Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

астрономическая вселенная

Энциклопедия Кольера

Солнце - рядовая звезда среднего размера и среднего возраста. Это горячий газовый шар диаметром 1 390 000 км и массой в 333 000 раз больше Земли, состоящий в основном из водорода. В его центре, где давление в миллиард раз больше давления воздуха у поверхности Земли, а температура 13 000 000 К, термоядерные реакции превращают водород в гелий с выделением огромной энергии. Эта энергия постепенно достигает более холодной (5800 К) солнечной поверхности и покидает ее в виде излучения и сверхзвуковых потоков заряженных и нейтральных частиц, называемых солнечным ветром. В недрах звезд и при их взрывах также синтезируются более тяжелые химические элементы.

См. также НУКЛЕОСИНТЕЗ; СОЛНЦЕ. После того, как 4,5 млрд. лет назад в результате гравитационного коллапса родительской туманности сформировалось Солнце, из других достаточно массивных уплотнений солнечного вещества образовались большие планеты Солнечной системы. Вблизи некоторых из формирующихся планет подобные же процессы привели к возникновению спутников - лун. У близких к Солнцу планет сформировались массивные металлические ядра, покрытые каменистой оболочкой. Земля, Марс и, возможно, Венера имели океаны, но только у Земли он сохранился. Большинство из планет теплой внутренней части Солнечной системы сохранило свои атмосферы. Во внешней холодной области Солнечной системы образовались гигантские газовые планеты, окруженные множеством спутников с металлическими и каменными ядрами, покрытыми ледяной оболочкой. Все внешние планеты имеют системы колец, состоящих из движущихся по орбитам частиц пыли и льда, но только у Сатурна эти кольца так велики, что их можно увидеть даже в небольшой телескоп. Все планеты обращаются вокруг Солнца, а большинство их спутников - вокруг своих планет в одном и том же направлении и в плоскостях, лишь на несколько градусов отстоящих от плоскости орбиты Земли - эклиптики.

См. также СОЛНЕЧНАЯ СИСТЕМА. Между орбитами Марса и Юпитера расположен пояс астероидов - область, населенная металлическими и каменными фрагментами - вероятными остатками одной или нескольких протопланет, разрушенных соударениями и приливными силами. На периферии Солнечной системы по орбитам вокруг Солнца движутся миллионы комет - холодных каменно-ледяных глыб. Их удается обнаружить в тех случаях, когда орбита кометы заходит во внутренюю часть Солнечной системы. Хотя межпланетное пространство практически пусто, в нем рассеяны атомы, молекулы и частицы пыли. Поток солнечного ветра выносит магнитное поле Солнца на периферию планетной системы.

См. также АСТЕРОИД; КОМЕТА. Солнце - лишь одна из миллиардов звезд, составляющих огромную сплюснутую нашу галактику - Млечный Путь. В то время как до ближайшей к нам звезды Проксимы Кентавра свет идет 4,3 года, ближайший сосед Млечного Пути - галактика в Андромеде - удалена на 2,2 млн. св. лет. Галактики имеют различные формы и размеры, но все они представляют собой гравитационно связанные системы из звезд и разреженного межзвездного газа и пыли. У спиральных галактик, подобных нашей, звезды образуют медленно вращающийся сплюснутый диск диаметром около 100 000 св. лет. Центральное сферическое уплотнение (балдж) у них состоит из старых звезд, тогда как более молодые сосредоточены на периферии в спиральных рукавах. Солнце находится в одном из спиральных рукавов Млечного Пути на расстоянии ок. 28 000 св. лет от центра Галактики и совершает один оборот вокруг него примерно за 200 млн лет. Все видимые невооруженным глазом звезды принадлежат тому же или ближайшим спиральным рукавам. Излучение более далеких или слабых звезд, неразличимых глазом по отдельности, можно заметить на небе в виде рассеянного света, усиливающегося к размытой полосе Млечного Пути. Балдж и диск нашей Галактики окружены протяженным гало, в котором помимо отдельных старых звезд движутся шаровые скопления из сотен тысяч звезд каждое. Наша Галактика - член гравитационно связанной системы, получившей название "Местная группа" и включающей также галактику в Андромеде, две небольшие галактики неправильной формы, называемые Магеллановыми Облаками, и еще несколько звездных систем.

См. также ГАЛАКТИКИ; МЛЕЧНЫЙ ПУТЬ. Солнце - это типичная звезда, каких множество в каждой галактике. Девяносто процентов всех звезд имеют массы от 0,1 до 50 масс Солнца; масса - важнейшая характеристика звезды. Другие важные ее параметры - это температура, светимость и возраст. Звезда, подобная Солнцу, формируется в результате гравитационного сжатия родительского облака, которое длится несколько миллионов лет, пока в его центре не начнутся ядерные реакции. После этого звезда остается довольно стабильной в течение примерно 10 млрд. лет. Лишь после того как большая часть водорода в ее ядре переработается в гелий, внешние слои звезды расширяются и остывают, и звезда становится красным гигантом. В ядре может начаться термоядерное "горение" гелия и других элементов, но в итоге оно сожмется и станет белым карликом (у маломассивных звезд) или нейтронной звездой (у звезд средней массы), чем и закончится жизнь звезды. Массивные звезды в конце своей эволюции становятся неустойчивыми, начинают пульсировать и выбрасывать вещество; некоторые из них целиком взрываются как сверхновые. Ядра массивных звезд коллапсируют полностью и становятся черными дырами.

См. также

ЧЕРНАЯ ДЫРА;

ЗВЕЗДЫ;

ГРАВИТАЦИОННЫЙ КОЛЛАПС;

НЕЙТРОННАЯ ЗВЕЗДА;

НОВАЯ ЗВЕЗДА;

СВЕРХНОВАЯ ЗВЕЗДА;

ПЕРЕМЕННЫЕ ЗВЕЗДЫ. Звезды различного вида и на разных стадиях эволюции встречаются по всей галактике, но некоторые их типы сосредоточены в определенных местах. Те области галактик, где сконцентрированы газ и пыль (т.е. спиральные рукава), преимущественно содержат скопления молодых звезд. Это понятно: именно из газа формируются скопления и ассоциации молодых звезд, часто объединенных в двойные и тройные системы. Даже в нашей Солнечной системе, будь Юпитер раз в десять массивнее, он бы тоже стал звездой - компаньоном Солнца. Похожие на Млечный Путь спиральные галактики весьма распространены, но встречаются и эллиптические галактики, почти лишенные газа и пыли. Некоторые галактики имеют неправильную, асимметричную форму. Астрономы еще не пришли к согласию относительно того, распались ли некогда на звезды газовые облака галактического размера или сначала из заполнявшего Вселенную газа сформировались звезды, а затем уже под действием гравитации они объединились в галактики. Существует немало теорий превращения галактик одного типа в другие, и у астрономов есть наблюдательные свидетельства того, как галактики сталкиваются и меняют форму. Повсеместно галактики объединены в системы, подобные Местной группе; обзоры неба выявляют крупномасштабное распределение галактик, их концентрацию в гигантских сверхскоплениях и линейных структурах, разделенных пустым пространством. Астрономы и космологи считают, что Вселенная образовалась от 10 до 20 млрд. лет назад в процессе грандиозного явления, названного Большим взрывом. После сравнительно короткого периода, когда излучение остыло, а вещество успокоилось, Вселенная перешла в фазу медленного расширения, которая продолжается и поныне. Реликтом тех бурных событий считают слабое фоновое излучение, приходящее равномерно со всего неба.

См. также НУКЛЕОСИНТЕЗ. Поскольку скорость света конечна, далекие галактики мы видим и удаленными во времени. Используя крупнейшие наземные и космические телескопы, астрономы заглядывают в прошлое Вселенной почти на 10 млрд. лет. Используя эти наблюдения и вычисляя скорость расширения Вселенной, ученые пытаются уточнить ее возраст. Они хотели бы также узнать, будет ли Вселенная расширяться всегда, до тех пор, когда погаснут последние звезды, а новые не смогут образоваться из разреженного вещества. Если плотность Вселенной достаточно велика, то ее расширение постепенно замедлится, остановится и сменится сжатием. В конце концов все вещество Вселенной сколлапсирует, произойдет "Большая свалка", после чего может случиться новый Большой взрыв и начнется расширение новой вселенной. Сделанные до сих пор оценки плотности Вселенной не дали окончательного ответа на вопрос о ее будущем. Две проблемы - возраст и будущее Вселенной - главное, над чем работали космологи 1990-х годов, понимая, что лишь новые наблюдения дадут окончательный ответ.

См. также КОСМОЛОГИЯ.

Полезные сервисы

белые карлики

Энциклопедический словарь

Бе́лые ка́рлики - компактные звёзды с массами около 1 массы Солнца и радиусами около 0,01 радиуса Солнца. Средняя плотность вещества бе́лые ка́рлики105-10г/см3. Составляют 3-10% от общего числа звёзд Галактики; значительная часть белых карликов входит в двойные звёздные системы. Белые карлики - конечная стадия эволюции звёзд с начальной массой менее 5 масс Солнца после сброса ими внешних слоёв. Белые карлики существуют благодаря устойчивому равновесию сил гравитации и давления вырожденного газа электронов.

* * *

БЕЛЫЕ КАРЛИКИ - БЕ́ЛЫЕ КА́РЛИКИ, компактные звездообразные остатки эволюции маломассивных звезд. Для этих объектов характерны массы, сравнимые с массой Солнца (2.1030 кг); радиусы, сравнимые с радиусом Земли (6400 км) и плотности порядка 106 г/см3. Название «белые карлики» связано с малыми размерами (по сравнению с типичными размерами звезд) и белым цветом первых открытых объектов данного типа, определяемым их высокой температурой.

Белые карлики вместе с нейтронными звездами и черными дырами звездных масс относятся к так называемым компактным объектам. Все они являются остатками эволюции звезд различных масс, но сами не являются звездами в строгом смысле этого слова, т. к. в их недрах не идут термоядерные реакции. Для описания природы всех этих объектов требуется «физика 20 века»: квантовая механика (см. КВАНТОВАЯ МЕХАНИКА) и теория относительности (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ). Однако, если нейтронные звезды (см. НЕЙТРОННЫЕ ЗВЕЗДЫ) и черные дыры (см. ЧЕРНЫЕ ДЫРЫ) были предсказаны до своего открытия, то белые карлики были открыты в 19 в. и оставались необъясненными до начала 1930-х гг., когда были созданы основные квантово-механические законы.

Открытие двойных звезд

Первый белый карлик был открыт «на кончике пера» в 1844 Фридрихом Бесселем (см. БЕССЕЛЬ Фридрих Вильгельм) при изучении ярчайшей звезды ночного неба - Сириуса (см. СИРИУС). Оказалось, что если начертить кривую движения Сириуса, то звезда будет периодически смещаться от своего среднего положения. Это легко объяснить, если предположить, что Сириус (будем называть его теперь Сириус А) входит в двойную систему. То есть существует звезда-соседка, называемая Сириус В, и два светила вращаются вокруг общего центра масс. Слабую звездочку Сириус В впервые непосредственно увидел в телескоп А. Кларк в 1862. (см. ДВОЙНЫЕ ЗВЕЗДЫ)

Двойных звезд (см. ДВОЙНЫЕ ЗВЕЗДЫ) довольно много: около половины всех звезд Галактики входят в число двойных систем. Поэтому в самом факте двойственности нет ничего удивительного. Удивительной оказалась звезда-соседка. При массе, сравнимой с солнечной, и достаточно высокой температуре (горячие звезды имеют белый цвет) Сириус В оказалась очень слабой звездочкой. Это означает, что ее размеры очень малы, а, следовательно, велика плотность. Если подставить типичные для белых карликов значения (масса порядка 1030 кг и размер порядка нескольких тысяч километров), то получится плотность порядка 106 г/см3. Это несравненно выше плотности окружающего нас вещества. Самый плотный металл на Земле имеет плотность менее 30 г/см3. Плотность вещества в центре Солнца около 100 г/см3. Можно было ожидать, что свойства сверхплотного вещества окажутся необычными.

Из чего состоят белые карлики

Вещество белых карликов действительно обладает интересными свойствами, ученые называют его вырожденным газом (см. ВЫРОЖДЕННЫЙ ГАЗ). Если частицы вещества (в данном случае наиболее важны электроны (см. ЭЛЕКТРОН (частица))) расположены чрезвычайно близко друг к другу, то их взаимное квантово-механическое влияние начинает определять свойства вещества, а значит и звезды в целом. В частности, сила гравитации (см. ТЯГОТЕНИЕ), стремящаяся сжать звезду, уравновешивается давлением вырожденного газа. В маленькую область пространства (ее размер определяется законами квантовой механики: длиной волны де Бройля (см. ВОЛНЫ ДЕ БРОЙЛЯ) рассматриваемых частиц) нельзя поместить более двух частиц с полуцелым спином (см. СПИН), например электронов. Это проявляется в строении атомных орбиталей (см. ОРБИТАЛИ) и определяет химические свойства элементов. Путем сжатия вещества можно достичь плотностей, когда расстояние между электронами становится порядка волны де Бройля для этих частиц, то есть плотностей, достаточных для проявления квантовых свойств вещества. В ходе эволюции звезд в их недрах создаются условия, необходимые для образования вырожденного газа электронов.

Эволюция

Белые карлики образуются на финальных стадиях эволюции маломассивных звезд (масса менее 8-10 масс Солнца) после исчерпания топлива для термоядерных реакций. Благодаря тому что количество звезд в Галактике возрастает с уменьшением массы звезд, белые карлики достаточно распространены. Они составляют до 10% всех звезд Галактики. Наше Солнце через несколько миллиардов лет после исчерпания водорода в ядре также превратится в белый карлик.

Эволюция одиночного белого карлика сводится к его постепенному охлаждению за счет излучения. При уменьшении температуры будет меняться и цвет - от белого к красному. Поэтому старые белые карлики уже не являются собственно белыми. Название всего класса объектов связано лишь с цветом первых открытых звезд этого типа (Сириус В, 40 Эридана В). Если же белый карлик входит в состав тесной двойной системы, где возможен перенос вещества на белый карлик со звезды-соседки, то возможно появление ряда любопытных объектов. Особый интерес представляют так называемые новые звезды (см. НОВЫЕ ЗВЕЗДЫ), которые получили свое название благодаря резкому увеличению блеска, связанному с термоядерным взрывом вещества, перетекшего со звезды-соседки на поверхность белого карлика. При накоплении достаточно большого количества вещества, когда его масса превосходит критический предел (так называемый предел Чандрасекара (см. ЧАНДРАСЕКАР Субрахманьян)), белый карлик взрывается как сверхновая звезда (см. СВЕРХНОВЫЕ ЗВЕЗДЫ). После взрыва возможен полный разлет вещества или образование нейтронной звезды.

Полезные сервисы