Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

черенковский счётчик

Энциклопедический словарь

Орфографический словарь

Полезные сервисы

черенковский счетчик

детекторы частиц

Энциклопедия Кольера

ДЕТЕКТОРЫ ЧАСТИЦ - приборы для регистрации атомных и субатомных частиц. Чтобы частица была зарегистрирована, она должна взаимодействовать с материалом детектора. Простейшие детекторы ("счетчики") регистрируют только сам факт попадания частицы в детектор; более сложные позволяют также определить тип частицы, ее энергию, направление движения и т.д. Взаимодействие с материалом детектора чаще всего сводится к процессу ионизации - отрыву электронов от некоторых атомов материала детектора, в результате чего они приобретают электрический заряд. Регистрируется либо непосредственно ионизация, либо связанные с ней явления - испускание света, а также фазовые или химические превращения.

Взаимодействие частиц с веществом. Проходя сквозь вещество, частица сталкивается с атомами этого вещества. Число столкновений зависит в основном от электрического заряда и скорости частицы. Масса частицы и природа самого вещества играют лишь второстепенную роль. При каждом столкновении существует некоторая вероятность того, что атом потеряет электрон и превратится в положительно заряженный ион. Поэтому частица, движущаяся в веществе, оставляет за собой след из электронов и положительных ионов. Этот процесс, называемый ионизацией, схематически изображен на рис. 1. Например, очень быстрый протон (скорость которого близка к скорости света) при движении в воде оставляет на каждом сантиметре пути примерно 70 000 пар электронов и положительных ионов. Одновременно с ионизацией атомы при столкновении могут излучать свет или приобретать импульс, что ведет к нагреву вещества и возникновению в нем разного рода дефектов. Любое из этих явлений может использоваться в детекторе частиц.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 1. <a href='/dict/ионизация' class='wordLink' target='_blank'>ИОНИЗАЦИЯ</a> - <a href='/dict/взаимодействие' class='wordLink' target='_blank'>взаимодействие</a>, на <a href='/dict/котором' class='wordLink' target='_blank'>котором</a> <a href='/dict/основано' class='wordLink' target='_blank'>основано</a> <a href='/dict/большинство' class='wordLink' target='_blank'>большинство</a> <a href='/dict/детекторов' class='wordLink' target='_blank'>детекторов</a> <a href='/dict/частиц' class='wordLink' target='_blank'>частиц</a>. <a href='/dict/положительно' class='wordLink' target='_blank'>Положительно</a> <a href='/dict/заряженная' class='wordLink' target='_blank'>заряженная</a> <a href='/dict/частица' class='wordLink' target='_blank'>частица</a> (<a href='/dict/слева' class='wordLink' target='_blank'>слева</a>) <a href='/dict/приближается' class='wordLink' target='_blank'>приближается</a> к <a href='/dict/нейтральному' class='wordLink' target='_blank'>нейтральному</a> <a href='/dict/атому' class='wordLink' target='_blank'>атому</a>, <a href='/dict/который' class='wordLink' target='_blank'>который</a> <a href='/dict/представляет' class='wordLink' target='_blank'>представляет</a> <a href='/dict/собой' class='wordLink' target='_blank'>собой</a> <a href='/dict/положительно' class='wordLink' target='_blank'>положительно</a> <a href='/dict/заряженное' class='wordLink' target='_blank'>заряженное</a> <a href='/dict/ядро' class='wordLink' target='_blank'>ядро</a>, <a href='/dict/окруженное' class='wordLink' target='_blank'>окруженное</a> <a href='/dict/облаком' class='wordLink' target='_blank'>облаком</a> <a href='/dict/отрицательно' class='wordLink' target='_blank'>отрицательно</a> <a href='/dict/заряженных' class='wordLink' target='_blank'>заряженных</a> <a href='/dict/электронов' class='wordLink' target='_blank'>электронов</a>.

Частица притягивает электроны атома (посередине), что приводит к разделению зарядов. Если она достаточно долго находится вблизи атома, то из него вырывается электрон (вверху справа). В результате образуется положительный ион - атом, у которого положительный заряд ядра больше отрицательного заряда электронного облака.">

Рис. 1. ИОНИЗАЦИЯ - взаимодействие, на котором основано большинство детекторов частиц. Положительно заряженная частица (слева) приближается к нейтральному атому, который представляет собой положительно заряженное ядро, окруженное облаком отрицательно заряженных электронов. Частица притягивает электроны атома (посередине), что приводит к разделению зарядов. Если она достаточно долго находится вблизи атома, то из него вырывается электрон (вверху справа). В результате образуется положительный ион - атом, у которого положительный заряд ядра больше отрицательного заряда электронного облака.

ТИПЫ ДЕТЕКТОРОВ

Ионизационные приборы. Действие ионизационной камеры основано на сбореформе электрического тока) ионов, образующихся при прохождении через камеру заряженных частиц. Схема прибора представлена на рис. 2. Электрический ток, возникающий в результате ионизации, дается выражением i = nq/t, где n - число образовавшихся ионов, q - электрический заряд каждого иона, а t - время, необходимое для того, чтобы собрать ионы. Ток можно преобразовать в падение напряжения, разряжая заряженный им конденсатор или пропуская его через резистор. Ток, создаваемый одной частицей, составляет обычно доли микроампера, а падение напряжения измеряется милливольтами. Полные потери энергии частицы при прохождении ее через камеру даются формулой E = nk, где n - число образованных ионов, которое можно определить по току или падению напряжения в камере, а k - средняя энергия, необходимая для образования одной пары ионов. Величина k для обычных газов составляет около 30 эВ (1 эВ есть энергия, которую приобретает электрон, проходя ускоряющую разность потенциалов 1 В.) Образование ионных пар - случайный процесс, а поэтому возможны флуктуации числа n порядка . Все измеренные величины, основанные на показаниях счетчика, тоже будут обнаруживать флуктуации, и поэтому точность таких измерений повышается с увеличением их длительности. .

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 2. <a href='/dict/схема' class='wordLink' target='_blank'>СХЕМА</a> <a href='/dict/ионизационной' class='wordLink' target='_blank'>ИОНИЗАЦИОННОЙ</a> <a href='/dict/камеры' class='wordLink' target='_blank'>КАМЕРЫ</a>, <a href='/dict/которая' class='wordLink' target='_blank'>которая</a> <a href='/dict/собирает' class='wordLink' target='_blank'>собирает</a> <a href='/dict/ионы' class='wordLink' target='_blank'>ионы</a>, <a href='/dict/возникающие' class='wordLink' target='_blank'>возникающие</a> в <a href='/dict/результате' class='wordLink' target='_blank'>результате</a> <a href='/dict/ионизации' class='wordLink' target='_blank'>ионизации</a> <a href='/dict/газа' class='wordLink' target='_blank'>газа</a>. На <a href='/dict/два' class='wordLink' target='_blank'>два</a> <a href='/dict/проводящих' class='wordLink' target='_blank'>проводящих</a> <a href='/dict/электрода' class='wordLink' target='_blank'>электрода</a>, <a href='/dict/катод' class='wordLink' target='_blank'>катод</a> и <a href='/dict/анод' class='wordLink' target='_blank'>анод</a>, <a href='/dict/подано' class='wordLink' target='_blank'>подано</a> <a href='/dict/высокое' class='wordLink' target='_blank'>высокое</a> <a href='/dict/напряжение' class='wordLink' target='_blank'>напряжение</a>. <a href='/dict/частица' class='wordLink' target='_blank'>Частица</a>, <a href='/dict/пролетающая' class='wordLink' target='_blank'>пролетающая</a> <a href='/dict/сквозь' class='wordLink' target='_blank'>сквозь</a> <a href='/dict/газ' class='wordLink' target='_blank'>газ</a>, <a href='/dict/создает' class='wordLink' target='_blank'>создает</a> <a href='/dict/ионы' class='wordLink' target='_blank'>ионы</a>, <a href='/dict/при' class='wordLink' target='_blank'>при</a> <a href='/dict/этом' class='wordLink' target='_blank'>этом</a> <a href='/dict/положительные' class='wordLink' target='_blank'>положительные</a> <a href='/dict/ионы' class='wordLink' target='_blank'>ионы</a> <a href='/dict/движутся' class='wordLink' target='_blank'>движутся</a> к <a href='/dict/катоду' class='wordLink' target='_blank'>катоду</a>, а <a href='/dict/отрицательные' class='wordLink' target='_blank'>отрицательные</a> - к <a href='/dict/аноду' class='wordLink' target='_blank'>аноду</a>.

Рис. 2. СХЕМА ИОНИЗАЦИОННОЙ КАМЕРЫ, которая собирает ионы, возникающие в результате ионизации газа. На два проводящих электрода, катод и анод, подано высокое напряжение. Частица, пролетающая сквозь газ, создает ионы, при этом положительные ионы движутся к катоду, а отрицательные - к аноду.

Основное требование к чувствительному веществу ионизационных приборов состоит в том, чтобы ионы, создаваемые излучением, с большой вероятностью достигали собирающих электродов. Кроме того, это вещество должно обладать высоким удельным сопротивлением, чтобы в нем не было других токов, кроме связанных с ионизацией. Для этих целей хорошо подходят газы, особенно инертные, такие, как гелий и аргон, но можно использовать и другие диэлектрики. Твердотельными аналогами ионизационной камеры являются полупроводниковые детекторы. Подобный прибор с p - n-переходом показан на рис. 3. Для создания перехода в полупроводник (обычно кристалл германия или кремния, по удельному сопротивлению занимающих промежуточное положение между металлами и диэлектриками) вводят небольшие количества определенных примесей. Благодаря этому в области перехода возникает электрическое поле, а при наложении дополнительного внешнего поля образуется обедненная область, в которой отсутствуют свободные носители заряда, необходимые для создания электрического тока. Но если через обедненную область проходит ионизующая частица, в ней возникают свободные носители (электроны и "дырки"), движение которых и создает ток. Средняя энергия, необходимая для образования пары носителей заряда в полупроводниковом детекторе, составляет примерно 3 эВ, тогда как в газовом - 30 эВ. Следовательно, при одинаковых потерях энергии в полупроводниковом детекторе возникает электрический сигнал, в 10 раз превышающий сигнал ионизационной камеры. Соответственно этому возрастает и точность, с которой измеряются потери энергии.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 3. <a href='/dict/полупроводниковый' class='wordLink' target='_blank'>ПОЛУПРОВОДНИКОВЫЙ</a> <a href='/dict/детектор' class='wordLink' target='_blank'>ДЕТЕКТОР</a> <a href='/dict/представляет' class='wordLink' target='_blank'>представляет</a> <a href='/dict/собой' class='wordLink' target='_blank'>собой</a> <a href='/dict/твердотельный' class='wordLink' target='_blank'>твердотельный</a> <a href='/dict/электронный' class='wordLink' target='_blank'>электронный</a> <a href='/dict/прибор' class='wordLink' target='_blank'>прибор</a>. <a href='/dict/обратное' class='wordLink' target='_blank'>Обратное</a> <a href='/dict/напряжение' class='wordLink' target='_blank'>напряжение</a>, <a href='/dict/приложенное' class='wordLink' target='_blank'>приложенное</a> к p - n-<a href='/dict/переходу' class='wordLink' target='_blank'>переходу</a>, <a href='/dict/удаляет' class='wordLink' target='_blank'>удаляет</a> <a href='/dict/свободные' class='wordLink' target='_blank'>свободные</a> <a href='/dict/носители' class='wordLink' target='_blank'>носители</a>, <a href='/dict/создавая' class='wordLink' target='_blank'>создавая</a> <a href='/dict/обедненную' class='wordLink' target='_blank'>обедненную</a> <a href='/dict/область' class='wordLink' target='_blank'>область</a>. <a href='/dict/при' class='wordLink' target='_blank'>При</a> <a href='/dict/прохождении' class='wordLink' target='_blank'>прохождении</a> <a href='/dict/через' class='wordLink' target='_blank'>через</a> <a href='/dict/эту' class='wordLink' target='_blank'>эту</a> <a href='/dict/область' class='wordLink' target='_blank'>область</a> <a href='/dict/ионизующей' class='wordLink' target='_blank'>ионизующей</a> <a href='/dict/частицы' class='wordLink' target='_blank'>частицы</a> <a href='/dict/возникают' class='wordLink' target='_blank'>возникают</a> <a href='/dict/свободные' class='wordLink' target='_blank'>свободные</a> <a href='/dict/носители' class='wordLink' target='_blank'>носители</a> <a href='/dict/заряда' class='wordLink' target='_blank'>заряда</a>, <a href='/dict/которые' class='wordLink' target='_blank'>которые</a> <a href='/dict/диффундируют' class='wordLink' target='_blank'>диффундируют</a> в <a href='/dict/противоположных' class='wordLink' target='_blank'>противоположных</a> <a href='/dict/направлениях' class='wordLink' target='_blank'>направлениях</a>, <a href='/dict/создавая' class='wordLink' target='_blank'>создавая</a> <a href='/dict/электрический' class='wordLink' target='_blank'>электрический</a> <abbr>ток.</abbr>

Рис. 3. ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР представляет собой твердотельный электронный прибор. Обратное напряжение, приложенное к p - n-переходу, удаляет свободные носители, создавая обедненную область. При прохождении через эту область ионизующей частицы возникают свободные носители заряда, которые диффундируют в противоположных направлениях, создавая электрический ток.

Полупроводниковые детекторы во многом аналогичны полупроводниковым диодам, которые тоже представляют собой полупроводниковые приборы с p - n-переходом. Однако их конструкция имеет свои особенности. Один из широко распространенных типов детекторов, поверхностно-барьерный, изготавливается путем нанесения тонкого слоя золота на кремний или германий. Он имеет вид круглой пластинки диаметром около 1 см с обедненным слоем толщиной менее 1 мм. Такие детекторы применяются для измерения полной энергии сильно ионизующих частиц, например альфа-частиц и протонов с низкой энергией. Благодаря большому сигналу, отвечающему одному акту ионизации, такие приборы измеряют энергию частиц точнее детекторов всех других типов. Кроме того, благодаря небольшим размерам и простоте в обращении они идеально подходят для космических экспериментов. Еще один тип полупроводникового детектора - литий-дрейфовый детектор с p - i - n-переходом - изготавливается методом диффузии ионов лития в полупроводниковый материал (германий или кремний). Это дает возможность получать обедненные области толщиной в несколько сантиметров и создавать детекторы значительно больших размеров, чем поверхностно-барьерные. Такие детекторы применяются для регистрации частиц с большими энергиями, а также рентгеновского и гамма-излучения, сравнительно слабо взаимодействующего с веществом.

Пропорциональные счетчики и счетчики Гейгера. Серьезным недостатком полупроводниковых детекторов и ионизационных камер является малый ток, создаваемый в них ионизующей частицей. Он настолько мал, что для его измерения необходимы электронные усилители с большими коэффициентами усиления. Но если увеличить высокое напряжение на ионизационной камере, то электроны, возникающие при первичной ионизации, будут приобретать энергию, достаточную для вторичной ионизации, что приведет к увеличению сигнала. Детектор, работающий в таком режиме, называют пропорциональным счетчиком, поскольку импульсы напряжения, снимаемые со счетчика, пропорциональны числу первоначально возникших ионов. Число вторичных ионов, создаваемых в среднем каждым первичным ионом, зависит от напряженности электрического поля в счетчике. В плоскопараллельной камере электрическое поле однородно и его напряженность равна разности потенциалов между пластинами, деленной на расстояние между ними. В такой геометрии трудно получить поля с высокой напряженностью, необходимые для вторичной ионизации. В камерах же с центральной нитью в качестве анода, окруженной цилиндрическим катодом, поле неравномерно и увеличивается вблизи анода. В такой геометрии удается достичь коэффициента усиления в несколько тысяч. При повышении напряжения на пропорциональном счетчике коэффициент усиления сигнала не возрастает до бесконечности. С какого-то момента сигнал счетчика перестает быть пропорциональным первичной ионизации и ненамного увеличивается с повышением напряжения. Прибор, работающий в таком режиме, называется счетчиком Гейгера. По конструкции он сходен с пропорциональным счетчиком. Более того, можно сконструировать счетчик, который будет работать либо как ионизационная камера, либо как пропорциональный счетчик, либо как счетчик Гейгера в зависимости от напряжения, приложенного между катодом и анодом. Импульс тока, возникающий в счетчике Гейгера после прохождения заряженной частицы, сходен с электрическим искровым разрядом. Как и в других ионизационных приборах, основной вклад в ток вносят электроны. Присутствующие при этом в больших количествах положительные ионы электрически экранируют анод от катода и тем самым ослабляют поле, действующее на электроны. С увеличением тока экранирование усиливается и достигается насыщение, ограничивающее максимальный ток. Одновременно с насыщением протекает другой процесс - распространение разряда по всему объему счетчика Гейгера. Он обусловлен свечением разряда, свет которого производит в счетчике дополнительную ионизацию за счет фотоэффекта. Повсюду, где происходит фотоионизация, возникает новый разряд. В конечном итоге сигнал уже не зависит от первичной ионизации и может достигать 100 В. Таким образом, разряд усиливает первичный сигнал более чем в миллион раз. Для гашения разряда в счетчике Гейгера приходится принимать особые меры. Можно уменьшить внешнее напряжение и поддерживать его ниже уровня, при котором возможен устойчивый разряд, пока все ионы не будут выведены из объема счетчика. Более простой способ - ввести в счетчик пар, которые поглощали бы свет, испускаемый разрядом, и рассеивали энергию не за счет фотоэффекта, а, например, за счет диссоциации. Для этого обычно добавляют газообразные галогены (промышленность выпускает, как правило, счетчики именно такого типа). Пропорциональные счетчики можно использовать для измерения низкой энергии излучения, например электронов или рентгеновского излучения. Счетчик Гейгера лишь фиксирует появление частицы. Иначе говоря, при наличии излучений разных видов счетчик Гейгера дает лишь общее число частиц, прошедших через детектор, а пропорциональный счетчик позволяет анализировать излучение по его виду и энергии. Такими же возможностями обладают и полупроводниковые детекторы, а также многие из рассматриваемых ниже детекторов других типов.

Сцинтилляционные и черенковские счетчики. Испускание света некоторыми веществами при прохождении сквозь них быстрых заряженных частиц называют сцинтилляцией. На долю испускаемого света может приходиться 5-10% всей энергии, теряемой частицами. Его испускание - частный случай люминесценции - обусловлено атомной структурой вещества, сквозь которое проходит частица. На регистрации света, испускаемого средой при прохождении через нее частицы, основаны сцинтилляционные счетчики. В современных сцинтилляционных счетчиках, появившихся примерно в 1947, для регистрации сцинтилляций используются фотоэлектронные умножители (ФЭУ), преобразующие вспышку света в электрический сигнал и одновременно усиливающие этот сигнал. Сцинтилляционный счетчик с ФЭУ схематически изображен на рис. 4.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 4. <a href='/dict/сцинтилляционный' class='wordLink' target='_blank'>СЦИНТИЛЛЯЦИОННЫЙ</a> <a href='/dict/счетчик' class='wordLink' target='_blank'>СЧЕТЧИК</a> <a href='/dict/регистрирует' class='wordLink' target='_blank'>регистрирует</a> <a href='/dict/частицы' class='wordLink' target='_blank'>частицы</a> по <a href='/dict/световому' class='wordLink' target='_blank'>световому</a> <a href='/dict/излучению' class='wordLink' target='_blank'>излучению</a>, <a href='/dict/вызываемому' class='wordLink' target='_blank'>вызываемому</a> <a href='/dict/ими' class='wordLink' target='_blank'>ими</a> в <a href='/dict/кристалле' class='wordLink' target='_blank'>кристалле</a>. <a href='/dict/часть' class='wordLink' target='_blank'>Часть</a> <a href='/dict/светового' class='wordLink' target='_blank'>светового</a> <a href='/dict/излучения' class='wordLink' target='_blank'>излучения</a> <a href='/dict/попадает' class='wordLink' target='_blank'>попадает</a> в <a href='/dict/световод' class='wordLink' target='_blank'>световод</a>. <a href='/dict/свет' class='wordLink' target='_blank'>Свет</a> <a href='/dict/выбивает' class='wordLink' target='_blank'>выбивает</a> из <a href='/dict/фотокатода' class='wordLink' target='_blank'>фотокатода</a> <a href='/dict/фотоэлектронного' class='wordLink' target='_blank'>фотоэлектронного</a> <a href='/dict/умножителя' class='wordLink' target='_blank'>умножителя</a> <a href='/dict/электроны' class='wordLink' target='_blank'>электроны</a>, <a href='/dict/которые' class='wordLink' target='_blank'>которые</a> <a href='/dict/ускоряются' class='wordLink' target='_blank'>ускоряются</a> и <a href='/dict/умножаются' class='wordLink' target='_blank'>умножаются</a> <a href='/dict/системой' class='wordLink' target='_blank'>системой</a> <a href='/dict/его' class='wordLink' target='_blank'>его</a> <a href='/dict/динодов' class='wordLink' target='_blank'>динодов</a>, <a href='/dict/создавая' class='wordLink' target='_blank'>создавая</a> <a href='/dict/ток' class='wordLink' target='_blank'>ток</a>, <a href='/dict/который' class='wordLink' target='_blank'>который</a> <a href='/dict/дополнительно' class='wordLink' target='_blank'>дополнительно</a> <a href='/dict/усиливается' class='wordLink' target='_blank'>усиливается</a>.

Рис. 4. СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК регистрирует частицы по световому излучению, вызываемому ими в кристалле. Часть светового излучения попадает в световод. Свет выбивает из фотокатода фотоэлектронного умножителя электроны, которые ускоряются и умножаются системой его динодов, создавая ток, который дополнительно усиливается.

При выборе сцинтиллирующего вещества встает вопрос о сборе света из кристалла. Известно, что вещества, испускающие свет определенной частоты, поглощают свет той же частоты. Поэтому в очень чистом кристалле сцинтилляционное свечение будет непрерывно поглощаться и вновь испускаться атомами кристалла, пока свет не выйдет наружу через поверхность кристалла или же не будет поглощен в виде тепла. Последнее чаще всего происходит в кристаллах достаточно больших размеров, и по этой причине чистые кристаллы оказываются плохими сцинтилляторами. Ситуация значительно улучшается при введении специальных примесей. Такие активирующие примеси, смещающие длину волны, поглотив свет, испускают его с несколько большей длиной волны, благодаря чему он может выйти наружу. Из неорганических кристаллов обычно используют иодиды натрия и цезия, активированные таллием. Успешно применяются в роли сцинтилляторов также активированные пластмассы и органические жидкости. Типичным примером может служить полистирол, активированный пара-терфенилом. Применяются и некоторые чистые органические кристаллы. У сцинтилляционных счетчиков имеется ряд преимуществ перед другими детекторами частиц. Твердые и жидкие сцинтилляционные материалы в тысячи раз плотнее газов, используемых в ионизационных счетчиках. Соответственно этому значительно возрастают потери энергии ионизующей частицей на единицу длины и сигнал. Кроме того, ФЭУ обеспечивают такое усиление первичного сигнала, которого не достичь с помощью электронных схем. К тому же длительность сигнала на выходе сцинтилляционного счетчика может составлять всего лишь 10-9 с, тогда как от ионизационной камеры удается в лучшем случае получить сигнал длительностью примерно 10-7 с. Сигнал на выходе сцинтилляционного счетчика, как и у ионизационных приборов, пропорционален энергии, теряемой падающей частицей в веществе сцинтиллятора. Эта энергия может достигать нескольких сотен мегаэлектронвольт и представлять собой полную кинетическую энергию падающей частицы. Сигнал от счетчика можно также использовать для измерения временнх интервалов между моментами появления разных частиц. Примером может служить измерение среднего времени жизни нестабильных частиц, таких, как p- или К-мезон. Суть эксперимента - в регистрации временнго интервала между сигналом счетчика, соответствующим попаданию в него мезона, и сигналом, соответствующим появлению продукта распада. Время жизни p-мезона примерно 25Ч10-9 с, и для точного его измерения нужен счетчик с гораздо меньшим временем отклика. Сцинтилляционные счетчики широко применяются в экспериментах с пучками частиц в ускорителях на высокие энергии. Такие пучки обычно состоят из сгустков частиц, и чтобы выделить в этих сгустках отдельные частицы, необходимо высокое "временне разрешение" (малое время отклика), обеспечиваемое сцинтилляционными счетчиками. Используя в качестве сцинтилляционных материалов обычные органические жидкости и пластмассы, можно изготавливать счетчики практически любых размеров и форм. Для экспериментов с космическими лучами, где потоки частиц крайне малы, создаются гигантские системы детекторов, содержащие тонны чувствительных материалов. Столь же огромное количество вещества используется для регистрации нейтрино, нейтральных частиц, вероятность взаимодействия которых с веществом исключительно мала. В эксперименте может использоваться и система из большого числа отдельных сцинтилляционных счетчиков. В таких случаях они зачастую выполняют ту же роль, что и счетчики Гейгера, т.е. служат индикаторами наличия частиц. Сцинтилляционные счетчики могут работать значительно надежнее счетчиков Гейгера и благодаря своему высокому временнму разрешению точно регистрировать гораздо более интенсивные потоки частиц. Черенковский счетчик представляет собой детектор, внешне сходный со сцинтилляционным счетчиком. Он регистрирует так называемое черенковское излучение - свечение, испускаемое заряженной частицей, которая движется в среде со скоростью, превышающей скорость света в этой среде. Это явление аналогично ударной волне, возникающей в воздухе, когда снаряд летит быстрее звука. В любой преломляющей среде скорость света равна с/n, где с - скорость света в пустоте (3*10 8 м/с), а n - показатель преломления среды. Таким образом, в стекле, показатель преломления которого равен 1,5, скорость света составляет всего лишь 2*10 8 м/c. Любая частица, движущаяся в стекле с большей скоростью, будет испускать черенковское излучение. (Здесь нет противоречия с частной теорией относительности, согласно которой скорость любой частицы, независимо от среды, в которой она движется, не может превышать скорость света в пустоте.) Поэтому черенковский счетчик, чувствительное вещество которого имеет показатель преломления n, будет реагировать на частицы, скорости которых превышают с/n. Интенсивность свечения пропорциональна величине (1 - v2/c2n2), которая равна нулю при пороговом значении скорости с/n и быстро возрастает до максимального значения, когда скорость v регистрируемой частицы приближается к скорости света с. Особенность черенковского излучения состоит в том, что оно сосредоточено в переднем конусе относительно направления движения частицы. Угол при вершине конуса дается выражением cosq = v/cn. Используя эту зависимость угла испускания от скорости, можно сконструировать счетчик, на катоде ФЭУ которого будет фокусироваться только излучение частиц, движущихся с определенной скоростью. Световая вспышка черенковского излучения по интенсивности примерно в 100 раз слабее сцинтилляции. Поэтому при выборе чувствительного вещества для черенковского счетчика приходится ограничиваться материалами, в которых не происходят сцинтилляции. Обычно это вода и оргстекло. Для регистрации частиц со скоростями, приближающимися к скорости света, используются газы, показатель преломления которых очень близок к 1. Например, черенковский счетчик с воздухом при атмосферном давлении будет реагировать лишь на частицы со скоростями не менее 0,9997 с. Используется и зависимость сигнала черенковских счетчиков от скорости. Появление сигнала свидетельствует о прохождении заряженной частицы со скоростью, превышающей пороговую, а схема с двумя счетчиками позволяет выделить частицы, лежащие в узком интервале скоростей. Это дает возможность исследовать спектр частиц с высокими скоростями, а не только регистрировать их появление. Выходной сигнал сцинтилляционного счетчика, как и любого ионизационного прибора, почти постоянен для всех частиц со скоростями выше 2*10 8 м/с (0,67 скорости света). Детекторы нейтронов и гамма-квантов. Ионизационные приборы, сцинтилляционные и черенковские счетчики непосредственно реагируют только на заряженные частицы. Нейтральные же частицы, например нейтроны и гамма-кванты, должны сначала как-то подействовать на вещество, чтобы возникли заряженные частицы, на которые может реагировать счетчик. При взаимодействии гамма-излучения с веществом электроны возникают за счет фотоэффекта, комптон-эффекта или рождения электронно-позитронных пар. Фотоэффект - это процесс, обратный испусканию света: гамма-квант поглощается атомом, из которого вылетает электрон с той же энергией, что и у гамма-кванта, за вычетом энергии связи электрона в атоме. Фотоэффект значителен при энергии гамма-квантов, меньшей примерно 1 МэВ. Комптон-эффект - это рассеяние гамма-квантов на электронах. При этом электрон выбивается из атома и приобретает кинетическую энергию в диапазоне от нуля до почти полной энергии гамма-кванта. Этот процесс играет важную роль в области энергий порядка 1 МэВ и для веществ с малым атомным номером, таких, как углерод. Рождение пар происходит в результате взаимодействия гамма-кванта с сильным электрическим полем вблизи ядра. Полная энергия рождающихся электрона и позитрона (кинетическая энергия + энергия покоя) равна энергии гамма-кванта. Рождение пар не происходит при энергиях ниже 1 МэВ. При более высоких энергиях оно доминирует, особенно в веществах с большими атомными номерами, такими, как свинец. Главная задача при регистрации гамма-квантов - найти вещество, которое легко поглощало бы их и одновременно было бы чувствительно к испускаемым электронам. Ионизационные приборы сравнительно мало чувствительны к гамма-квантам из-за низкой плотности газового наполнения, хотя в какой-то степени преобразование происходит в стенках счетчика. Наиболее подходящими приборами для регистрации гамма-квантов и измерения их энергии оказались сцинтилляционные счетчики с кристаллами высокой плотности, содержащими элементы с большими атомными номерами. Сравнительно небольшие кристаллы иодида натрия дают почти 100%-ную эффективность регистрации гамма-квантов в широком диапазоне энергий. В равной степени подходят и другие сцинтилляционные материалы. Их выбор обычно зависит от исследуемого излучения. Черенковские счетчики тоже применяются для регистрации гамма-квантов, особенно в области высоких энергий. При этом в качестве черенковских излучателей широко применяются свинцовое стекло и бромоформ. Нейтроны - незаряженные ядерные частицы, поэтому они взаимодействуют с веществом лишь в прямых столкновениях с ядрами его атомов. При столкновении с ядром водорода (протоном) нейтрон может передать всю свою энергию протону, который, будучи заряженной частицей, может быть зарегистрирован обычным способом. Такой процесс, называемый упругим рассеянием, широко используется для регистрации нейтронов с энергиями, превышающими примерно 0,1 МэВ. Благодаря высокому содержанию водорода сцинтилляционные пластмассы и жидкости пригодны для регистрации нейтронов с эффективностью 10-20%. Иногда под действием нейтронов происходят ядерные реакции с испусканием заряженных частиц или гамма-квантов. Некоторые из таких реакций отличаются исключительно большой вероятностью, особенно при энергиях нейтронов порядка 1 эВ. Примером может служить реакция с бором, сопровождающаяся испусканием альфа-частиц. Поэтому высокую эффективность регистрации нейтронов обеспечивает счетчик Гейгера, наполненный трифторидом бора. Еще один пример такой реакции - деление ядер. Применяются ионизационные камеры с внутренним слоем делящего материала, такого, как уран-235. По большому энерговыделению, характерному для деления ядер, можно выявлять нейтроны на фоне других частиц. Регистрацию нейтронов часто осложняют трудности отделения нейтронов от гамма-излучения. У детекторов медленных нейтронов эффективность регистрации нейтронов, как правило, гораздо выше, чем для гамма-излучения. Но у используемых для регистрации быстрых нейтронов сцинтилляционных счетчиков эффективность обычно примерно одинакова в обоих случаях. Нейтроны можно отличить по форме регистрируемого импульса, поскольку в случае нейтрона импульс оказывается более широким во времени. Но это различие невелико и для его выявления требуется довольно сложная электроника.

Камеры Вильсона и пузырьковые камеры. При подходящих условиях ионизация, произведенная в веществе заряженной частицей, может вызвать в нем фазовый переход. В так называемой камере Вильсона используется конденсация жидкости из пара. Прибор был изобретен в 1912 Ч.Вильсоном, в течение многих лет исследовавшим физику образования облаков в атмосфере. Вильсон установил, что пересыщенный пар конденсируется в капельки вокруг центров зародышеобразования, которыми служат положительные и отрицательные ионы. Проходя через перенасыщенный пар, заряженная частица оставляет за собой след из капелек. За 1 мс капельки вырастают до видимых размеров. Пузырьковую камеру изобрел и усовершенствовал в начале 1950-х годов Д.Глейзер. Исходя из аналогии с камерой Вильсона, он нашел иной фазовый переход, который тоже позволяет визуализировать следы частиц. В его приборе используется перегретая жидкость, которая вскипает вблизи центров зародышеобразования, которыми служат ионы. Проходя через такую жидкость, частица оставляет за собой след из пузырьков. Оба эти прибора принесли их создателям Нобелевские премии и дали исследователям возможность почти что "воочию" наблюдать ядерные явления. Пузырьковые камеры и камеры Вильсона позволяют видеть следы частиц. Это означает, что положение частицы может быть определено с точностью до размера видимой капельки или пузырька, т.е. примерно до 1 мм. Камеры часто помещают в магнитное поле. Это приводит к искривлению траекторий заряженных частиц, обратно пропорциональному их импульсу. При этом положительно заряженные частицы отклоняются в одном направлении, а отрицательно заряженные - в другом. Таким образом, в дополнение к пространственной картине, которую дают эти приборы, они позволяют измерить импульс частицы и определить знак ее заряда.

Ядерные эмульсии. Фотоэмульсии как детекторы частиц в какой-то мере аналогичны камере Вильсона и пузырьковой камере. Впервые их применил английский физик С.Пауэлл для изучения космических лучей. Фотоэмульсия представляет собой слой желатины с диспергированными в ней зернами бромида серебра. Под действием света в зернах бромида серебра образуются центры скрытого изображения, способствующие восстановлению бромида серебра до металлического серебра при проявлении обычным фотографическим проявителем. Физический механизм образования этих центров состоит в образовании атомов металлического серебра за счет фотоэффекта. Ионизация, производимая заряженными частицами, дает такой же результат: возникает след из сенсибилизированных зерен, который после проявления можно видеть под микроскопом. Большие потоки ионизующего и неионизующего излучения вызывают вуалирование эмульсии, видимое простым глазом, как на обычных рентгеновских снимках. Методика ядерных эмульсий наиболее привлекательна тем, что они довольно компактны. Эмульсии, почти такие же, как и в фотографии, поставляются в виде листков толщиной 0,1 мм. Отдельные листки складывают в стопки нужного объема (характерный размер - порядка десятков сантиметров). После облучения в потоке частиц стопки разделяют на листки для проявления и анализа. Благодаря большой концентрации серебра плотность фотоэмульсий довольно велика, а поэтому потери энергии ионизующих частиц даже на сравнительно небольшом пробеге в эмульсии могут достигать сотен мегаэлектронвольт. Ширина следа частицы составляет лишь несколько микрометров, что позволяет измерять положение частицы с гораздо большей точностью, чем в пузырьковой камере и камере Вильсона. Плотность следа (число почерневших зерен на единицу его длины) прямо пропорциональна ионизации, производимой падающей частицей и, следовательно, зависит от ее скорости. Кроме того, в результате многочисленных столкновений с атомами эмульсии траектория частицы обнаруживает отклонения. По результатам измерения плотности следа и его отклонений можно определить массу частицы, оставившей след, а тем самым идентифицировать ее. Путем таких же измерений можно определить заряд частицы. Так были обнаружены ядра железа с высокой энергией в космических лучах.

Искровые камеры. Искровая камера представляет собой набор параллельных проводящих пластин, разделенных газом и электрически изолированных друг от друга. Заряженная частица, проходящая через камеру, создает ионы в газе между пластинами. Возникающий при этом импульс запускает внешнюю схему, которая подает на чередующиеся пластины импульс высокого напряжения порядка 10 000 В. В момент подачи этого импульса пары пластин камеры действуют как счетчики Гейгера, и в тех местах, где прошла частица, проскакивают искры. Искры хорошо видныслышны).

Твердотельные трековые детекторы. Проходя сквозь вещество, частицы могут буквально "расталкивать" атомы на своем пути и оставлять за собой след, видимый в электронном микроскопе. Впервые подобные треки наблюдались в слюде. Эти слабые следы можно выявлять селективно разъедающими материал агрессивными средами. След от частицы возникает, только если она создает на своем пути много ионов. Поэтому такие ядерные частицы, как протоны и альфа-частицы, не оставляют следов. Видимыми будут лишь треки целых ядер (например, ядер железа) и осколков их деления. Специфика таких детекторов определяется их чувствительностью к очень тяжелым частицам, а также способностью сохранять следы событий, произошедших в далекой древности. Для исследования космических лучей большие листы пластиков поднимают на стратостатах. Таким способом регистрировались ядра урана и других тяжелых элементов, проникающие с первичным космическим излучением в земную атмосферу. Треки в минералах позволяют точно определить их возраст. Этим методом исследовались породы не только земного, но и метеоритного, а также лунного происхождения.

См. также

УСКОРИТЕЛЬ ЧАСТИЦ;

ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ.

ЛИТЕРАТУРА

Клайнкнехт К. Детекторы корпускулярных излучений. М., 1990

Полезные сервисы

черенкова - вавилова излучение

Энциклопедический словарь

ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ - ЧЕРЕНКО́ВА - ВАВИ́ЛОВА ИЗЛУЧЕ́НИЕ (эффект Вавилова - Черенкова), возникает при движении в веществе заряженных частиц со скоростью, превышающей фазовую скорость света (см. ФАЗОВАЯ СКОРОСТЬ) в этом веществе.

Обнаружено в 1934 г. П. А. Черенковым (см. ЧЕРЕНКОВ Павел Алексеевич) при исследовании свечения растворов солей урана под действием g-лучей радия. Оказалось, что все чистые прозрачные жидкости при пропускании через них g-лучей начинают светиться. При этом яркость свечения мало зависела от химического состава жидкостей, излучение имело поляризацию с преимущественной ориентацией электрического вектора вдоль направления первичного пучка, и, в отличие от люминесценции (см. ЛЮМИНЕСЦЕНЦИЯ), не наблюдалось ни температурного, ни примесного тушения. С. И. Вавиловым (см. ВАВИЛОВ Сергей Иванович), под руководством которого работал П. А.Черенков, была высказана гипотеза, что свечение связано с движением быстрых электронов, возникающих под действием g-лучей в результате Комптона эффекта (см. КОМПТОНА ЭФФЕКТ), выбиваемых g-квантами радия, а не вызвано люминесценцией жидкости.

Природа излучения была объяснена в 1937 г. И. Е. Таммом (см. ТАММ Игорь Евгеньевич) и И. М. Франком (см. ФРАНК Илья Михайлович). В 1958 г. П. А.Черенков, И. Е.Тамм и И. М .Франк за открытие и объяснение этого эффекта были удостоены Нобелевской премии по физике.

Пока заряженная частица движется со скоростью v < c/n, (с - скорость света в вакууме, а n - показатель преломления света данной среды), она может излучать электромагнитные волны лишь при ускоренном движении. Тамм и Франк показали, что при скорости движения частицы v > c/n, даже двигающейся равномерно, происходит излучение электромагнитных волн.

Условие возникновения излучения Вавилова -Черенкова и его направленность могут быть пояснены с помощью принципа Гюйгенса - Френеля (см. ГЮЙГЕНСА - ФРЕНЕЛЯ ПРИНЦИП). Для этого каждую точку траектории заряженной частицы считают источником волны, возникающей в момент прохождения через нее заряда. Под действием электрического поля движущегося электрона среда поляризуется. Поляризуясь и возвращаясь затем в исходное состояние, атомы среды, расположенные вдоль движения электрона, испускают электромагнитные световые волны. В оптически изотропной среде такие парциальные волны будут сферическими, так как они распространяются во все стороны с одинаковой скоростью u = с/n. Если скорость электрона v меньше скорости распространения света в среде, то электромагнитное поле обгоняет электрон, и вещество успеет поляризоваться в пространстве перед электроном. Так как поляризация среды перед электроном и за ним противоположны по направлению, излучения противоположно поляризованных атомов гасятся. Когда скорость движения электрона в прозрачной среде превышает фазовую скорость распространения света в этой среде, возникает излучение. Это излучение распространяется лишь по направлениям, составляющим острый угол с траекторией частицы, т.е. вдоль образующих конуса, ось которого совпадает с направлением скорости частицы, при этом:

cosq = c/nv.

Скорость света в оптически анизотропных средах зависит от направления его распространения, поэтому парциальные волны в этом случае не являются сферами. Поэтому обыкновенному и необыкновенному лучам будут соответствовать разные конусы, и излучение будет возникать под разными углами к направлению движения частицы.

Излучение Вавилова - Черенкова возникает не только при движении электрона в среде, но и при движении любой заряженной частицы, если она движется быстрее скорости света в этой среде. Для электронов в жидкостях и твердых телах такое условие начинает выполняться уже при энергиях ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ 105 эВ (такие энергии имеют многие электроны радиоактивных процессов). Более тяжелые частицы должны обладать большей энергией, например протон, масса которого в ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ2000 раз больше массы электрона, для достижения необходимой скорости должен обладать энергией ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ 108 эВ (такие протоны можно получить только в современных ускорителях).

На основе эффекта Вавилова - Черенкова разработаны экспериментальные методы исследования, которые широко применяются в ядерной физике как для регистрации частиц, так и для изучения их природы, определения их энергии, знака, заряда. При помощи черенковского счетчика (см. ЧЕРЕНКОВСКИЙ СЧЕТЧИК) был открыт антипротон (см. АНТИПРОТОН).

Полезные сервисы

лазер

Энциклопедический словарь

ЛА́ЗЕР ; м. [англ. laser]

1. Оптический генератор - источник очень узкого и мощного пучка света, имеющего строго определённую длину волны. Импульсный л. Л. непрерывного действия.

2. Луч, получаемый при помощи лазера и используемый практически. Лечение лазером. Сварка лазером.

Ла́зерный, -ая, -ое. Л. луч. Л-ая хирургия. ● Из словосочетания Light Amplification by Stimulated Emission of Radiation (усиление света в результате вынужденного излучения).

* * *

ла́зер (оптический квантовый генератор) (аббревиатура слов английской фразы: Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Существуют газовые лазеры, жидкостные и твердотельные (на диэлектрических кристаллах, стёклах, полупроводниках; смотри Лазерные материалы). В лазере происходит преобразование различных видов энергии в энергию лазерного излучения. Главный элемент лазера - активная среда, для образования которой используют: воздействие света, электрический разряд в газах, химические реакции, бомбардировку электронным пучком и другие методы «накачки». Активная среда расположена между зеркалами, образующими оптический резонатор. Существуют лазеры непрерывного и импульсного действия. Лазеры получили широкое применение в научных исследованияхфизике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология). Лазеры позволили осуществить оптическую связь и локацию, они перспективны для осуществления управляемого термоядерного синтеза.

* * *

ЛАЗЕР - ЛА́ЗЕР (оптический квантовый генератор) (аббревиатура слов английской фразы: Light Amplification by Stimulated Emission of Radiation - усиление света в результате вынужденного излучения), источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Существуют газовые лазеры, жидкостные и твердотельные (на диэлектрических кристаллах, стеклах, полупроводниках; см. Лазерные материалы (см. ЛАЗЕРНЫЕ МАТЕРИАЛЫ)). В лазере происходит преобразование различных видов энергии в энергию лазерного излучения. Главный элемент лазера - активная среда (см. АКТИВНАЯ СРЕДА), для образования которой используют: воздействие света, электрический разряд в газах, химические реакции, бомбардировку электронным пучком и другие методы «накачки». Активная среда расположена между зеркалами, образующими оптический резонатор (см. ОПТИЧЕСКИЙ РЕЗОНАТОР). Существуют лазеры непрерывного и импульсного действия Лазеры получили широкое применение в научных исследованияхфизике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология). Лазеры позволили осуществить оптическую связь и локацию, они перспективны для осуществления управляемого термоядерного синтеза (см. УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ (УТС)).

* * *

ЛА́ЗЕР (оптический квантовый генератор (см. КВАНТОВЫЙ ГЕНЕРАТОР)), устройство, генерирующее электромагнитное излучение в диапазоне длин волн от ультрафиолета (УФ, порядка 0,1 нм) до субмиллиметрового инфракрасного (ИК) за счет вынужденного испускания или рассеяния света активной средой, помещенной в оптический резонатор. Название представляет собой аббревиатуру английской фразы «Light Amplification by Stimulated Emission of Radiation» (усиление света за счет вынужденного излучения). Первыми приборами этого типа были квантовые генераторы коротких радиоволн, получившие название мазеры (та же аббревиатура с заменой «light» на «microwave» - микроволны).

В советской литературе употреблялся также термин «оптический квантовый генератор» (ОКГ).

Принцип работы лазера

Атомы вещества, поглощая энергию, например, при нагревании вещества, переходят в возбужденное состояние. Их электроны поднимаются на верхний энергетический уровень E1; через какое-то время они вновь опускаются на основной уровень E0, отдавая энергию в виде квантов электромагнитного излучения. Частота излучения определяется разностью энергий этих двух уровней:

E1 - E0 = h,

где h- постоянная Планка (см. ПЛАНКА ПОСТОЯННАЯ), - частота излученного фотона (см. ФОТОН (элементарная частица)).

В обычной среде излучение отдельных атомов происходит самопроизвольно, независимо друг от друга, в разные моменты времени и в разных направлениях. Количество атомов обычного вещества в основном состоянии больше, чем в возбужденном.

Вещество, предназначенное для лазерной генерации, имеет большинство атомов в возбужденном состоянии. Такая ситуация называется инверсной населенностью. Чтобы она осуществилась, атомы вещества должны непрерывно получать энергию, а их электроны достаточно долго находиться на верхних энергетических уровнях (такие уровни называются метастабильными). С метастабильного уровня электрон, как правило, не успевает опуститься сам - его «сбрасывает» вниз пролетевший мимо фотон той же частоты. Излученный при этом - вынужденном - переходе фотон имеет ту же фазу, что и исходный. После каждого такого взаимодействия число фотонов удваивается - по веществу идет лавина вынужденного, или индуцированного, излучения. Его интенсивность растет по эспоненциальному закону:

I = I0exp(z),

где - коэффициент квантового усиления среды, z - пройденный световой волной путь, который должен быть достаточно большим, чтобы все атомы вещества смогли участвовать в процессе излучения, которое происходит с одной частотой и в фазе. Такое излучение называется монохроматичным (одноцветным) и когерентным (от лат. kohere - сцепленный).

Лазер состоит из трех основных компонентов: активная среда, в которой осуществляется инверсная населенность атомных уровней и происходит генерация, система накачки, создающая инверсную заселенность, и оптический резонатор - устройство, создающее положительную обратную связь.

Активная среда - смесь газов, паров или растворов, кристаллы и стекла сложного состава. Компоненты активной среды подобраны так, что энергетические уровни их атомов образуют квантовую систему, в которой есть хотя бы один метастабильный уровень, обеспечивающий инверсную населенность.

Накачка - внешний источник энергии, переводящий активную среду в возбужденное состояние. В газовых лазерах накачку обычно осуществляет тлеющий электрический разряд, в твердотельных - импульсная лампа, в жидкостных - свет вспомогательного лазера, в полупроводниковых - электрический ток или поток электронов.

Оптический резонатор - пара зеркал, параллельных одно другому. Одно зеркало сделано полупрозрачным или имеет отверстие; через него из лазера выходит световой луч. Резонатор выполняет две задачи.

1. За счет отражения фотонов в зеркалах он заставляет световую волну многократно проходить по активной среде, повышая эффективность ее использования.

2. В момент начала генерации лазера в нем одновременно и независимо появляется множество волн. После отражения от зеркал резонатора усиливаются по преимуществу те, для которых выполняется условие образования стоячих волн: на длине резонатора укладывается целое число полуволн. Все остальные частоты будут подавлены, излучение станет когерентным.

Процесс генерации

Система накачки создает в активной среде инверсную заселенность. Почти сразу атомы среды начинают спонтанно излучать фотоны в случайных направлениях. Фотоны, испущенные под углом к оси резонатора, порождают короткие каскады вынужденного излучения, быстро покидающего среду. Фотоны же, испущенные вдоль оси резонатора, отражаются от зеркал и многократно проходят сквозь активную среду, вызывая в ней все новые акты вынужденного излучения. Генерация начинается в тот момент, когда увеличение энергии волны за счет ее усиления при каждом проходе резонатора начнет превосходить потери, которые складываются из внутренних потерь (поглощение и рассеяние света в активной среде, зеркалах резонатора и др. элементах) и той энергии, которая поступает наружу сквозь выходное зеркало.

Режимы генерации

В зависимости от конструкции, способа накачки и состава активной среды лазеры излучают либо в непрерывном, либо в импульсном режиме. Непрерывное излучение дают газовые лазеры, импульсное - твердотельные; полупроводниковые и жидкостные лазеры могут работать как в том, так и в другом режиме.

Импульсный режим генерации обычно обусловлен импульсным режимом накачки (лампой-вспышкой, лазерной вспышкой). Если не приняты специальные меры, в активной среде возникает режим свободной генерации, при котором за время продолжения вспышки в активной среде успевает возникнуть целая серия импульсов. Чтобы лазер в каждом акте генерации излучал отдельный импульс, перед одним из зеркал его резонатора ставят оптический затвор, который открывается на время 10-4 - 10-10 в момент, когда активная среда уже находится в состоянии инверсной заселенности. Вся энергия, накопленная в среде (от долей джоуля до нескольких сот джоулей), излучается в виде очень короткого, длительностью до фемтосекунд (10-15 с) и соответствующей мощностью порядка гигаватт (109 Вт), т. н. гигантского импульса.

Затвором для получения сверхкоротких лазерных импульсов может, например, служить кювета с раствором веществ, которые под действием светового импульса на короткое время становятся прозрачными.

Типы лазеров

В зависимости от вида активной среды и способа ее возбуждения лазеры несколько условно можно разделить на несколько типов - твердотельные, жидкостные, газовые, полупроводниковые, в каждом из которых имеются свои особенности, связанные с конструкцией, способом возбуждения и т. п. Отдельное место занимают т. н. квантовые усилители - лазеры, состоящие из активной среды и системы накачки, но без резонатора. Усилитель ставится на выходе лазера; его импульс вызывает индуцированную генерацию в активной среде усилителя, приводящее в росту энергии излучения.

Твердотельные лазеры

Рабочим веществом этих лазеров служат кристаллы или стекла, активированные посторонними ионами. Широко используются лазеры на кристалле рубина - оксида алюминия (Al2O3), в котором около 0,05% атомов алюминия замещены ионами хрома Cr3+, на алюмо-иттриевом гранате (Y3Al5O12), на стеклах с примесью ионов неодима (Nd3+), тербия (Tb3+), иттербия (Yb3+) и др. Вынужденное излучение различных частот дают более 250 кристаллов и около 20 стекол. Для их накачки используют лампы-вспышки. Твердотельные лазеры работают как правило в импульсном режиме с частотой повторения импульсов от долей герца до десятков мегагерц. Энергия отдельного импульса достигает нескольких джоулей.

Газовые лазеры

Источником вынужденного излучения в газах служат возбужденные нейтральные атомы, молекулы или слабоионизованная тлеющим электрическим разрядом плазма. Число возникающих в столбе разряда электрон-ионных пар в точности компенсирует потери заряженных частиц на стенках газоразрядной трубки. Поэтому количество возбужденных атомов постоянно, а их излучение как правило непрерывно. Поскольку газовая среда весьма однородна, световой луч в ней рассеивается слабо и на выходе расходится очень мало. Мощность излучения газовых лазеров в зависимости от типа и конструкции может составлять от милливатт до десятков киловатт. Семейство газовых лазеров наиболее многочисленно.

Лазеры на нейтральных атомах. Наиболее распространены лазеры на смеси гелия и неона (10:1), дающие непрерывное излучение в красной области ( = 0,6328 нм). К настоящему времени получена генерация свыше 450 частот от 34 элементов.

Ионные лазеры. Инверсная населенность создается электрическим разрядом. Наиболее мощное излучение (сотни Вт) получено на ионах Ar2+ ( = 0,4880; 0,5145 мкм, сине-зеленая область), Kr2+ ( = 0,5682; 0,6471 мкм, желто-красная область), Kr3+, Ne2+ (УФ-область) и др. Излучение получено на ионах 29 элементов.

Молекулярные лазеры. Обладают высокой эффективностью (КПД до 25%) и мощностью (до десятков кВт в непрерывном режиме и десятков кДж в импульсном); излучают в ИК-диапазоне. Инверсная населенность создается УФ-излучением или электронным пучком. Наиболее распространены лазеры на CO2, H2O, N2. Лазеры на парах димера серы S2 обладают уникальной особенностью: за счет большого числа метастабильных уровней эта молекула излучает одновременно на 15 длинах волн видимого диапазона. Поэтому луч лазера на S2 кажется белым.

Газодинамические лазеры. Разновидность молекулярных газовых лазеров; представляет собой некое подобие реактивного двигателя, в камере сгорания которого сжигают углеводородное топливо. Активной средой в них служит многокомпонентная газовая смесь, нагретая свыше 1000 оС и разогнанная до сверхзвуковой скорости. Струя раскаленного газа движется между зеркалами оптического резонатора; инверсная населенность создается за счет адиабатического охлаждения газа, излучение происходит поперек струи. Наиболее мощные лазеры на CO2 работают в ИК диапазоне ( = 10,6 мкм), генерируя в непрерывном режиме излучение мощностью до сотен киловатт.

Лазеры на парах металлов. Ионы и атомы 27 металлов обладают удобной для создания инверсной населенности структурой энергетических уровней. Лазеры на парах Cu излучают на длинах волн 510,4 и 578,2 нм (зеленый свет) со средней мощностью свыше 40 Вт. Лазеры на парах металлов имеют очень высокий коэффициент усиления.

Химические лазеры. Газовые лазеры с инверсной населенностью за счет экзотермических химических реакций, продукты которых образуются в возбужденном состоянии. Лазеры работают как в импульсном, так и в непрерывном режиме; излучение лежит в области дальнего ИК-излучения. Наибольшую мощность излучения обеспечивает реакция фтора с молекулярным водородомимпульсном режиме - свыше 2 кДж при длительности импульса имп 30 нс; в непрерывном - несколько кВт).

Эксимерные лазеры. Газовые лазеры, работающие на молекулах, существующих только в возбужденном состоянии (эксимерных) - короткоживущие соединения инертных газов друг с другом, с галогенами или с кислородом (например, Ar2, KrCl, XeO и т. п.). Лазеры излучают импульсы в видимой или УФ области спектра с частотой повторения до 104 Гц со средней мощностью несколько десятков ватт.

Жидкостные лазеры

Их активной средой служат растворы органических соединений, комплексных соединений редкоземельных элементов (Nd, Eu), неорганические жидкости. Эти материалы в определенной мере сочетают преимущества твердых сред (высокая плотность) и газов (большая однородность). При необходимости рабочие параметры среды поддерживают, прокачивая жидкость в процессе работы через холодильник и фильтр. Инверсная населенность создается облучением кюветы с жидкостью светом лазера или газоразрядной лампы.

Лазеры на красителях - наиболее распространенный тип жидкостных лазеров. Активной средой служат органические красители на основе бензола (см. БЕНЗОЛ) и ряда других соединений. Мощность излучения достигает десятков ватт, длина волны может меняться в пределах от 322 до 1260 нм простой заменой кюветы с раствором. Лазеры на красителях генерируют как непрерывное излучение, так и последовательности ультракоротких импульсов длительностью до 210-13с.

Полупроводниковые лазеры

Активной средой лазеров служат полупроводниковые кристаллы (GaAs, InSb, PlS и др.). В отличии от всех других активных сред, уровни энергии в которых дискретны и поэтому генерируют монохроматичное излучение, полупроводники имеют довольно широкие энергетические зоны; их излучение происходит в широком диапазоне длин волн и обладает малой когерентностью. В активной среде движутся либо избыточные электроны (n-проводимость, от англ. negativ - отрицательный) либо дырки, их нехватка (p-проводимость, от positiv - положительный). При их рекомбинации в слое p-n-перехода энергия электрического тока непосредственно преобразуется в излучение. Накачка производится электрическим током, пучками быстрых электронов, световым потоком. Лазеры имеют очень высокий КПД (до 50%, а отдельные модели - около 100%) и большой коэффициент усиления. Благодаря этому размеры активного элемента лазеров исключительно малы (менее 1 мм). Широкий набор полупроводниковых материалов дают возможность получать излучение в диапазоне длин волн от 0,3 до 40 мкм. Лазеры разных типов работают и в непрерывном, и в импульсном режиме, развивая мощность от долей мВт до 1 МВт (только в импульсе).

Лазеры на свободных электронах

Действие лазеров основано на излучении электронов, которые колеблются под действием внешнего магнитного и/или электрического поля и перемещаются с околосветовой скоростью в направлении излучаемой волны. Из-за эффекта Доплера частота излучения во много раз превышает частоту колебаний электронов и попадает в диапазон длин волн от рентгеновского (менее 6 нм) до СВЧ-радиоизлучения. Наиболее коротковолновое излучение дают лазеры, в которых колебательные движения электронам сообщает поле мощной электромагнитной волны (комптоновский лазер или скаттрон) или периодическое поле т. н. ондулятора (предложен академиком В. Л. Гинзбургом (см. ГИНЗБУРГ Виталий Лазаревич) в 1947). Возможны и другие способы получения вынужденного излучения - вращение электронов в однородном магнитном поле (т. н. циклотронный резонанс), колебания в неоднородном электростатическом поле, различные виды черенковского излучения (см. ЧЕРЕНКОВА - ВАВИЛОВА ИЗЛУЧЕНИЕ). Частота излучения лазеров на свободных электронах может плавно меняться в широких пределах простым изменением скорости движения электронов.

Применение лазеров

Широкое применение лазеров обусловлено свойствами их излучения - малой расходимостью луча, монохроматичностью и когерентностью излучения. Полупроводниковые лазеры используются в качестве прицелов ручного оруждия и указок, в проигрывателях компакт-дисков, как мощные источники света в маяках. Газовые лазеры применяются в геодезических нивелирах, дальномерах и теодолитах; в метрологии - как эталоны частоты и времени; для записи голограмм. Лазеры на красителях и других рабочих средах используются для зондирования атмосферы. Мощные технологические лазеры на парах металлов и молекулахосновном на CO2) - для резки, сварки и обработки материалов. Эксимерные лазеры применяются в медицине для терапевтического воздействия и хирургического вмешательства. Лазеры используют для осуществления термоядерной реакции (т. н. «инерциальный способ»), сортировки изотопов, в тонких физических и химичесчких экспериментах.

Основные этапы развития лазерной техники

Первым обосновал возможность получать индуцированное (вынужденное) излучение и указал на его когерентность А. Эйнштейн (см. ЭЙНШТЕЙН Альберт) в 1916. В 1923 П. Эренфест (см. ЭРЕНФЕСТ Пауль) подтвердил его выводы.

В 1927-1903 П. Дирак (см. ДИРАК Поль) создал квантово-механическую теорию вынужденного излучения.

Условия обнаружения вынужденного излучения и пути его реализации сформулированы Р. Ладенбургом и Г. Копфеманом (Германия) в 1928, и В. А. Фабрикантом (СССР) в 1939.

Сформулирована теория молекулярного генератора (мазера) и усилителя мощности Ч. Таунсом (см. ТАУНС Чарлз Хард) (США) в 1951, Н. Г. Басовым (см. БАСОВ Николай Геннадиевич) и А. М. Прохоровым (см. ПРОХОРОВ Александр Михайлович) (СССР) в 1953.

Теорию усиления в газах электромагнитного излучения в радио- и оптическом диапазонах создал В. А. Фабрикант (см. ФАБРИКАНТ Валентин Александрович) с сотрудниками в 1951.

Теорию полупроводникового лазера на p-n-переходах сформулировал Дж. фон Нейман (см. НЕЙМАН Джон) (США) в 1953.

Первые модели молекулярных генераторов на аммиаке ( = 1,25 см) и усилителя мощности построены одновременно и независимо Ч. Таунсом (США), Н. Г. Басовым, А. М. Прохоровым (СССР) в 1954 - 1956 (Нобелевская премия по физике за 1964).

Первый квантовый генератор видимого света - импульсный лазер на рубине ( = 0,69 мкм) - сконструировал Т. Мейман (США) в 1960.

Первый газовый лазер на He-Ne сделал А. Джаван (США) в 1961.

Ионный лазер - У. Б. Бриджес (США), 1964.

Лазер на свободных электронах - Дж. Мейди (США), 1976-77.

Полупроводниковые лазеры были предложены Н. Г. Басовым в 1962, осуществлены на p-n-переходе Р. Холлом и М. И. Нейтеном (США) в 1962.

Полезные сервисы