Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

легирование

Толковый словарь

ср.

1. процесс действия по несов. гл. легировать

2. Результат такого действия.

Толковый словарь Ожегова

ЛЕГИ́РОВАТЬ, -рую, -руешь; -анный; сов. и несов., что (спец.). Добавить (-влять) в состав металла другие металлы, сплавы для придания определённых свойств. Легирующие элементы. Легированная сталь.

Энциклопедический словарь

ЛЕГИ́РОВАНИЕ см. Леги́ровать.

* * *

леги́рование (нем. legieren - сплавлять, от лат. ligo - связываю, соединяю), 1) введение в состав металлических сплавов так называемых легирующих элементов (например, в сталь - Cr, Ni, Мо, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или механических свойств.

2) Введение примесных атомов в твердое тело (например, в полупроводники для создания требуемой электрической проводимости). Легирование диэлектриков обычно называется активированием.

* * *

ЛЕГИРОВАНИЕ - ЛЕГИ́РОВАНИЕ (нем. legieren - сплавлять, от лат. ligo - связываю, соединяю), введение в состав твердых веществ (металлов (см. МЕТАЛЛЫ), сплавов (см. СПЛАВЫ), полупроводников (см. ПОЛУПРОВОДНИКИ) и диэлектриков (см. ДИЭЛЕКТРИКИ)) легирующих элементов для придания им определенных физических, химических или механических свойств.

Введение легирующей примесей может существенным образом изменить свойства твердых тел. От характера взаимодействия атомов легирующих элементов и атомов основного вещества, от типа образованных дефектов структуры, от характера взаимодействия легирующих и фоновых примесей, легирующих примесей и дефектов структуры, от способности легирующей примеси образовывать соединения в матрице вещества и т.д. зависят свойства (электрические, магнитные, тепловые) легируемого вещества.

Легирование широко применятся в технологии получения металлов и сплавов, полупроводниковых кристаллов и пленок, а также диэлектрических материалов с заданными свойствами.

Легирование металлов и сталей

Легирования металлов, сталей и сплавов позволяет получить металлические сплавы с разнообразными свойствами, значительно отличающимися от свойств чистых металлов. Например, коррозионная стойкость циркония (см. ЦИРКОНИЙ) существенно зависит от его чистоты. Сотые доли процента углерода и азота снижают его коррозионную стойкость, но введение ниобия нейтрализует действие углерода, а введение олова - азота. Легирование ряда металлов и сплавов на их основе редкоземельными элементами позволило значительно улучшить прочностные характеристики этих веществ и т. д.

При легировании стали можно получить заданные свойства, в том числе отсутствующие у исходных углеродистых сталей. Стали считаются легированными при содержании примесей в них, например, кремния - более 0,8% , марганца - не более 1%. Но при введении легирующих примесей в сталь необходимо учитывать, что все элементы, которые растворяются в железе, влияют на температурный интервал его аллотропических модификаций, оказывая влияние на свойства сталей. Температура полиморфных превращений железа зависит от всех растворенных в нем элементов. В их присутствии изменяется область существования g-железа. Ряд легирующих примесей (Ni, Mn и др.) расширяют область существования g-железа от комнатной температуры до температуры плавления (см. аустенит (см. АУСТЕНИТ)), А такие примеси, как V, Si, Mo и др. делают ферритную фазу устойчивой вплоть до температуры плавления (см. феррит (см. ФЕРРИТ)). Легирующие примеси в промышленных сталях могут преимущественно растворяются именно в основных фазах железоуглеродистых сплавов - феррите, аустените, цементите (см. ЦЕМЕНТИТ)). При наличии в сплаве железа большой концентрации элемента, который сужает g-область, превращение g ¬® a отсутствует, образуются ферритные стали. Класс аустенитных сталей можно получить при легировании элементами, расширяющими g-область.

Если легирующие примеси в g-железе находятся в свободном состоянии, то они как правило, являются примесями замещения, занимая позиции атомов железа. Но легирующие примеси могут образовывать химические соединения с железом, между собой, образовывать оксиды или карбиды. В этом случае карбидообразующие элементы (молибден, ванадий, вольфрам, титан) задерживают выделение карбидов железа при отпуске и увеличивают конструкционную прочность стали.

Легирующие примеси изменяют свойства феррита. Молибден, вольфрам, марганец и кремний снижают вязкость феррита, а никель - не снижает. Но никель интенсивно снижает порог хладоломкости, уменьшая склонность железа к хрупким разрушениям.

Все легирующие элементы (за исключением марганца и бора), уменьшают склонность аустенитного зерна к росту. Никель, кремний, кобальт, медь (элементы, не образующие карбиды), относительно слабо влияют на рост зерна. Легирующие элементы замедляют процесс распада мартенсита. Т. е. в общем случае легирование существенным образом меняет кинетику фазовых превращений (см. ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА).

Для повышения качества сталей некоторые примеси, например, марганец и кремний, добавляют в заданном количестве. При содержании марганца от 0,25 до 0,9% прочность стали повышается без значительного снижения ее пластичности. Кремний, содержание которого в обыкновенных сталях не превышает 0,35%, не оказывает существенного влияния на свойства стали. А такие примеси, как фосфор и сера являются нежелательными загрязняющими примесями. Фосфор делает сталь хрупкой (хладноломкой), а присутствие серы в количестве более 0,07 % вызывает красноломкость стали, снижает ее прочность и коррозионную стойкость.

Изменение свойств сплавов в результате легирования обусловлено, кроме того, изменением формы, размеров и распределения структурных составляющих, изменением состава и состояния границ зерен. Легирование стали может тормозить процессы рекристаллизации (см. РЕКРИСТАЛЛИЗАЦИЯ).

Легирование полупроводников

Под легированием полупроводников подразумевается не только дозированное введение в полупроводники (см. ПОЛУПРОВОДНИКИ) примесей, но и структурных дефектов (см. ДЕФЕКТЫ) с целью изменения их свойств, главным образом электрофизических. Наиболее распространенным методом легирования является легирование различными примесями.

Для получения кристаллов n- и p- типа проводимости кристаллы легируют электрически активными примесями (чаще всего - водородоподобными, валентность которых отличается от валентности основных замещаемых атомов на единицу). Электрически активные водородоподобные примеси являются примесями замещения. Например, для элементарных полупроводниковых материалов (см. ЭЛЕМЕНТАРНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) германия или кремния такими легирующими примесями являются атомы элементов III или V групп таблицы Менделеева. Примеси такого типа создают мелкие (вблизи дна зоны проводимости (см. ПРОВОДИМОСТИ ЗОНА) или вблизи потолка валентной зоны (см. ВАЛЕНТНАЯ ЗОНА)) энергетические уровни: соответственно, примеси III группы (B, Al, In, Ga) будут акцепторами (см. АКЦЕПТОР), а примеси V группы (P, Sb, As) - донорами (см. ДОНОР (в физике)). У полупроводниковых соединений AIIIBV элементы V группы замещаются примесями VI группы (S, Se, Te), которые являются донорами, а элементы II группы (Zn, Cd), замещая, соответственно, атомы III группы в соединении, будут проявлять акцепторные свойства. Такое легирование позволяет управлять типом проводимости и концентрацией носителей заряда в полупроводнике.

Некоторые примеси, введенные в кристалл, способны проявлять как донорные, так и акцепторные свойства. Если проявление донорных или акцепторных свойств таких примесей зависит от их размещения в кристаллической матрице, например, от того, находится ли атом легирующей примеси в узле кристаллической решетки или в междоузлии, примеси называются амфотерными. Некоторые примеси, размещаясь в узлах решетки, являются акцепторами, а в междоузлии - донорами. А в случае легирования соединений AIIIBV примесями IV группы, проявление донорных или акцепторных свойств будет зависеть от того, в узлах какой подрешетки расположен атом примеси. При замещении таким атомом катионного узла он будет проявлять донорные свойства, а при замещении анионного узла - акцепторные.

В некоторых случаях используют легирование изовалентными примесями, т.е. примесями, принадлежащими той же группе Периодической системы, что и замещаемые им атомы. Такое легирование используется для формирования свойств косвенным путем. Например, легирование кристаллов GaAs изовалентной примесью In способствует проявлению эффекта примесного упрочнения (снижения плотности дислокаций) и формированию в кристалле полуизолирующих свойств.

Иногда для легирования используют примеси, образующие глубокие уровни в запрещенной зоне, что позволяет воздействовать на диффузионную длину носителей заряда и регулировать степень компенсации электрически активных центров.

Путем введения тех или иных легирующих добавок можно эффективно влиять на состояние ансамбля собственных точечных дефектов (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ) в кристалле, в особенности на поведение в них дислокаций и фоновых примесей и таким образом управлять свойствами полупроводникового материала.

Легирование полупроводников обычно осуществляется непосредственно в процессе выращивания монокристаллов и эпитаксиальных структур. Легирующая примесь в элементарной форме или в виде соединения вводится в расплав, раствор или газовую фазу. В связи с особенностями процессов на фронте кристаллизации при выращивания кристаллов и пленок, примесь распределяется неравномерно как по длине, так и в объеме кристалла. Чтобы добиться равномерного распределения, используются различные технологические приемы.

Еще одним способом легирования полупроводников является радиационное легирование. В этом случае доноры и акцепторы не вводятся в кристалл, а возникают в его объеме в результате ядерных реакций при его облучении. Наибольший практический интерес представляют реакции, возникающие в результате облучения тепловыми нейтронами, которые обладают большой проникающей способностью. При таком способе легирования распределение электрически активных примесей более равномерно. Но в процессе облучения в кристалле образуются радиационные дефекты, снижающие качество материала.

Для создания p-n-переходов может использоваться диффузионный метод введения легирующей примеси. В этом случае примесь в объем вводят либо из газовой фазы, либо из специально нанесенного покрытия, которым может служить, например, в случае кремния, оксидная пленка. Для получения тонких легированных слоев широко используется метод ионной имплантации (см. ИОННАЯ ИМПЛАНТАЦИЯ), позволяющей вводить практически любую примесь и управлять ее концентрацией и профилем ее распределения.

Большой энциклопедический словарь

ЛЕГИРОВАНИЕ (нем. legieren - сплавлять - от лат. ligo - связываю, соединяю), 1) Введение в состав металлических сплавов т. н. легирующих элементов (напр., в сталь - Cr, Ni, Mo, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или механических свойств.

2) Введение примесных атомов в твердое тело (напр., в полупроводники для создания требуемой электрической проводимости). Легирование диэлектриков обычно называют активированием.

Академический словарь

-я, ср.

Действие по знач. глаг. легировать.

Легирование металлов.

Иллюстрированный энциклопедический словарь

ЛЕГИРОВАНИЕ (немецкое legieren - сплавлять, от латинского ligo - связываю, соединяю), введение в металлический расплав или шихту элементов (например, в сталь - хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), повышающих механические, физические и химические свойства основного металла.

Орфографический словарь

леги́рование, -я

Словарь ударений

леги́рование

Синонимы к слову легирование

сущ., кол-во синонимов: 1

Морфемно-орфографический словарь

лег/и́р/ова/ни/е [й/э].

Словарь иностранных слов

ЛЕГИРОВАНИЕ (нем. Legirung, от лат. ligare - связывать). Сплавливание благородного металла с каким-либо другим.

Сканворды для слова легирование

- Введение в металл другого элемента для улучшения физико-химических свойств.

Полезные сервисы

легированная сталь

Энциклопедический словарь

Леги́рованная сталь - помимо обычных примесей содержит так называемые легирующие элементы (смотри Легирование). Различают низколегированную (суммарное содержание легирующих элементов до 2,5%), среднелегированную (2,5-10%) и высоколегированную (свыше 10%) сталь.

* * *

ЛЕГИРОВАННАЯ СТАЛЬ - ЛЕГИ́РОВАННАЯ СТАЛЬ, углеродистая сталь, в которую специально введены легирующие элементы с целью улучшения ее эксплуатационных и технологических свойств (см. Легирование (см. ЛЕГИРОВАНИЕ)). Различают низколегированную (суммарное содержание легирующих элементов до 2,5%), среднелегированную (2,5-10%) и высоколегированную (свыше 10%) сталь. Легирующие элементы вводятся в сталь в различных количествах и в разных сочетаниях - по 2, по 3 и более элементов. Легированные стали используют для изготовления тяжелонагруженных деталей ответственного назначения, так как они обладают более высокими механическими характеристиками.

Легированные стали могут быть классифицированы по структуре, по составу и по назначению.

По равновесной структуре стали можно классифицировать как:

а) доэвтектоидные стали, имеющие в структуре избыточный феррит (см. ФЕРРИТ). Стали ферритного класса содержат элементы, сужающие область существования аустенита (см. АУСТЕНИТ); эти стали могут сохранять структуру феррита (иногда в сочетании с карбидами) при любых температурах (вплоть до расплавления) и после охлаждения с любой скоростью;

б) эвтектоидные стали, имеющие перлитную структуру;

в) заэвтектоидные стали, имеющие в структуре избыточные (вторичные) карбиды;

г) ледебуритные стали, имеющие в структуре первичные карбиды. В литом виде избыточные карбиды вместе с аустенитом образуют эвтектику - ледебурит (см. ЛЕДЕБУРИТ), который при ковке или прокатке разбивается на обособленные карбиды и аустенит. Стали карбидного класса содержат повышенное количество углерода и карбидообразующих элементов.

Большинство легирующих элементов влияют на диаграмму состояния C - Fe. Граница между доэвтектоидными и заэвтектоидными сталями, заэвтектоидными и ледебуритными в легированных сталях лежит при меньшем содержании углерода, чем в углеродистых.

Исходя из структуры стали, получаемой после охлаждения на воздухе, можно выделить перлитный, мартенситный и аустенитный классы сталей. Стали перлитного класса имеют структуру перлита (см. ПЕРЛИТ (в металловедении)) или его разновидностей: сорбита (см. СОРБИТ (в металловедении)), троостита (см. ТРООСТИТ), а также перлита с ферритом или с заэвтектоидными карбидами. Стали мартенситного класса характеризуются пониженной критической скоростью закалки и имеют после нормализации структуру мартенсита (см. МАРТЕНСИТ). Стали аустенитного класса имеют сильно пониженную температуру распада аустенита, который сохраняется в структуре стали даже при комнатной температуре. Получение этих классов сталей обусловлено тем, что по мере увеличения содержания легирующих элементов устойчивость аустенита в перлитной области возрастает, а температурная область мартенситного превращения понижается.

В зависимости от состава - наличия в стали тех или иных легирующих примесей - легированные стали классифицируются как никелевые, хромистые, хромоникелевые и т. д.

При легировании углеродистых сталей: марганец увеличивает прочность, твердость и сопротивление стали износу; кремний и хром повышают прочность и жаростойкость; медь повышает стойкость стали к атмосферной коррозии; никель способствует улучшению вязкости без снижения прочности. Низколегированные стали имеют более высокие механические свойства, чем малоуглеродистые. Стали, содержащие никель, хром и медь, высокопластичны, хорошо свариваются, их с успехом используют для сварных и клепаных конструкций промышленных и гражданских зданий, пролетных строений мостов, нефтерезервуаров, труб и др.

По назначению может быть: легированная конструкционная сталь (см. КОНСТРУКЦИОННАЯ СТАЛЬ), легированная сталь специального назначения и легированная инструментальная сталь (см. ИНСТРУМЕНТАЛЬНАЯ СТАЛЬ).

В отличие от маркировки углеродистых сталей буквы в марке низколегированных сталей показывают наличие в стали легирующих примесей, а цифры - их среднее содержание в процентах. Предшествующие буквам цифры показывают содержание углерода в сотых долях процента. Для маркировки стали каждому легирующему элементу присвоена определенная буква:

С - кремний, В - вольфрам, Г - марганец, Ю - алюминий, Х - хром, Д - медь, Н - никель, К - кобальт, М - молибден, Б - ниобий, Т - титан.

Первые цифры марки обозначают среднее содержание углерода (в сотых долях процента для инструментальных и нержавеющих сталей). Буквой указан легирующий элемент и последующими цифрами - его среднее содержание, например, сталь марки 3Х13 содержит 0,3% С и 13% Сr, сталь марки 2Х17Н2 - 0,2 % С, 17 % Сг и 2 % Ni. При содержании легирующего элемента менее 1,5 % цифры за соответствующей буквой не ставятся, например, 1Г2С, 12ХН3А. Буква А в конце обозначения марки указывает на то, что сталь является высококачественной, буква Ш - особо высококачественной. Например, легированная конструкционная сталь марки 1Г2С содержит 0,1 % углерода, 2 % марганца и 1 % кремния.

Большинство марок легированных сталей приобретает высокие механические характеристики только после соответствующей термической обработки, которая сопровождается фазовыми превращениями и делает структуру сталей более мелкозернистой. Легированные стали обладают более глубокой прокаливаемостью деталей тех же размеров, чем из углеродистых сталей. Большинство легирующих элементов снижают температуру мартенситного превращения и улучшают качество остаточного аустенита в структуре.

Большой энциклопедический словарь

ЛЕГИРОВАННАЯ СТАЛЬ - помимо обычных примесей содержит т. н. легирующие элементы (см. Легирование). Различают низколегированную (суммарное содержание легирующих элементов до 2,5%), среднелегированную (2,5-10%) и высоколегированную (св. 10%) сталь.

Полезные сервисы

легированные

Большой словарь иностранных слов

легированные

- стали [см. легировать] - стали со специальными прибавками разных элементов: никеля, хрома, вольфрама, ванадия, молибдена и т. д., способствующих улучшению механических свойств или приданию стали особых физико-химических свойств, например, кислотоупорности, жароупорности, антимагнитности и др.

Полезные сервисы

легированный

Толковый словарь

прил.

из прич. по сов. гл. легировать

Энциклопедический словарь

ЛЕГИ́РОВАННЫЙ -ая, -ое. Такой, в состав которого введены другие металлы для придания определённых свойств (обычно о железе и его сплавах). Л-ая сталь.

Академический словарь

-ая, -ое.

1. прич. страд. прош. от легировать.

2. в знач. прил.

Такой, в состав которого введены другие металлы для придания определенных свойств.

Легированная сталь.

Орфографический словарь

леги́рованный; кратк. форма -ан, -ана

Словарь ударений

леги́рованный, -ан, -ана, -ано, -аны

Формы слов для слова легированный

леги́рованный, леги́рованная, леги́рованное, леги́рованные, леги́рованного, леги́рованной, леги́рованных, леги́рованному, леги́рованным, леги́рованную, леги́рованною, леги́рованными, леги́рованном, леги́рован, леги́рованна, леги́рованно, леги́рованны, леги́рованнее, полеги́рованнее, леги́рованней, полеги́рованней

Синонимы к слову легированный

Морфемно-орфографический словарь

лег/и́р/ова/нн/ый.

Грамматический словарь

леги́рованный п 1*a①, §9

Полезные сервисы