мы жмем на тормоза. Мысленно представим себе (как это сделал Эйнштейн) замкнутое помещение, например лифт или космический корабль, внутри которого можно изучать движение тел. В космическом пространстве, на достаточно большом расстоянии от любой массивной звезды или планеты, чтобы их притяжение не влияло на тела в этом замкнутом помещении, любой выпущенный из рук предмет не упал бы на пол, а продолжал бы парить в воздухе, двигаясь в том же направлении, в котором двигался, когда его выпустили из рук. Все предметы обладали бы массой, но не имели бы веса. В гравитационном поле вблизи поверхности Земли тела обладают и массой, и весом. Если вы выпустите их из рук, они падают на землю. Но если бы, например, лифт падал свободно, не встречая никакого сопротивления, то предметы в лифте казались бы невесомыми наблюдателю, находящемуся в лифте, и если бы он выпускал из рук какие-нибудь предметы, то они не падали бы на пол. Результат был бы таким же, как если бы все происходило в космическом пространстве вдали от притягивающих тел, и ни один эксперимент не мог бы показать наблюдателю, что он находится в состоянии свободного падения. Выглянув в иллюминатор и увидев где-то далеко внизу под собой Землю, наблюдатель мог бы сказать, что Земля несется навстречу ему. Однако с точки зрения наблюдателя на Земле и лифт, и все предметы в нем падают одинаково быстро, поэтому падающие предметы не отстают и не опережают лифт, а потому и не приближаются к его полу, в сторону которого они падают. Теперь представим себе космический корабль, поднимаемый ракетой-носителем в космос со все возрастающей скоростью. Если космонавт в корабле выпустит предмет из рук, то предмет (как и прежде) будет продолжать двигаться в пространстве с той скоростью, с которой он был выпущен, но, поскольку теперь пол космического корабля движется ускоренно навстречу предмету, все будет выглядеть так, как если бы предмет падал. Более того, космонавт ощущал бы действующую на ноги силу и мог бы интерпретировать ее как силу тяжести, и ни один эксперимент, который он мог бы выполнить, находясь в поднимающемся космическом корабле, не противоречил бы такой интерпретации. Эйнштейновский принцип эквивалентности просто уравнивает эти две кажущиеся совершенно различными ситуации и утверждает, что сила тяжести и силы инерции - одно и то же. Главное отличие состоит в том, что в достаточно большой области силу инерции (например, центробежную) можно исключить путем подходящего преобразования системы отсчета (например, центробежная сила действует только во вращающейся системе координат, и ее можно исключить, перейдя к невращающейся системе отсчета). Что же касается силы тяжести, то перейдя к другой системе отсчета (свободно падающей), от нее можно избавиться только локально. Мысленно представляя себе всю Землю целиком, мы предпочитаем считать ее неподвижной, полагая, что на тела, находящиеся на поверхности Земли, действуют гравитационные силы, а не силы инерции. В противном случае нам пришлось бы считать, что поверхность Земли во всех своих точках ускорена вовне и что Земля, расширяясь, как надуваемый воздушный шарик, давит на ступни наших ног. Такая точка зрения, вполне приемлемая с точки зрения динамики, неверна с точки зрения обычной геометрии. Однако в рамках общей теории относительности обе точки зрения одинаково приемлемы. Геометрия, возникающая в результате измерения длин и временных интервалов, свободно преобразуемых из одной ускоренно движущейся системы отсчета в другую, оказывается криволинейной геометрией, очень похожей на геометрию сферических поверхностей, но обобщенной на случай четырех измерений - трех пространственных и одного временного - точно так же, как в частной теории относительности. Кривизна, или деформация, пространства-времени - не просто оборот речи, а нечто большее, так как определяется способом измерения расстояний между точками и продолжительностью временных интервалов между событиями в этих точках. То, что кривизна пространства-времени является реальным физическим эффектом, лучше всего можно продемонстрировать на нескольких примерах. Согласно теории относительности, луч света, проходя вблизи большой массы, искривляется. Так происходит, например, с лучом света от далекой звезды, проходящим вблизи края солнечного диска. Но и искривленный луч света продолжает оставаться кратчайшим расстоянием от звезды до глаза наблюдателя. Это утверждение верно в двояком смысле. В традиционных обозначениях релятивистской математики отрезок прямой dS, разделяющий две соседние точки, вычисляется по теореме Пифагора обычной евклидовой геометрии, т.е. по формуле dS2 = dx2 + dy2 + dz2. Точка пространства вместе с моментом времени называется событием, а расстояние в пространстве-времени, разделяющее два события, - интервалом. Чтобы определить интервал между двумя событиями, временне измерение t комбинируется с тремя пространственными координатами x, y, z следующим образом. Разность времен между двумя событиями dt преобразуется в пространственное расстояние с Чdt умножением на скорость света с (постоянную для всех наблюдателей). Полученный результат должен быть совместим с преобразованием Лоренца, из которого следует, что мерный стержень движущегося наблюдателя сокращается, а часы замедляют свой ход соответственно выражению . Преобразование Лоренца должно быть применимо и в предельном случае, когда наблюдатель движется вместе со световой волной и его часы стоят (т.е. dt = 0), а сам он не считает себя движущимся (т.е. dS = 0), так что (Интервал)2 = dS2 = dx2 + dy2 + dz2 - (c Чdt)2. Основная особенность этой формулы состоит в том, что знак временнго члена противоположен знаку пространственных членов. Далее, вдоль светового луча для всех наблюдателей, движущихся вместе с лучом, имеем dS2 = 0 и, согласно теории относительности, все остальные наблюдатели должны были бы получить такой же результат. В этом первом (пространственно-временном) смысле dS - минимальное пространственно-временное расстояние. Но во втором смысле, поскольку свет распространяется по пути, требующему наименьшего времени для достижения конечного пункта по любым часам, численные значения пространственного и временного интервалов минимальны для светового луча. Все изложенные выше рассуждения относятся к событиям, разделенным лишь малыми расстояниями и временами; иначе говоря, dx, dy, dz и dt - малые величины. Но результаты могут быть легко обобщены на протяженные траектории методом интегрального исчисления, суть которого в суммировании по всему пути от точки к точке всех этих бесконечно малых интервалов. Рассуждая далее, мысленно представим себе пространство-время разделенным на четырехмерные ячейки подобно тому, как двумерная карта разделена на двумерные квадраты. Сторона такой четырехмерной ячейки равна единице времени или расстояния. В пространстве, свободном от поля, сетка состоит из прямых, пересекающихся под прямым углом, но в гравитационном поле вблизи массы линии сетки искривляются, хотя также пересекаются под прямыми углами, как параллели и меридианы на глобусе. При этом искривленными линии сетки выглядят только для внешнего наблюдателя, число измерений которого больше числа измерений сетки. Мы существуем в трехмерном пространстве и, глядя на карту или схему, можем воспринимать ее трехмерно. Субъект же, находящийся в самой этой сетке, например микроскопическое существо на глобусе, не имеющее представления о том, что такое вверх или вниз, не может воспринимать кривизну глобуса непосредственно и должно было бы произвести измерения и посмотреть, какого рода геометрия возникает из всей совокупности результатов измерений - будет ли это евклидова геометрия, соответствующая плоскому листу бумаги, или криволинейная геометрия, соответствующая поверхности сферы или какой-либо другой искривленной поверхности. Точно так же мы не можем видеть кривизну окружающего нас пространства-времени, но, анализируя результаты своих измерений, можем обнаружить особые геометрические свойства, в точности аналогичные реальной кривизне. Теперь представим себе огромный треугольник в свободном пространстве, сторонами которого служат три прямые. Если внутрь такого треугольника поместить массу, то пространство (т.е. выявляющая его геометрическую структуру четырехмерная координатная сетка) слегка раздуется так, что сумма внутренних углов треугольника станет больше, чем в отсутствие массы. Аналогично можно представить себе в свободном пространстве гигантскую окружность, длину и диаметр которой вы очень точно измерили. Вы обнаружили, что отношение длины окружности к диаметру равно числу p (если свободное пространство евклидово). Поместите в центр окружности большую массу и повторите измерения. Отношение длины окружности к диаметру станет меньше p, хотя мерный стержень (если рассматривать его с некоторого расстояния) будет выглядеть сократившимся и тогда, когда его укладывают вдоль окружности, и тогда, когда его укладывают вдоль диаметра, но сами величины сокращений будут разными. В криволинейной геометрии кривая, соединяющая две точки и кратчайшая среди всех кривых такого рода, называется геодезической. В четырехмерной криволинейной геометрии общей теории относительности траектории световых лучей образуют один класс геодезических. Оказывается, что траектория любой свободной частицы (на которую не действует какая-либо контактная сила) также представляет собой геодезическую, но более общего класса. Например, планета, свободно движущаяся по своей орбите вокруг Солнца, движется по геодезической так же, как и свободно падающий лифт в рассмотренном ранее примере. Геодезические являются пространственно-временными аналогами прямых линий ньютоновской механики. Тела просто движутся по своим естественным криволинейным траекториям - линиям наименьшего сопротивления, - так что отпадает необходимость в обращении к "силе" для объяснения такого поведения тела. На тела же, находящиеся на поверхности Земли, действует контактная сила непосредственного соприкосновения с Землей, и с этой точки зрения можно считать, что Земля сталкивает их с геодезических орбит. Следовательно, траектории тел на поверхности Земли не являются геодезическими. Итак, тяготение свелось к геометрическому свойству физического пространства, и гра

Полезные сервисы