I ж.
Небесное тело, имеющее вид светящегося ядра, окруженного туманной оболочкой, с хвостом в виде узкой яркой полосы света.
II ж.
Быстроходное пассажирское судно на подводных крыльях.
I ж.
Небесное тело, имеющее вид светящегося ядра, окруженного туманной оболочкой, с хвостом в виде узкой яркой полосы света.
II ж.
Быстроходное пассажирское судно на подводных крыльях.
КОМЕ́ТА, кометы, жен. (от греч. kometes, букв. волосатый) (астр.). Небесное тело, состоящее из туманного пятна со светящимся ядром и хвостом в виде серебристой полосы света. Комета Галлея.
КОМЕ́ТА, -ы, жен.
1. Небесное тело, вдали от Солнца имеющее вид туманного светящегося пятна, а с приближением к Солнцу обнаруживающее яркую голову и хвост.
2. Речное быстроходное пассажирское судно на подводных крыльях.
| прил. кометный, -ая, -ое (к 1 знач.).
КОМЕТА - жен. небесное тело, сравнительно с прочими, огромной величины, но редкое или жидкое, сквозящее; иногда в ней заметно ядро, а окружная среда образует как бы хвост, бороду или космы; звезда с хвостом, косматая. Кометный, к комете относящийся. Кометная труба, зрительная, с обширным полем, для розыску комет. Кометография жен. описание известных комет.
КОМЕ́ТА1́, -ы, ж
Небесное тело, представляющее собой туманное пятно, движущееся вокруг Солнца, с ярким ядром и светящимся хвостом, направленным от Солнца.
Золотистая туманность - голова неведомой кометы и ее след - потоки метеоритов - уносились по гиперболе - безнадежной кривой, чтобы, обогнув солнце, снова исчезнуть в пространствах (А. Н. Т.).
КОМЕ́ТА2́, -ы, ж
Транспортное средство для перемещения пассажиров по воде: рекам и озерам - в виде быстроходного судна на подводных крыльях;
Син.:метеор, ракета.
От Херсона до Одессы мы добирались на комете.
КОМЕ́ТА -ы; ж. [от греч. komētēs - длинноволосый]
1. Небесное тело, движущееся по вытянутой орбите вокруг Солнца и имеющее вид туманного пятна с ярким ядром посредине и светящимся хвостом, направленным от Солнца.
2. Быстроходное пассажирское судно на подводных крыльях.
◁ Коме́тный, -ая, -ое (1 зн.). К-ое ядро.
-ы, ж.
Небесное тело, движущееся по вытянутой орбите вокруг Солнца и имеющее вид туманного пятна с ярким ядром посредине и светящимся хвостом, направленным от Солнца.
[От греч. κομήτης (’αστήρ) - буквально «волосатая звезда»]
КОМЕТА - небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы - это остатки формирования Солнечной системы, переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.
Движение и пространственное распределение. Все или почти все кометы являются составными частями Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют "прямым" в отличие от "обратного") по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету. Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют "хвостов", но иногда имеют еле видимую "кому", окружающую "ядро"; вместе их называют "головой" кометы. С приближением к Солнцу голова увеличивается и появляется хвост.
Структура. В центре комы располагается ядро - твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини - Циннера в 1985-1986. Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра. Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985-1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.
ЧАСТИ КОМЕТЫ: схематически показаны ядро, кома, хвосты и другие важные элементы.
Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% - от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо). Потерянные кометой частицы движутся по своим орбитам и, попадая в атмосферы планет, становятся причиной возникновения метеоров ("падающих звезд"). Большинство наблюдаемых нами метеоров связано именно с кометными частицами. Иногда разрушение комет носит более катастрофический характер. Открытая в 1826 комета Биелы в 1845 на глазах у наблюдателей разделилась на две части. Когда в 1852 эту комету видели в последний раз, куски ее ядра удалились друг от друга на миллионы километров. Деление ядра обычно предвещает полный распад кометы. В 1872 и 1885, когда комета Биелы, если бы с нею ничего не случилось, должна была пересекать орбиту Земли, наблюдались необычайно обильные метеорные дожди.
См. также
МЕТЕОРИТ. Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров - Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.
Таблица 1.
ОСНОВНЫЕ ГАЗОВЫЕ СОСТАВЛЯЮЩИЕ КОМЕТ
Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.
Происхождение. Ядра комет - это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.
Газовый состав. В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.
ОРБИТЫ И КЛАССИФИКАЦИЯ
Чтобы лучше понять этот раздел, советуем познакомиться со статьями:
Орбита и скорость. Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (vc) на расстоянии a. Скорость ухода из гравитационного поля Солнца по параболической орбите (vp) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp, то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит vp , то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите. На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая - 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея - 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.
ТИПЫ ОРБИТ. Эллиптическая орбита кометы Галлея имеет наклонение 18° к плоскости земной орбиты. Орбита кометы Энке наклонена на 12°. Показана также параболическая орбита.
Классификация кометных орбит. Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.
РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ
Почти параболические кометы. К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно. Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20-100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 1012, а полная масса - в 1-100 масс Земли. Внешняя граница "кометного облака" Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов (см. ниже). Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать "новые" кометы.
Короткопериодические кометы. При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из "свежих" комет. Пополнение короткопериодических комет происходит в результате их "захвата" планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый "внутренним облаком Оорта". В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака. Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.
Негравитационные силы. Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой "послеполуденной" стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.
Кометы, задевающие Солнце. Особую группу короткопериодических комет составляют кометы, "задевающие" Солнце. Вероятно, они образовались тысячелетия назад в результате приливного разрушения крупного, не менее 100 км в диаметре, ядра. После первого катастрофического сближения с Солнцем фрагменты ядра совершили ок. 150 оборотов, продолжая распадаться на части. Двенадцать членов этого семейства комет Крейца наблюдались между 1843 и 1984. Возможно, их происхождение связано с большой кометой, которую видел Аристотель в 371 до н.э.
В ПРОШЛОМ кометы иногда считались предвестницами несчастий. На иллюстрации (1579) вождь ацтеков Монтесума наблюдает небесный знак падения своего царства.
Комета Галлея. Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э. Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея - 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов - два японских ("Сакигаке" и "Суйсей"), два советских ("Вега-1" и "Вега-2") и один европейский ("Джотто"). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность "чернее угля".Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого. См. также ГАЛЛЕЙ, ЭДМУНД.
ЯДРО КОМЕТЫ ГАЛЛЕЯ, схематическое изображение кометы.
Комета Энке. Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года - наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791-1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.
КОМЕТА ХЕЙЛА - БОППА, приближавшаяся к Солнцу весной 1997.
Комета Джакобини - Циннера. Эту комету открыл М. Джакобини в 1900 и переоткрыл Э. Циннер в 1913. Ее период 6,59 лет. Именно с ней 11 сентября 1985 впервые сблизился космический зонд "International Cometary Explorer", который прошел через хвост кометы на расстоянии 7800 км от ядра, благодаря чему были получены данные о плазменной компоненте хвоста. С этой кометой связан метеорный поток Джакобиниды (Дракониды).
ФИЗИКА КОМЕТ
Ядро. Все проявления кометы так или иначе связаны с ядром. Уиппл предположил, что ядро кометы является сплошным телом, состоящим в основном из водяного льда с частицами пыли. Такая модель "грязного снежка" легко объясняет многократные пролеты комет вблизи Солнца: при каждом пролете испаряется тонкий поверхностный слой (0,1-1% полной массы) и сохраняется внутренняя часть ядра. Возможно, ядро является конгломератом нескольких "кометезималей", каждая не более километра в диаметре. Такая структура могла бы объяснить распад ядер на части, как это наблюдалось у кометы Биелы в1845 или у кометы Веста в 1976.
Блеск. Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, - от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.
Размер ядра. Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким - ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.
Сублимация. Переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5-3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини - Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот "составной" лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.
Кома. Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.
Водородная корона. Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H2O. Фотодиссоциация разрушает H2O на H и OH, а затем OH - на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.
Хвост и сопутствующие явления. Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов. Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок. Плазменный хвост в десятки и даже сотни миллионов километров длиной - это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H2O+, OH+, CO+, CO2+) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO+ . Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х. Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини - Циннера и Галлея в 1985 и 1986. В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью ок. 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс "захвата"; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы. Замечательное зрелище представляет "обрыв хвоста". Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.
Столкновения в Солнечной системе. Из наблюдаемого количества и орбитальных параметров комет Э. Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.
Таблица 2.
СТОЛКНОВЕНИЯ ЗЕМЛИ С ЯДРАМИ КОМЕТ
ЯВЛЕНИЕ ОБРЫВА хвоста кометы, показанное на серии фотографий кометы Галлея (сверху вниз).
ЛИТЕРАТУРА
Всехсвятский С. К. Природа и происхождение комет и метеорного вещества. М., 1967 Чурюмов К. И. Кометы и их наблюдение. М., 1980 Марочник Л. С. Свидание с кометой. М., 1985
сущ., кол-во синонимов: 23
блиставица (2)
волосатая звезда (1)
галактика (24)
звезда с хвостом (2)
косматая звезда (1)
косматое светило (1)
небесная гостья (1)
огненный змей (1)
судно (401)
тело (62)
хвостатая звезда (4)
хирон (3)
(косматое, хвостатое) светило, огненный змей, звездная, звезда (волосатая, косматая, хвостатая, с хвостом), (скиталица, странница, пришелица, гостья) (хвостатая, небесная, космическая, межпланетная, из космоса)
Заимств. в XVII в. из лат. яз., где cometa < греч. komētēs (astēr) «хвостатая» (звезда), суф. производного от komē «волосы, космы, хвост».
коме́та
через франц. comète из лат. соmētа от греч. κομήτης "носящий длинные волосы; комета"; κόμη "волосы".
Комета - со времен глубокой древности люди наблюдали движение небесных светил. Они давали им имена богов - Марс, Венера - или земных существ, которых напоминали своими очертаниями звездные скопления: так появились, например, созвездия Рака или созвездие Козерога. А как назвать небесное тело, похожее на яркую звезду со светящимся хвостом, иногда даже с несколькими, выглядящими, как растрепанные космы? Конечно, греческим словом kometes - волосатая, косматая звезда.
КОМЕТА ы, ж. comète f., cometa <, гр. kometes волосатая звезда.
1. Небесное тело, состоящее из светящегося ядра, окруженного туманной оболочкой, и хвоста в виде узкой яркой полосы света. БАС-1. Ныне женщины наряжаются в маленькие Чепчики, кои по вздетии на шире ладони ручной; вчесанные волосы доканчивают убор головы. Называется этот род уборки назад. Есть еще чепцы высокие, утвержденные на медной проволоке, которые называются чепец кометою. Сл. комм. 1790 7 381. ♦ Вино кометы. Вино урожая 1812 года, когда на небе была видна комета. Вошел, и пробки в потолок, Вина кометы хлынул ток. Пуш. Е. Онегин. На дороге в cara patria мы остановились на Майне, .. где мой муж купил у Зарха самый лучший Маркобруннер и Рейнвейн de la comète. А. Смирнова Зап. // РА 1895 7 328.
2. Комета. В сию игру потребно карт две полныя колоды, из которых исключают четырех тузов, дабы не замешать карт, то в одну игру полагаются красные, а черные в другую .. В красную игру кладется девятка крестовая, а в черную червонная, и служит кометою. 1779. Г. Комов Карт. игры 2 178. Комета разыгрывается наподобие пикета .. Поэни и пари также как и в пикете и играют обыкновенно до 24. Трефовая девятка кладется в красную игру, а керовая в черную, которая служит кометою и есть во всей той игре главная карта. Ян. 1804. - Лекс. Поликарпов 1704: коме/та.
КОМЕТА (греч. kometes - волосатая звезда, от kome - волоса). Род небесных тел, принадлежащих к нашей солнечной системе, впрочем, на короткое только время. В них явственно можно различить три главная части: туманная, более или менее блестящая оболочка, голова кометы; под этою оболочкою находится ядро; наконец, третья часть, хвост, иногда отделенный от головы пустым, тусклым пространством.
- Небесная «вертихвостка».
- Хвостатое светило.
- Космическая гостья.
- В 2014 году спускаемый аппарат «Филы» впервые в истории совершил посадку на такой объект.
- Небесное тело.
- Это небесное тело греки считали неопрятно причёсанным.
- Космическое тело с головой и хвостом.
- Небольшое небесное тело.
- Переведите на греческий язык «волосатая».
- Хвост этой золотой рыбки в три-четыре раза больше её самой, чем и объясняется её название.
- Фантастическая комедия, последняя режиссёрская работа Ричарда Викторова.
- Серия морских пассажирских теплоходов на подводных крыльях.
- Гостиница в Москве.
- Золотая рыбка.
- Рыба семейства карповых.
- Стихотворение Александра Блока.
КОМЕТА ГАЛЛЕЯ - единственная из короткопериодических комет (орбитальный период ок. 76 лет), легко доступная для наблюдения невооруженным глазом. Относительно небольшие ядра комет, состоящие из льда с вкраплениями пылевых частиц, приближаясь к Солнцу, окутываются огромной атмосферой (комой) из газа и пыли протяженностью в сотни тысяч километров. Интенсивный солнечный нагрев испаряет лед из ядра кометы, выбрасывая газ и пыль в окружающую его атмосферу. Затем под напором солнечных фотонов и высокоскоростных частиц солнечного ветра это вещество улетает в противоположном от Солнца направлении, образуя газо-пылевой хвост кометы, достигающий в длину миллионов километров.
КОМЕТА ГАЛЛЕЯ (12 марта 1986).
В марте 1986 комету Галлея наблюдали не только многочисленные любители астрономии и профессиональные ученые, но и пять международных космических аппаратов
(см. также КОСМИЧЕСКИЙ ЗОНД). Японские зонды "Сакигаке" и "Суйсей" наблюдали огромное водородное облако, окружающее комету, и исследовали взаимодействие кометы с заряженными частичками солнечного ветра. Советские зонды "Вега-1 и -2" прошли 6 и 9 марта на расстояниях 8 871 и 8 014 км от кометы. Зонд Европейского космического агенства "Джотто" прошел 14 марта 1986 ближе остальных от ядра кометы - всего в 605 км. Телевизионные изображения, переданные европейским и советскими зондами, показали черное как смоль ядро кометы. Сопоставив наземные и космические наблюдения газа и пыли, окружающих ядро, ученые сделали вывод, что оно примерно на 50% состоит из льда, а остальное составляют пыль и другие нелетучие вещества. Лед состоит, в основном, из воды (80%) и окиси углерода (10%), а остальное - это формальдегид, двуокись углерода, метан, аммиак и синильная кислота. Нелетучая часть, в основном представленная пылинками микронного размера, состоит либо из каменистого вещества, либо из легких углеводородов. Внешне ядро кометы Галлея предсталяет собой картофелеобразный объект размерами ок. 14*10*8 км. Его очень черная кора из углеродистого (органического) вещества во многих местах покрыта разломами, сквозь которые просматривается подкорковое вещество, состоящее в основном из водяного льда с вкраплениями темных пылинок. Поскольку ядро кометы вращается вокруг своей оси с периодом в несколько суток, этот лед под влиянием солнечного света испаряется и превращается в газ, который, вылетая из ядра, захватывает с собой пылевые частицы. Именно это ядро, похожее на небольшой грязный айсберг, поставляло весь газ и пыль, образовавшие необъятную атмосферу и хвост кометы. Комета Галлея была первой, для которой удалось предсказать, что она будет периодически возвращаться в центральную область Солнечной системы. Используя математический аппарат, разработанный И.Ньютоном, его коллега Э. Галлей (1656-1742) вычислил параметры орбит 24-х комет, наблюдавшихся астрономами в предшествовавшие годы. Оказалось, что кометы, появлявшиеся в 1531, 1607 и 1682, имели похожие орбиты. Галлей предположил, что в действительности это один и тот же объект, и предсказал, что комета, носящая сейчас его имя, вернется к Солнцу в конце 1758 или в начале 1759. Когда в конце 1758 немецкий любитель астрономии И. Палич обнаружил комету на небе, это стало триумфом расчетов Галлея и положенных в их основу законов Ньютона. На своем длинном пути по орбите комета Галлея попадает под действие гравитационного притяжения планет, мимо которых она проходит, а приблизившись к Солнцу, ощущает слабую силовую отдачу от испаряющихся с поверхности ее ядра газов. Под действием этих возмущений орбитальный перид кометы может меняться на несколько лет от одного ее появления до другого. Расчет движения кометы Галлея в прошлое позволяет вычислить каждое из ее 30 появлений между 240 до н.э. и 1986. Следующие по времени два ее прохождения близ Солнца ожидаются 28 июля 2061 и 27 марта 2134. Пролет кометы в 1986 немного разочаровал наблюдателей, поскольку она не подошла достаточно близко к Земле. Ее минимальное расстояние от нашей планеты 10 апреля 1986 года составляло 63 млн. км. К сожалению, во время возвращения в 2061 комета не подойдет к Земле ближе чем на 71 млн. км. Это случится 29 июля 2061. А возвращение 2134 будет более впечатляющим, так как комета 7 мая 2134 будет находиться от Земли на расстоянии 13,7 млн. км.
ЛИТЕРАТУРА
Колдер Н. Комета надвигается! М., 1984 Беляев Н.А., Чурюмов К.И. Комета Галлея и ее наблюдение. М., 1985 Марочник Л.С. Свидание с кометой. М., 1985
КОМЕТА ИСКУССТВЕННАЯ - КОМЕ́ТА ИСКУ́ССТВЕННАЯ, облако паров натрия или др. веществ, выпускаемых с космического летательного аппарата для оптических наблюдений за его полетом, определения параметров траектории, проведения научных исследований. Первая комета искусственная образована «Луной-1».
КОМЕТА ИСКУССТВЕННАЯ - облако паров натрия или др. веществ, выпускаемых с космического летательного аппарата для оптических наблюдений за его полетом, определения параметров траектории, проведения научных исследований. Первая комета искусственная образована "Луной-1".