Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

строительство зданий

Энциклопедия Кольера

СТРОИТЕЛЬСТВО ЗДАНИЙ - техника, технология и процесс возведения сооружений (имеющих стены, полы и крыши) жилищного, общественного, производственного и другого назначения.

ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА

Все здания, кроме самых простых, строятся в соответствии с чертежами, спецификациями, техническими условиями, строительными нормами и правилами, разработанными архитекторами и инженерами-строителями. Строительные работы обычно выполняются подрядчиком, который в письменном контракте обязуется построить рассматриваемое здание в соответствии с чертежами и спецификациями за определенную плату, называемую паушальной суммой, или за сумму его фактических расходов плюс фиксированное вознаграждение либо определенный процент фактических расходов. В контракте часто указывается максимальная гарантируемая сумма расходов. Генеральный подрядчик обычно прибегает к услугам субподрядчиков, заключая с ними контракты на выполнение отдельных видов работ, таких, как штукатурные, малярные, кровельные и санитарно-технические, тоже за паушальную сумму или за сумму фактических расходов плюс фиксированное вознаграждение либо определенный процент суммы расходов. Подрядчик назначает ответственного за строительство - прораба, - который, постоянно находясь на строительной площадке, координирует работу разных специалистов и от имени генподрядчика осуществляет общий контроль за ходом строительных работ. Архитектор также имеет своего представителя, который контролирует соответствие чертежам и спецификациям. Если заказчик вносит в чертежи и спецификации изменения, то архитектор после их согласования дает генподрядчику письменное распоряжение об изменениях. Если эти изменения влекут за собой повышение стоимости, то до выполнения работ заключается письменное соглашение о размере приплаты. Часто бывает желательным, чтобы учрежденческое здание, гостиница или другое здание было построено в определенный срок и можно было бы заранее планировать коммерческие операции - заключать с указанием этого срока контракты на аренду, на поставки товаров и т.д. Для правильной координации различных видов деятельности, в том числе календарного планирования строительных работ, подачи заказов на материалы и оборудование, найма необходимой рабочей силы, до начала строительных работ проводится детальный системный анализ. При технологическом, календарном и организационном планировании строительных работ пользуются методами сетевого планирования, такими, как метод критического пути, введенный фирмой "Дюпон де Немур" и применяемый в анализе сложных систем. При таком планировании для каждого вида работ устанавливаются сроки начала и окончания и определяется потребность в рабочей силе, оборудовании и материалах. Анализируются также последствия, которые для одних работ может иметь задержка или досрочное выполнение других. Результаты анализа пересматриваются в ходе строительства для внесения поправок с учетом фактического выполнения фронта работ и выявления тех видов работ, которые требуют ускорения для завершения строительства в назначенный срок.

Расчет и проектирование. Форма и вес здания определяются его интерьером, а интерьер - его назначением. Нагрузки же, которые должны учитываться при проектировании зданий, можно разделить на три группы: статические (постоянные), временные (динамические) и боковые. К статическим нагрузкам относится вес всех элементов здания, а именно стен, закрепленных перегородок, междуэтажных перекрытий, крыши и неподвижного оборудования. К временным - вес всей мебели, подвижного оборудования (такого, как сейфы и машины), персонала, временных и передвижных перегородок, снега и льда, накапливающихся на крыше. К боковым нагрузкам относятся давление ветра на стены здания, давление грунта на его фундамент, ударные воздействия землетрясений. Если фундамент заложен ниже уровня подземных вод, то нужно учитывать гидростатическое давление, действующее сбоку на стены фундамента и вертикально вверх на его подошву. Нагрузки, на которые должны рассчитываться проектируемые здания, указываются в строительных нормах и правилах (СНиП).

ЧАСТИ ЗДАНИЯ

Надземная часть здания называется верхней, а подземная - нижней. Нагрузку несут такие части здания, как несущие стены, балки, колонны, плиты перекрытия, рамы, куполы и арочные перемычки. Стены здания - это вертикальные конструкции, ограждающие здание или разделяющие его на комнаты и помещения; разделяющие стены обычно называются перегородками. Балка - это удлиненный горизонтальный элемент конструкции в виде бруса, опертый в одной или нескольких точках по его длине и рассчитанный на поперечную нагрузку (лежащую на нем). Балки передают нагрузку перекрытий и крыши (покрытия здания) несущим стенам или перегородкам, колоннам, фермам, арочным перемычкам и другим балкам, называемым ригелями и прогонами, которые, в свою очередь, передают нагрузки несущим стенам и колоннам. Плита перекрытия представляет собой плоский элемент конструкции, обычно железобетонный, который перекрывает пространство между балками и ригелями, образуя междуэтажное перекрытие или настил крыши. Колонна - это удлиненный вертикальный элемент конструкции, который передает нагрузки междуэтажных перекрытий, крыши и других элементов фундаменту. Ферма - это элемент конструкции, составленный из стержней, которые образуют треугольники, лежащие в одной плоскости. Арочная перемычка - это конструкция в форме кривого бруса (с выпуклостью вверх) для перекрытия проемов (рис. 1). Арочная перемычка, несущая вертикальную нагрузку, работает в основном на сжатие и вызывает в опорах не только вертикальные, но и боковые реакции.

Рис. 1. АРОЧНАЯ ПЕРЕМЫЧКА. 1 - верхняя выпуклая поверхность; 2 - пазуха; 3 - замковый камень; 4 - клинчатый камень; 5 - полудужье; 6 - пятовый камень; 7 - пролет; 8 - стрела подъема.

Рис. 1. АРОЧНАЯ ПЕРЕМЫЧКА. 1 - верхняя выпуклая поверхность; 2 - пазуха; 3 - замковый камень; 4 - клинчатый камень; 5 - полудужье; 6 - пятовый камень; 7 - пролет; 8 - стрела подъема.

В здании с несущими стенами нагрузки передаются фундаменту непосредственно стенами, а в каркасном здании - жестким каркасом, составленным из балок, ферм, ригелей, прогонов и колонн (крыша, перекрытия, стены и перегородки держатся на этом каркасе). Наружные стены, если они не несут другой нагрузки, кроме собственного веса, называются навесными стенами заполнения каркаса. Для зданий с числом этажей не более пяти, как правило, более экономична конструкция с несущими стенами, а для высоких зданий - каркасная. В высотных общественных зданиях (30 этажей и более) наиболее рациональны стальные каркасно-панельные конструкции.

Проблема осадки. Одной из главных задач, которые приходится решать при проектировании здания, является задача предотвращения или сведения к допустимому минимуму его осадки. Если все здание оседает равномерно, то серьезных последствий это может и не вызвать, разве что для тротуаров и мостовых. Неравномерное же оседание приводит к появлению трещин в стенах, перекосу колонн, стен и окон, к растрескиванию и перекашиванию перекрытий, к разладке механического оборудования и другим неприятностям. Осадка обусловлена в основном уплотнением грунта под действием веса здания. Она в значительной мере предотвращается правильным выбором типа фундамента.

См. ФУНДАМЕНТ.

Стены и перегородки. Наружные стены ручной кладки могут быть выполнены из кирпичей и природных или искусственных камней разного вида (рис. 2), уложенных на растворе. Минимально допустимая толщина наружных стен ручной кладки для одноэтажных жилых зданий равна 20 см, для прочих - 30 см. Толщина несущих стен определяется в значительной мере числом этажей и должна поэтажно увеличиваться книзу. Минимальная толщина железобетонных несущих стен равна 15 см.

Рис. 2. СТЕНОВЫЕ БЛОКИ. а - стандартный керамический для кладки на ложок; б - для кладки на тычок; в - стена из пустотелых керамических блоков; г - кирпичная облицовка; д - каменная облицовка; е и ж - блоки для кладки стен; з - блок для кладки перегородок.

Рис. 2. СТЕНОВЫЕ БЛОКИ. а - стандартный керамический для кладки на ложок; б - для кладки на тычок; в - стена из пустотелых керамических блоков; г - кирпичная облицовка; д - каменная облицовка; е и ж - блоки для кладки стен; з - блок для кладки перегородок.

Внутренние стены также могут быть несущими и ненесущими. Перегородками считаются ненесущие внутренние стены, не выходящие за пределы одного этажа. Материалы и конструкция стен и перегородок должны соответствовать требованиям огнестойкости, предъявляемым к зданиям данного типа. В тех случаях, когда для строительства допускаются горючие материалы, обычный тип конструкции таков: деревянные стойки 5*10 см, покрытые деревянной обрешеткой или металлической либо гипсовой сеткой и оштукатуренные. В жилых домах широко применяются также перегородки с сухой штукатуркой, которые состоят из деревянных стоек, с обеих сторон покрытых листами фанеры, древесно-волокнистыми или древесно-стружечными плитами (ДСП), сухой штукатуркой или асбоцементными панелями шириной 1,2 м и нужной длины. Наружные стены деревянных каркасных зданий (рис. 3) обычно выполняются из деревянных стоек 5*10 см, расположенных на расстоянии 40 см друг от друга. Снаружи они обшиваются досками толщиной 2,5 см (прибиваемыми горизонтально или по диагонали), фанерой, ДСП или сухой штукатуркой, а изнутри покрываются обрешеткой и штукатуркой либо одним из перечисленных выше видов обшивочных материалов. Для уменьшения воздухопроницаемости обшивку покрывают строительным картоном. Сверху обшивка закрывается облицовочным материалом. Это могут быть обшивочные доски, накладываемые горизонтально или по диагонали, кровельная плитка либо 10-см облицовочный слой кирпича или камня с анкерным креплением к стене. Между стойками наружных стен обычно предусматривают теплоизоляцию. Для предотвращения запотевания (конденсации паров воды) под отделочный слой наружных стен с их внутренней стороны подкладывают толь или пластиковую пленку. Внутренние стены и перегородки отличаются от наружных тем, что они не имеют ни облицовки наружного типа, ни теплоизоляции, но с обеих сторон штукатурятся или покрываются листами сухой штукатурки.

Рис. 3. ДЕРЕВЯННОЕ КАРКАСНОЕ ЗДАНИЕ. 1 - конек; 2 - стропило (стропильная нога); 3 - накат (настил крыши); 4 - балка перекрытия; 5 - стыковая накладка; 6 - стойки каркаса; 7 - фундаментная балка; 8 - обвязочная накладка; 9 - черный пол; 10 - связи жесткости или противопожарной перегородки; 11 - балка перекрытия (по периметру); 12 - обшивка; 13 - поперечные связи; 14 - стена фундамента; 15 - угловой столб; 16 - лежень.

Рис. 3. ДЕРЕВЯННОЕ КАРКАСНОЕ ЗДАНИЕ. 1 - конек; 2 - стропило (стропильная нога); 3 - накат (настил крыши); 4 - балка перекрытия; 5 - стыковая накладка; 6 - стойки каркаса; 7 - фундаментная балка; 8 - обвязочная накладка; 9 - черный пол; 10 - связи жесткости или противопожарной перегородки; 11 - балка перекрытия (по периметру); 12 - обшивка; 13 - поперечные связи; 14 - стена фундамента; 15 - угловой столб; 16 - лежень.

Балки. Балки разного вида (лаги, ригели, прогоны, балки перекрытия, перекладины, стропильные ноги, обрешетины крыши) могут быть стальными (сортовой прокат), железобетонными и деревянными. Стальные балки имеют, как правило, двутавровый профиль с высотой сечения от 8 до 90 см. Они обычно несут конструкцию деревянного настила междуэтажных перекрытий и покрытий, секционированные стальные настилы или железобетонные плиты. Широко применяются вспомогательные балки перекрытия в виде балочно-раскосных ферм без вертикальных стержней. Железобетонные балки выполняются в виде монолитных силовых элементов (рис. 4,а), а на них настилаются железобетонные плиты, перекрывающие все пространство (рис. 4,б). Бетон выдерживает большие напряжения сжатия, но не очень прочен при растяжении. Поэтому в те части железобетонного изделия, где возникают растягивающие напряжения, перед заливкой бетона вкладывают стальные армирующие стержни. Можно получить экономию материала, используя высокопрочный бетон и армируя сталью бетонные элементы конструкции, работающие на растяжение, а также "преднапрягая" (растягивая) армирующие стержни до приложения нагрузки. Хотя стоимость преднапряженного железобетона выше, он широко применяется в строительстве зданий.

Рис. 4. БАЛОЧНЫЕ КОНСТРУКЦИИ. а - железобетонная балка; б - железобетонное перекрытие на железобетонных балках; в - деревянное перекрытие на стальных двутавровых балках; г - железобетонное перекрытие на стальных двутавровых балках. 1 - стальные армирующие стержни; 2 - деревянный чистовой пол; 3 - деревянный черный пол; 4 - деревянная балка перекрытия; 5 - железобетонная панель.

Рис. 4. БАЛОЧНЫЕ КОНСТРУКЦИИ. а - железобетонная балка; б - железобетонное перекрытие на железобетонных балках; в - деревянное перекрытие на стальных двутавровых балках; г - железобетонное перекрытие на стальных двутавровых балках. 1 - стальные армирующие стержни; 2 - деревянный чистовой пол; 3 - деревянный черный пол; 4 - деревянная балка перекрытия; 5 - железобетонная панель.

Деревянные строительные балки обычно имеют прямоугольное поперечное сечение. В крупных бескаркасных деревянных зданиях их размеры не меньше 15ґ20 см, а расстояние между ними - около 1,5 м. На балки укладывается деревянный черный пол или настил крыши толщиной не менее 8 см (рис. 5,а). В обычных и каркасных деревянных зданиях балки перекрытия и балки покрытия обычно представляют собой поставленные на ребро (на расстоянии 40 см друг от друга) доски толщиной 5 см и высотой 10-30 см, несущие черный пол или настил покрытия толщиной 2,5 см (рис. 5,б).

Рис. 5. ДЕРЕВЯННЫЕ БАЛОЧНЫЕ КОНСТРУКЦИИ. а - массивно-балочная ; б - каркасная. 1 - деревянный черный пол; 2 - деревянный чистовой пол или кровельный настил.

Рис. 5. ДЕРЕВЯННЫЕ БАЛОЧНЫЕ КОНСТРУКЦИИ. а - массивно-балочная ; б - каркасная. 1 - деревянный черный пол; 2 - деревянный чистовой пол или кровельный настил.

Колонны. В качестве колонн обычно используется стальной двутавровый сортовой прокат с высотой сечения 15-45 см. Колонны такой же формы могут быть изготовлены сваркой из полос и уголков (рис. 6,а). Железобетонные колонны квадратного, круглого или восьмигранного поперечного сечения (рис. 6,б) снабжаются продольными армирующими стержнями. Стержни подкрепляются часто намотанными спиралями или поперечными связями с большим, чем у спиралей, шагом.

Рис. 6. СТАЛЬНЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ. а - стальные (слева - из сортового проката, справа - составная); б - железобетонные (квадратного, круглого и восьмигранного сечения).

Рис. 6. СТАЛЬНЫЕ И ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ. а - стальные (слева - из сортового проката, справа - составная); б - железобетонные (квадратного, круглого и восьмигранного сечения).

Фермы. Фермы обычно выполняются из стального сортового проката разного профиля (обычно сваркой) или из деревянных элементов, скрепляемых болтами либо специальными соединителями.

Подвесные своды. В подвесных сводах используется высокая прочность на растяжение стального троса. На тросах (кабелях) подвешиваются большие площади кровли, так что соответствующие участки пола не загромождаются колоннами. Для частичной разгрузки троса его заключают в бетонное ребро жесткости с внутренними армирующими элементами.

Тонкостенные пространственные покрытия. Железобетонные тонкостенные пространственные покрытия применяются для ангаров, спортивных залов, крытых стадионов, зрительных залов и других зданий с большой свободной площадью пола. Наиболее распространены покрытия с цилиндрической железобетонной оболочкой (толщиной 8-15 см), выполненной монолитно с железобетонными арками в виде отрезков окружности, эллипса или параболы. Оболочка перекрывает пространство между этими арками.

Стеклопластиковая кровля. Кровля из стеклопластика, обычно покрываемого тефлоном, применяется в крупных сооружениях, имеющих форму палатки или шатра, как, например, аэровокзал Хадж в международном аэропорту им. короля Абдула Азиза (Саудовская Аравия).

Черные полы и настил крыши. Промежутки между балками перекрытия, перекладинами обвязки проема, стропилами и прогонами перекрываются черными полами или настилом крыши, образующими поверхность для чистового пола или кровельного материала. Если несущими элементами являются лаги - массивные деревянные балки, положенные с большими интервалами, - то черный пол и настил крыши обычно выполняются из досок толщиной не менее 5 см и шириной 5-20 см, поставленных на ребро и скрепленных большими гвоздями в единый щит. Если доски кладутся плашмя, то их сплачивают в шпунт, чтобы они не могли смещаться по вертикали одна относительно другой. На легких частых балках перекрытия черный пол обычно стелят из досок толщиной 2,5 см, укладываемых по диагонали. Покрытие крыши на легких частых прогонах делают так же, но доски укладывают прямо, а не диагонально. Если несущими элементами служат двутавровые стальные профили, то черный пол и покрытие крыши могут быть выполнены из толстых досок, железобетонных плит или различных рамно-связевых конструкций. Настил на железобетонных балках обычно выполняется из железобетонных плит и панелей.

Монтаж конструкций и опалубка. Сборка различных основных и вспомогательных балок, ригелей, колонн и ферм в конструкцию здания называется монтажом строительных конструкций. Совместно монтируемые элементы конструкции должны быть из соответствующих друг другу материалов. В зданиях с каменными стенами применяются деревянные, стальные и железобетонные балки. Деревянные балки сочетаются с деревянными и стальными колоннами, стальные - со стальными колоннами и железобетонные - с железобетонными. В случае деревянных балок и колонн приемлемы деревянные черный пол и настил крыши, а в случае железобетонных - железобетонные. В зданиях со стальными балками и колоннами перекрытия и покрытия устраивают из рамно-связевых конструкций. Легкие деревянные конструкции из пиломатериала толщиной 2,5 и 5 см скрепляются гвоздями и нагелями, а более массивные - болтами, скобами и другими металлическими соединительными устройствами. Для стальных элементов применяются заклепочные и сварные, а также болтовые соединения. Элементы конструкции из неармированного и армированного бетона можно изготавливать на месте, заливая свежезамешенным бетоном деревянные или стальные формы - опалубку. Такие элементы называют монолитными, хотя в них часто приходится предусматривать температурные швы с учетом возможности теплового расширения. После схватывания (затвердевания) бетона опалубку удаляют. В производственных и складских промышленных зданиях с большими временными нагрузками на перекрытие широко применяются безбалочные железобетонные перекрытия (рис. 7). В них нет ни балок, ни обвязки проемов перекрытия. На верхних концах колонн предусматриваются расширенные капители, а панели перекрытия вблизи колонны укрепляются надкапительными плитами. В зданиях общежитий, многоквартирных домах и других зданиях с малыми временными нагрузками на перекрытия все чаще применяются безбалочные перекрытия с замоноличенной капителью. В них нет отдельных капителей и надкапительных плит, благодаря чему упрощается устройство перегородок.

Рис. 7. БЕЗБАЛОЧНОЕ ПЕРЕКРЫТИЕ, применяется преимущественно в крупных промышленных и складских зданиях с большими временными нагрузками на перекрытия.

Рис. 7. БЕЗБАЛОЧНОЕ ПЕРЕКРЫТИЕ, применяется преимущественно в крупных промышленных и складских зданиях с большими временными нагрузками на перекрытия.

Расходы на опалубку весьма обременяют сметную стоимость строительства железобетонного здания. Поэтому здания стараются проектировать так, чтобы хотя бы некоторые, если не все, элементы конструкции изготавливались с помощью "оборачиваемой" опалубки многократного пользования. Наибольшая экономия достигается, когда в конструкции здания много одинаковых элементов. Бетонные и железобетонные работы могут выполняться либо на строительной площадке, либо на заводе сборного железобетона. Некоторые элементы конструкции, например балки перекрытия, стандартизованы и имеются на заводах в ассортименте. Они проектируются так, чтобы их можно было на строительной площадке соединять в устойчивую несущую конструкцию. Такие работы называются сборным строительством. Преднапряженные железобетонные элементы обычно изготавливаются на заводе. Применяются также сборные (отлитые на заводе) арочные перемычки и жесткие рамы, часто преднапряженные. Наружные стены невысоких зданий можно возводить из монолитных железобетонных плит, изготавливаемых в горизонтальном положении и поднимаемых в проектное положение монтажным оборудованием. Панели часто преднапрягают. Название такого способа строительства зданий - строительство методом поворота. Еще один способ снижения затрат на опалубку - строительство методом подъема перекрытий и этажей. При методе подъема перекрытий первый этаж строят как обычно. Затем устанавливают стальные или сборные железобетонные колонны и на уровне первого этажа бетонируют пакет перекрытий по числу этажей, предусматривая между плитами разделительные прокладки из синтетической пленки или строительного картона. Домкратами, установленными на оголовках колонн, плиты поднимают начиная с кровельной и по мере подъема закрепляют на колоннах здания на проектных отметках. Развитием метода подъема перекрытий является метод подъема этажей, применяемый в основном для монтажа жилых зданий. Здания такого монтажа высотой более пяти этажей должны иметь, кроме несущего каркаса из колонн и безбалочных перекрытий, объемные монолитные ядра жесткости, в которых размещаются вертикальные коммуникации (лестницы, лифты и т.п.).

Лестничные и лифтные шахты. Открытые лестницы в здании опасны в пожарном отношении, поскольку при пожаре они действуют как дымовые трубы, создавая тягу, направляющую огонь вверх. Это приводит к гибели людей и большим материальным убыткам. Строительные нормы и правила требуют, чтобы при определенных условиях лестницы выполнялись в закрытых лестничных клетках. Типичные требования таковы: в зданиях, в которых перекрытие самого верхнего этажа находится на высоте более 9 м или в которых выше либо ниже первого этажа по условиям эксплуатации может находиться более 40 человек, а также в многосемейных домах высотой более двух этажей лестницы должны быть изолированы специально выстроенными противопожарными перегородками. В лестничных клетках не должно быть никаких проемов, кроме необходимых оконных и дверных, а последние должны быть снабжены самозакрывающимися противопожарными дверями. Лестничные марши должны быть выполнены из негорючих материалов. Число и ширина лестниц, ведущих к выходу, определяются плотностью людского потока при эвакуации. В системах совпадающих отверстий в междуэтажных перекрытиях, предназначаемых для лифта, вентиляции, освещения и т.д., должны устраиваться закрытые шахты, подобные лестничным клеткам.

См. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА.

Материалы покрытий полов. Как правило, бетонные плиты перекрытий и деревянные черные полы покрывают поверхностями износа. Материалы покрытий полов можно разделить на жесткие и упругие. К жестким относятся бетон, тераццо, керамическая плитка, мрамор, камень-плитняк. К упругим - линолеум, пробковое рулонное покрытие, пробковая, резинопластовая, битумная, виниловая пластиковая плитка и деревянные покрытия. Деревянные покрытия полов чаще всего делают из сосны, ели, дуба, клена и березы. Выбор материала для покрытия полов зависит также от типа черного пола. На бетонные плиты перекрытия можно укладывать любые материалы. Для бетонных и тераццевых покрытий не требуется клея. Керамическая плитка, мрамор и плитняк укладываются на цементный раствор. Упругие покрытия удерживаются на месте специальными клеящими веществами. Рекомендуется сначала приклеивать к бетону пропитанный битумом строительный картон, а затем уже на картон наклеивать покрытие. Деревянное покрытие можно приклеивать таким же способом, а можно прибивать гвоздями к деревянным лагам, утопленным в бетон или наложенным на бетон и анкерно закрепленным на нем. Особенно тщательно необходимо выбирать упругое покрытие для бетонного черного пола, лежащего непосредственно на грунте, учитывая возможность пропитывания его грунтовыми водами.

Кровельные материалы. Для крыши со скатами подходят такие кровельные материалы, как гонт, рубероидная и асбестовая плитка, керамическая, цементная и металлическая плитка, медный, цинковый, алюминиевый и луженый стальной лист, алюминиевый и стальной (непокрытый либо оцинкованный) волнистый лист, а также рубероид. Для плоских и слегка покатых кровель более подходит покрытие в виде нескольких слоев пропитанного битумом или гудроном строительного картона, склеенных битумной (на соляровом масле) или пековой (на антраценовом масле) грунтовкой и засыпанных сверху гравием. На плоских крышах, допускающих хождение, поверх кровельного покрытия укладывают на битумном вяжущем керамическую плитку, шифер или плитняк. Однако на таких крышах необходимы особые меры против протечки.

Отделка внутренних стен. В промышленных, складских зданиях, спортивных залах и зданиях многих других видов специальная отделка поверхности внутренних стен и потолка может и не требоваться. В зданиях же с отделкой внутренние стены и потолок, как правило, покрывают штукатуркой. Для ее изготовления используется раствор, обычно с гипсовым цементом в качестве вяжущего, а иногда - с известковым вяжущим или портланд-цементом. Раствор наносится штукатурной лопаткой (мастерком) и другими инструментами и разравнивается так, чтобы получилась гладкая или шероховатая поверхность, после чего он затвердевает. После схватывания раствора может быть проведена декоративная окраска и разделка поверхности (альфрейные работы). Поверхности стен и потолка можно облицовывать также фанерой, гипсовыми листами сухой штукатурки, асбоцементными панелями и различного вида древесно-волокнистыми плитами, прибиваемыми гвоздями непосредственно к деревянным стойкам и рейкам.

Окна и двери. В дверных и оконных проемах монтируются коробки для крепления оконных рам и дверей. Их отделывают декоративными наличниками и другими накладками, обычно деревянными. Если требуется повышенная пожаростойкость, то применяют деревянные столярные элементы, покрытые листовым металлом. Наивысшую пожаростойкость придают полые металлические элементы. Окна промышленных зданий часто делают из легкого катаного стального или алюминиевого профиля, выполненного так, что его края можно заделывать непосредственно в кладку стен без специальных оконных коробок.

См. также

СТРОИТЕЛЬСТВО ГРАЖДАНСКОЕ;

КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ;

КАМЕННАЯ КЛАДКА.

ЛИТЕРАТУРА

Буга П.Г. Гражданские, промышленные и сельскохозяйственные здания. М., 1987 Лыпный М.Д., Синенький К.Е. Справочник производителя работ в строительстве. Киев, 1987 Миловидов Н.Н. и др. Архитектура гражданских и промышленных зданий. М., 1987 Шахпаронов В.В. и др. Организация строительного производства. М., 1987

Полезные сервисы

полета теория и практика

Энциклопедия Кольера

ПОЛЕТА ТЕОРИЯ И ПРАКТИКА - совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить характеристики существующего. В данной статье иллюстрируется применение теории и практики полета к проблемам создания наиболее распространенного летательного аппарата, а именно - самолета. Теоретические основы обсуждаемых проблем изложены в статьях АЭРОДИНАМИКА и АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА. Дополнительная информация о современном состоянии проблемы содержится в статьях АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ;

АВИАЦИОННЫЕ БОРТОВЫЕ ПРИБОРЫ;

САМОЛЕТ;

ВЕРТОЛЕТ;

САМОЛЕТ ПРЕОБРАЗУЕМЫЙ.

ПРАКТИЧЕСКАЯ АЭРОДИНАМИКА

Достижения братьев Райт. Чтобы совершить полет, необходимо решить две проблемы - боковой управляемости летательного аппарата и сваливания и штопора. Выдающимся достижением братьев Райт является их вклад в изучение этих проблем и создание первой эффективной системы аэродинамических органов управления полетом летательного аппарата, включающей носовой руль высоты для управления продольным движением, изгиб концов крыла для поперечного управления и хвостовой руль для путевого управления. На рис. 1 показаны аэродинамические органы управления, примененные на первых бипланах братьев Райт, и соответствующие аэродинамические органы управления современного самолета. В обоих случаях органы управления служат для создания моментов аэродинамических сил (каждый момент вызывает поворот летательного аппарата вокруг оси тангажа, крена или рыскания).

Рис. 1

1. АЭРОДИНАМИЧЕСКИЕ ОРГАНЫ УПРАВЛЕНИЯ первого биплана (вверху) и современного самолета (внизу). Для управления самолетом (т.е. для создания моментов сил относительно трех осей самолета) биплан имеет следующие органы управления: руль высоты для создания момента тангажа относительно поперечной оси, руль направления для создания момента рыскания относительно вертикальной оси и изгиб концов крыла для создания момента крена относительно продольной оси. Органами управления на моноплане являются, соответственно, руль высоты, руль направления и элероны.">

Рис. 1. АЭРОДИНАМИЧЕСКИЕ ОРГАНЫ УПРАВЛЕНИЯ первого биплана (вверху) и современного самолета (внизу). Для управления самолетом (т.е. для создания моментов сил относительно трех осей самолета) биплан имеет следующие органы управления: руль высоты для создания момента тангажа относительно поперечной оси, руль направления для создания момента рыскания относительно вертикальной оси и изгиб концов крыла для создания момента крена относительно продольной оси. Органами управления на моноплане являются, соответственно, руль высоты, руль направления и элероны.

Еще более важным достижением, чем концепция аэродинамического управления движением летательного аппарата относительно трех пространственных осей (которая, разумеется, была понятна и другим пионерам самолетостроения), стало выяснение братьями Райт роли взаимодействия между органами управления по крену и рысканию в начале и в конце маневра разворота и характера самого этого маневра. Если желательно изменить курс движения самолета в горизонтальной плоскости, то следует накренить самолет, повернув его вокруг продольной оси; при этом у подъемной силы крыла - самой большой аэродинамической силы - появится горизонтальная составляющая, которая будет создавать желаемое ускорение самолета в горизонтальной плоскости. Если изгибать крылья (или отклонять элероны) для создания движения по крену, то возникающий при этом момент рыскания будет уводить самолет в направлении, противоположном желаемому направлению поворота (рис. 2). Чтобы парировать этот эффект, необходимо отклонить руль направления и тем самым устранить т.н. "рыскание при отклонении элеронов". (Этот неблагоприятный момент рыскания является неотъемлемым свойством аэродинамики дозвукового крыла; он возникает при любом способе, используемом для создания движения крена.) Полученный в 1905 братьями Райт патент содержал формулировку этого принципиального эффекта и предложение по его компенсации посредством совместного одновременного управления изгибом концов крыла и рулем направления. Позже братья Райт отказались от этого способа и заменили его более универсальным устройством раздельного управления по крену и рысканию с помощью рычагов.

Рис. 2. ПРАВЫЙ ПОВОРОТ (вид сверху и сзади) осуществляется при отклонении правого элерона вверх и левого элерона вниз. Это вызывает рыскание самолета влево и, чтобы стабилизировать поворот, необходимо отклонить руль направления вправо. При осуществлении поворота необходимо также отклонить руль высоты, чтобы увеличить подъемную силу для компенсации центробежной силы. 1 - прямолинейный полет; 2 - отклонение элеронов для осуществления правого поворота; 3 - вызванный отклонением элеронов момент рыскания разворачивает нос самолета влево - руль направления отклоняют вправо; 4 - элероны и руль направления переводят в нейтральное положение, самолет продолжает разворачиваться, руль высоты отклонен для увеличения подъемной силы так, чтобы ее вертикальная составляющая уравновешивала вес самолета; 5 - для прекращения разворота без дополнительного рыскания элероны и руль направления отклоняют в обратную (по сравнению с предыдущими отклонениями) сторону.

Рис. 2. ПРАВЫЙ ПОВОРОТ (вид сверху и сзади) осуществляется при отклонении правого элерона вверх и левого элерона вниз. Это вызывает рыскание самолета влево и, чтобы стабилизировать поворот, необходимо отклонить руль направления вправо. При осуществлении поворота необходимо также отклонить руль высоты, чтобы увеличить подъемную силу для компенсации центробежной силы. 1 - прямолинейный полет; 2 - отклонение элеронов для осуществления правого поворота; 3 - вызванный отклонением элеронов момент рыскания разворачивает нос самолета влево - руль направления отклоняют вправо; 4 - элероны и руль направления переводят в нейтральное положение, самолет продолжает разворачиваться, руль высоты отклонен для увеличения подъемной силы так, чтобы ее вертикальная составляющая уравновешивала вес самолета; 5 - для прекращения разворота без дополнительного рыскания элероны и руль направления отклоняют в обратную (по сравнению с предыдущими отклонениями) сторону.

Осознание взаимосвязи движений по крену и рысканию явилось началом развития механики полета. Важно то, что эта взаимосвязь была выявлена братьями Райт в натурных летных испытаниях. В противоположность этому подходу, другие пионеры авиации придерживались той точки зрения, что самолет должен быть устойчивым сам по себе, и считали, что он, подобно лодке на воде, будет легко управляться рулем направления, а органы управления по крену если и нужны, то только для поддержания "поперечного равновесия". В Европе это мнение превалировало почти до начала Первой мировой войны, что привело к созданию органов управления, которые имели неудовлетворительные летные характеристики.

Скорость сваливания. Аэродинамическую силу, действующую на жесткое крыло, обычно разделяют на подъемную силу и лобовое сопротивление (сопротивление воздуха движению самолета), которые пропорциональны плотности воздуха и квадрату скорости полета при фиксированном угле атаки. При постоянной скорости полета подъемная сила и лобовое сопротивление плавно увеличиваются с возрастанием угла атаки до некоторого значения, называемого углом атаки начала сваливания (срыва) или критическим углом атаки (рис. 3). При этом угле атаки происходит перестройка структуры течения над верхней поверхностью крыла, в результате чего плавное течение нарушается и возникает вихревое течение; при дальнейшем возрастании угла атаки подъемная сила перестает увеличиваться, и резко возрастает лобовое сопротивление. Если самолет замедляет движение, то для сохранения подъемной силы, компенсирующей его вес, необходимо увеличивать угол атаки. Таким образом, при некоторой достаточно малой скорости полета, называемой скоростью сваливания, угол атаки достигает критического значения, и самолет становится неуправляемым. Скорость сваливания при выполнении разворота или в полете с маневрированием оказывается несколько больше, чем в прямолинейном установившемся полете, так как для выполнения маневра требуется, чтобы подъемная сила превышала вес самолета.

Рис. 3. ПОДЪЕМНАЯ СИЛА КРЫЛА возрастает при увеличении угла атаки. При критическом угле атаки лобовое сопротивление резко возрастает, а подъемная сила перестает увеличиваться. По оси ординат отложены значения подъемной силы L (левая шкала) и лобового сопротивления D (правая шкала), отнесенные к величине (r /2)V 2A, где r - плотность воздуха, V - скорость полета и A - площадь крыла.

Рис. 3. ПОДЪЕМНАЯ СИЛА КРЫЛА возрастает при увеличении угла атаки. При критическом угле атаки лобовое сопротивление резко возрастает, а подъемная сила перестает увеличиваться. По оси ординат отложены значения подъемной силы L (левая шкала) и лобового сопротивления D (правая шкала), отнесенные к величине (r /2)V 2A, где r - плотность воздуха, V - скорость полета и A - площадь крыла.

Со сваливанием братья Райт впервые столкнулись в 1905, и эта проблема была воспринята ими с большой тревогой. Они разработали технику пилотирования, позволяющую вывести самолет из режима сваливания, для чего нужно было быстро уменьшить угол атаки, опуская нос самолета вниз с помощью руля высоты. Эта методика вполне очевидна, но на многих самолетах сваливание развивалось очень быстро и асимметрично, особенно при полете с разворотом, когда самолет накреняется и "входит в штопор", как показано на рис. 4. В режиме штопора самолет движется с опущенным вниз носом, но угол атаки все равно остается большим вследствие того, что самолет быстро падает вниз. В этих условиях казалось неестественным требовать опустить нос еще ниже, в частности потому, что самолет и так быстро теряет высоту. Тем не менее оказалось, что это действие необходимо для восстановления управляемости. Братья Райт, по-видимому, никогда не попадали в режим развитого штопора, научившись предвидеть сваливание и, развив в себе "чувство контакта с самолетом", немедленно предпринимали действия, предотвращающие сваливание. Другие первые авиаторы оказались не столь удачливыми, и многие из них погибли в авариях, вызванных сваливанием и штопором, пока в 1911-1912 в Европе тоже не были разработаны методы пилотирования, позволявшие вывести самолет из штопора. Инциденты, связанные со сваливанием и штопором, по-прежнему остаются серьезной проблемой безопасности полета. В особенности это касается эксплуатации легких небольших самолетов, хотя при наличии большого плеча для силы, создаваемой вертикальным хвостовым оперением, и строительной крутки крыла (рис. 5) современные самолеты обладают лучшей управляемостью при сваливании, чем самолеты начала 20 в.

Рис. 4. СВАЛИВАНИЕ И ШТОПОР. Видно, как вход в правый поворот при горизонтальном полете без набора высоты превращается в штопор, в котором самолет движется с опущенным вниз носом. Чтобы восстановить управляемость и вывести самолет из штопора, нужно еще больше опустить нос самолета. Для исключения возможности возникновения штопора на современных самолетах устанавливают противоштопорные устройства. 1 - самолет, летящий на малой скорости при большом угле атаки, начинает правый поворот; 2 - самолет продолжает разворачиваться, но на крыле развивается срыв потока (наступает сваливание); 3 - самолет резко накреняется (валится) на правое крыло; 4 - самолет входит в штопор, угловая скорость вращения увеличивается; 5 - самолет падает, вращаясь вокруг вертикальной оси, угол атаки большой, обтекание срывное (в закритическом режиме); 6, 7 - установившийся правый штопор.

Рис. 4. СВАЛИВАНИЕ И ШТОПОР. Видно, как вход в правый поворот при горизонтальном полете без набора высоты превращается в штопор, в котором самолет движется с опущенным вниз носом. Чтобы восстановить управляемость и вывести самолет из штопора, нужно еще больше опустить нос самолета. Для исключения возможности возникновения штопора на современных самолетах устанавливают противоштопорные устройства. 1 - самолет, летящий на малой скорости при большом угле атаки, начинает правый поворот; 2 - самолет продолжает разворачиваться, но на крыле развивается срыв потока (наступает сваливание); 3 - самолет резко накреняется (валится) на правое крыло; 4 - самолет входит в штопор, угловая скорость вращения увеличивается; 5 - самолет падает, вращаясь вокруг вертикальной оси, угол атаки большой, обтекание срывное (в закритическом режиме); 6, 7 - установившийся правый штопор.

Рис. 5. ПРОТИВОШТОПОРНЫЕ СРЕДСТВА. Чтобы уменьшить вероятность возникновения сваливания и штопора, в конструкциях современных самолетов используют строительную крутку крыла, вертикальный хвостовой стабилизатор большой площади и большое плечо момента от хвостового стабилизатора (не менее полуразмаха крыла). Тем не менее сваливание, переходящее в штопор, до сих пор остается опасным явлением.

Рис. 5. ПРОТИВОШТОПОРНЫЕ СРЕДСТВА. Чтобы уменьшить вероятность возникновения сваливания и штопора, в конструкциях современных самолетов используют строительную крутку крыла, вертикальный хвостовой стабилизатор большой площади и большое плечо момента от хвостового стабилизатора (не менее полуразмаха крыла). Тем не менее сваливание, переходящее в штопор, до сих пор остается опасным явлением.

Удлинение крыла. Чтобы повысить аэродинамическое качество дозвукового самолета, нужно при постоянной подъемной силе уменьшить лобовое сопротивление крыла, которое тем меньше, чем больше отношение размаха крыла к его средней хорде. Это отношение называется удлинением крыла. Крылья большого удлинения были впервые созданы в Германии в 1920-х годах. Л.Прандтль и его сотрудники разработали теорию, а Г.Юнкерс, А.Фоккер и Г.Вагнер построили такие крылья. Было важно также уменьшить "вредное" сопротивление, создаваемое ненесущими элементами - фюзеляжем, хвостовым оперением, силовой установкой, посадочным шасси и внешними устройствами. Аэродинамически "чистые" самолеты впервые были созданы в США.

Крейсерская скорость. Чем больше площадь и размах крыла самолета заданного веса, тем меньше его посадочная скорость и скорость отрыва при взлете вследствие уменьшения величины скорости сваливания. Чем меньше скорости взлета и посадки, тем меньше дистанции разбега при взлете и торможения при посадке. Однако чем меньше скорости взлета и посадки, тем меньше наиболее эффективная скорость крейсерского полета. Выручает то, что плотность воздуха в атмосфере уменьшается с увеличением высоты, и вследствие этого скорость сваливания и оптимальная крейсерская скорость увеличиваются обратно пропорционально квадратному корню из плотности. Например, на высоте 12 км плотность воздуха в 4 раза меньше, чем на уровне моря, и, следовательно, скорость сваливания и оптимальная крейсерская скорость в два раза больше, чем на уровне моря.

Высотное регулирование двигателя. Из сказанного выше следует, что самолеты с малыми скоростями взлета и посадки могут летать эффективно с большими скоростями только на больших высотах. Однако мощность двигателя, необходимая для поддержания установившегося горизонтального полета, увеличивается пропорционально скорости и обратно пропорционально квадратному корню из плотности воздуха при увеличении высоты полета. В то же время мощность воздушно-реактивного двигателя изменяется пропорционально плотности воздуха. Следовательно, чтобы осуществить экономичный высокоскоростной полет на больших высотах, потребуется двигатель с "переразмеренными" воздухозаборниками, который на малых высотах работает в режиме дросселирования. Это позволяет ослабить требования к характеристикам прочности двигателя и снизить его вес.

Средства механизации крыла. Скорость сваливания самолета можно несколько уменьшить с помощью закрылков, устанавливаемых вдоль задней кромки крыла. При отклонении закрылков уменьшается угол атаки крыла в полете с малыми скоростями; при этом летчик может лучше видеть место предполагаемой посадки. Закрылки также увеличивают силу аэродинамического сопротивления самолета и в значительной степени гасят тенденцию самолета снова взмыть вверх после первого касания земли ("дать козла", как говорят летчики). Рис. 6 иллюстрирует применение закрылков при посадке самолета.

Рис. 6. ПОСАДКА С ВЫПУЩЕННЫМИ ЗАКРЫЛКАМИ. Позволяет уменьшить посадочную скорость, увеличить крутизну посадочной глиссады и уменьшить тангаж по сравнению с посадкой при убранных закрылках.

Рис. 6. ПОСАДКА С ВЫПУЩЕННЫМИ ЗАКРЫЛКАМИ. Позволяет уменьшить посадочную скорость, увеличить крутизну посадочной глиссады и уменьшить тангаж по сравнению с посадкой при убранных закрылках.

Пружинный сервокомпенсатор. Система управления полетом должна быть такой, чтобы пилот мог управлять самолетом с помощью одной руки, используя другую для настройки бортовой радиостанции, регулирования мощности двигателя или выполнения каких-либо других операций. Желательно, чтобы пилоту не нужно было прилагать усилия свыше 0,25 кН на расстояниях не более ПОЛЕТА ТЕОРИЯ И ПРАКТИКА45 см. Сила давления на педаль не должна превышать 0,80 кН, а ход педали - 25 см. Эти условия должны быть выполнены для того, чтобы работа летчика не была физически утомительной, хотя сила, необходимая для отклонения элерона, увеличивается пропорционально квадрату скорости полета и третьей степени размаха крыла. Кроме того, сила, приложенная к рулю высоты при выполнении какого-либо маневра, может возрастать пропорционально третьей или четвертой степени длины фюзеляжа (массе самолета). Сила давления на педаль руля направления также пропорциональна третьей или четвертой степени размаха крыла. Таким образом, летчику не по силам управлять самолетом без вспомогательных устройств. На рис. 7 показано типичное аэродинамическое устройство, позволяющее умерить управляющие усилия летчика. Ручка управления, находящаяся в пилотской кабине, связана с рулями высоты посредством сервокомпенсаторов и пружин (последние используются при небольших скоростях полета). Сервокомпенсаторы этого типа были разработаны А.Флетнером (1885-1961) в Германии. Они успешно применялись на дозвуковых самолетах, масса которых достигала 150 т.

Рис. 7. МЕХАНИЗМЫ ДЛЯ УПРАВЛЕНИЯ ПОЛЕТОМ. При увеличении скорости полета возрастают усилия, необходимые для отклонения элеронов и руля высоты. Пружинный сервокомпенсатор для руля высоты позволяет уменьшить управляющие усилия летчика при больших скоростях полета. 1 - ручка управления; 2 - педали руля направления; 3 - стабилизатор; 4 - руль высоты; 5 - сервокомпенсатор; 6 - пружины; 7 - качалка; 8 - анкерное крепление тросов; 9 - секторная качалка; 10 - опорный кронштейн качалки; 11 - тросы проводки управления; 12 - ролики; 13 - шкив.

Рис. 7. МЕХАНИЗМЫ ДЛЯ УПРАВЛЕНИЯ ПОЛЕТОМ. При увеличении скорости полета возрастают усилия, необходимые для отклонения элеронов и руля высоты. Пружинный сервокомпенсатор для руля высоты позволяет уменьшить управляющие усилия летчика при больших скоростях полета. 1 - ручка управления; 2 - педали руля направления; 3 - стабилизатор; 4 - руль высоты; 5 - сервокомпенсатор; 6 - пружины; 7 - качалка; 8 - анкерное крепление тросов; 9 - секторная качалка; 10 - опорный кронштейн качалки; 11 - тросы проводки управления; 12 - ролики; 13 - шкив.

Руль высоты в виде закрылка. При дозвуковых скоростях полета руль высоты, подвешенный на шарнирах к задней балке горизонтального стабилизатора, весьма эффективен, так как при его отклонении на стабилизаторе появляется дополнительная управляющая сила (рис. 8). Однако при трансзвуковых и сверхзвуковых скоростях полета его эффективность снижается.

Рис. 8. РУЛИ ВЫСОТЫ в виде закрылков - эффективное средство управления при дозвуковых скоростях полета (а). При трансзвуковых и сверхзвуковых скоростях полета (б) их эффективность ухудшается.

Рис. 8. РУЛИ ВЫСОТЫ в виде закрылков - эффективное средство управления при дозвуковых скоростях полета (а). При трансзвуковых и сверхзвуковых скоростях полета (б) их эффективность ухудшается.

Органы управления полетом при сверхзвуковых скоростях. Для самолетов нормальной схемы также характерен существенный сдвиг аэродинамического фокуса (центра давления) при переходе от дозвуковых к трансзвуковым и сверхзвуковым скоростям полета. Эти два обстоятельства стали причиной аварий ряда первых трансзвуковых самолетов вследствие их резкого затягивания в пикирование (термин "звуковой барьер" связан с этим опасным явлением ухудшения характеристик устойчивости и управляемости при околозвуковых скоростях полета). Впервые звуковой барьер был преодолен на экспериментальном самолете "Белл" X-1 в 1946. Этот самолет был оборудован регулируемым по углам атаки стабилизатором, который сохранял свою эффективность при трансзвуковых и сверхзвуковых скоростях полета. Такие регулируемые органы управления используются в настоящее время на всех трансзвуковых и сверхзвуковых самолетах. Применение гидроусилителей для позиционирования органов управления позволило решить проблему управляемости трансзвуковых и сверхзвуковых самолетов с рулями высоты в виде закрылков, элеронами и рулем направления традиционной схемы.

Сверхзвуковые компоновки. Аэродинамическое качество самолета существенно снижается при переходе от дозвуковой скорости полета к сверхзвуковой вследствие появления волнового сопротивления. Волновое сопротивление связано с появлением ударных волн, вызывающих перераспределение давления в поле течения около самолета; их интенсивность можно уменьшить только посредством перераспределения объема самолета (фактически - площади поперечного сечения) вдоль продольной оси, чтобы увеличить, насколько возможно, длину самолета и обеспечить гладкость распределения площадей поперечных сечений. Поэтому сверхзвуковые самолеты имеют большую относительную длину, но сплющенную форму (чтобы обеспечить приемлемые аэродинамические характеристики для дозвукового полета) и большую площадь поверхности, чем дозвуковые самолеты тех же массы и объема. Таким образом, полное аэродинамическое сопротивление сверхзвукового самолета, складывающееся из сопротивления трения, волнового и индуктивного сопротивлений, больше, чем полное аэродинамическое сопротивление дозвукового самолета тех же массы и объема. Поэтому аэродинамическое качество сверхзвукового самолета хуже, чем у дозвукового. Единственным важным преимуществом сверхзвукового самолета является высокая скорость полета, что особенно важно для военной авиации.

РЕШЕНИЕ ПРОБЛЕМ ПРОЧНОСТИ

Проблемы прочности самолета связаны с необходимостью минимизации массы конструкции, хотя она и подвергается воздействию больших нагрузок. Для характеристики этих нагрузок используют параметр, называемый "коэффициентом перегрузки", нормирующим параметром которого является максимальная взлетная масса самолета (расчетный полный вес). Величина этого коэффициента зависит от типа самолета; она составляет около 3 для пассажирских самолетов и бомбардировщиков и увеличивается до 8 для истребителей и учебно-тренировочных самолетов. У самолетов хорошей компоновки вес несущей (силовой) конструкции может составлять около одной четверти от расчетного полного веса.

Флаттер. Несущая конструкция должна быть не только прочной, но и достаточно жесткой. В случае податливой конструкции увеличение нагрузки, обусловленной подъемной силой, может вызвать такую деформацию крыла, которая эквивалентна увеличению угла атаки с соответствующим увеличением подъемной силы и т.д., вплоть до разрушения конструкции. Недостаточная жесткость конструкции может стать причиной возникновения специфических крутильных колебаний - флаттера (рис. 9). При флаттере крылья самолета совершают машущие движения, подобные взмахам крыльев летящей птицы. Существует определенная взаимозависимость между крутильными и изгибными деформациями крыла, вызванными аэродинамическими нагрузками, и энергия воздушного потока при флаттере может вызвать нарастание крутильно-изгибных колебаний, которые в конце концов приводят к разрушению конструкции. Флаттер может также возникать в виде машущих движений несущих поверхностей рулей, изгибных колебаний фюзеляжа и знакопеременных деформаций других элементов конструкции летательного аппарата.

Рис. 9. ФЛАТТЕР КРЫЛА. Крылья начинают совершать антисимметричные изгибные колебания. Если при возникновении такого движения аэродинамические силы усиливают его, то при недостаточной жесткости конструкции флаттер приведет к разрушению крыльев.

Рис. 9. ФЛАТТЕР КРЫЛА. Крылья начинают совершать антисимметричные изгибные колебания. Если при возникновении такого движения аэродинамические силы усиливают его, то при недостаточной жесткости конструкции флаттер приведет к разрушению крыльев.

Бипланы. Первым самолетом, поднявшимся в воздух, был биплан, или "этажерка", как его еще называли за внешний вид. Биплан - не только прочная, но и достаточно жесткая конструкция. Его крылья подкреплялись с помощью элементов, работающих на сжатие, таких, как деревянные стойки, подкосы и лонжероны, и элементов, работающих на растяжение, - расчалок из стальных струн и тросов. Деревянные нервюры закрывались материей, пропитанной лаком. Главным дефектом биплана является высокое лобовое сопротивление, которое создают многочисленные распорки и расчалки и крылья большой площади. Первые монопланы. Уже первые расчалочные монопланы были более совершенны с аэродинамической точки зрения, чем бипланы. Однако вследствие менее жесткой конструкции они нередко терпели аварии, вызванные неустойчивостью крутильно-изгибных колебаний и флаттером. В ходе Первой мировой войны по этим причинам от применения монопланов отказались.

Современные монопланы. В результате развития науки о прочности были разработаны конструкции (рис. 10), позволившие создать жесткий моноплан с высокими аэродинамическими характеристиками. В этой конструкции жесткость крыла на кручение обеспечивается кессонной конструкцией, состоящей из продольных лонжеронов со стенками, работающими на срез, и обшивки крыла между лонжеронами. Частоты собственных крутильных колебаний таких конструкций велики по сравнению с частотами изгибных колебаний, так что критическая для возникновения флаттера скорость значительно превышает скорости, развиваемые такими летательными аппаратами.

Рис. 10. КРЫЛЬЯ С ФАНЕРНОЙ ОБШИВКОЙ использовались на некоторых монопланах в 1920-х годах, однако вскоре их начали изготавливать из сплавов алюминия. 1 - полки лонжеронов; 2 - фанерная обшивка среднего кессона; 3 - фанерная обшивка носового кессона; 4 - передний лонжерон; 5 - фанерная стенка переднего лонжерона; 6 - задний лонжерон; 7 - фанерная стенка заднего лонжерона.

Рис. 10. КРЫЛЬЯ С ФАНЕРНОЙ ОБШИВКОЙ использовались на некоторых монопланах в 1920-х годах, однако вскоре их начали изготавливать из сплавов алюминия. 1 - полки лонжеронов; 2 - фанерная обшивка среднего кессона; 3 - фанерная обшивка носового кессона; 4 - передний лонжерон; 5 - фанерная стенка переднего лонжерона; 6 - задний лонжерон; 7 - фанерная стенка заднего лонжерона.

Обшивка и стенки лонжеронов на первых монопланах новой конструкции изготавливались из авиационной фанеры, а сами лонжероны - из деревянного бруса путем склейки. Эта же технология применялась для создания монококовых фюзеляжей. Клееные конструкции оказались довольно ненадежными, так как они исключали возможность технического контроля качества склейки. Кроме того, деревянные конструкции подвержены гниению и порче насекомыми. По этим причинам несущие элементы обшивки самолетов стали изготавливать из алюминиевых листов. Эти листы должны быть очень тонкими из соображений экономии веса, однако тонкие неподкрепленные панели обшивки коробятся под действием нагрузки, искажая требуемую аэродинамикой форму поверхности и приводя к разрушению конструкции в случае нарастания неустойчивости. Чтобы воспрепятствовать короблению, панель обшивки можно усилить различными средствами. Можно подкрепить обшивку в отдельных местах внутренними элементами жесткости или использовать многослойную обшивку (рис. 11).

Рис. 11. КОНСТРУКЦИИ ЦЕЛЬНОМЕТАЛЛИЧЕСКОГО КРЫЛА с дополнительными элементами жесткости (а) и слоистой обшивкой с заполнителем (б) отличаются высокой прочностью и жесткостью. 1 - обшивка; 2 - полки лонжеронов; 3 - ребра жесткости; 4 - стенка лонжерона; 5 - внешняя обшивка; 6 - сотовый заполнитель; 7 - внутренняя обшивка.

Рис. 11. КОНСТРУКЦИИ ЦЕЛЬНОМЕТАЛЛИЧЕСКОГО КРЫЛА с дополнительными элементами жесткости (а) и слоистой обшивкой с заполнителем (б) отличаются высокой прочностью и жесткостью. 1 - обшивка; 2 - полки лонжеронов; 3 - ребра жесткости; 4 - стенка лонжерона; 5 - внешняя обшивка; 6 - сотовый заполнитель; 7 - внутренняя обшивка.

Сверхзвуковой самолет. При высоких скоростях полета, развиваемых сверхзвуковыми самолетами, температура обшивки повышается вследствие аэродинамического нагревания, и соответственно снижается ее прочность. Вследствие этого алюминиевые сплавы непригодны для изготовления сверхзвуковых самолетов с M і 2, и вместо них используют сплавы на основе никеля или титана. Еще одной серьезной проблемой прочности конструкции сверхзвукового самолета является необходимость использования тонких и удлиненных в направлении полета форм, которые, как упоминалось выше, требуются для уменьшения волнового сопротивления.

АВИАЦИОННЫЕ ПРИБОРЫ

Спиральная неустойчивость. В отличие от лодки или автомобиля самолет, предоставленный самому себе, не будет выдерживать сколь-нибудь долго свой курс. Если атмосферное возмущение (например, вызванный тепловой конвекцией восходящий поток воздуха) немного накренит самолет на правое крыло, то он начнет разворачиваться вправо. Это движение по кривой разворота будет увеличивать относительную скорость движения и подъемную силу на левом крыле и уменьшать их на правом крыле, вследствие чего самолет еще более накренится на правое крыло и будет разворачиваться еще быстрее. Это явление называется спиральной неустойчивостью. Однако скорость нарастания спиральной неустойчивости мала, и летчик без труда контролирует это движение в условиях хорошей видимости ориентиров. В отсутствие видимости, например при полете в густом тумане или в сплошной облачности, летчик не сможет контролировать возникновение и развитие спиральной неустойчивости, так как без приборов он не в состоянии определить, куда повернул самолет и повернул ли он вообще. По мере нарастания крена вертикальная составляющая подъемной силы становится меньше, чем вес самолета, самолет начинает проваливаться и быстро теряет высоту. Попытки уменьшить скорость снижения, используя руль высоты, чтобы поднять выше нос самолета, приводят к еще большему увеличению крутизны спирали. Скорость снижения быстро возрастает на последней стадии такого неконтролируемого движения, которое летчики называют "кладбищенской спиралью". Первые меры, направленные

Полезные сервисы