Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.
Уважаемый пользователь, сайт развивается и существует только на доходы от рекламы - пожалуйста, отключите
блокировщик рекламы.
соединительная ткань
Энциклопедия Кольера
СОЕДИНИТЕЛЬНАЯ ТКАНЬ - главная опорная и защитная ткань организма, основа всех его связующих и опорных структур. В широком смысле это несколько разных тканей, образующих соединительнотканные структуры - кости, сухожилия, связки, суставы, дерму и кровеносные сосуды, однако к собственно соединительной ткани относят только внеклеточное вещество, заполняющее пространство внутри органов и между ними. Именно она определяет физические особенности всех органов и структур.
Структура. Внеклеточное вещество соединительной ткани содержит целый ряд компонентов. Под микроскопом в нем различают волокна, микрофибриллы, промежуточные филаменты и аморфное основное вещество. Большинство этих компонентов продуцируется соединительнотканными клетками, главным образом фибробластами, редко разбросанными в основном веществе. Волокна состоят в основном из фибриллярного белка коллагена. Особенности их строения обусловливают прочность сухожилий и твердость костей, а также поддержание формы органов. Описано свыше 18 вариантов коллагена, которые в разных сочетаниях образуют пучки, оболочки и связывающие структуры. Наибольшей механической прочностью обладает коллаген типа I - самый распространенный гликопротеин в организме человека и животных. Постоянно открываются все новые типы коллагена с высокоспециализированными функциями. Нагревание в кислой среде превращает коллаген в желатину.
См. также БЕЛКИ.
Микрофибриллы. Полностью созревшие микрофибриллы придают соединительной ткани эластичность и растяжимость. Они образованы главным образом из белка эластина, к которому в некоторых структурах добавляется фибриллин. При старении происходит фрагментация или растворение микрофибрилл, что приводит, в частности, к появлению морщин на коже и отвердению стенок кровеносных сосудов. Особый тип более мелких микрофибрилл, состоящих из коллагена IV и VII типов, служит для прикрепления клеток к подлежащим базальным мембранам. Промежуточные филаменты состоят в основном из различных кератинов, которые обеспечивают прочность кожи или образуют твердую сухую массу волос, ногтей и копыт. Специализированные кератиновые филаменты формируют внутренний опорный скелет клетки и связывают ее с внеклеточным веществом. В образовании таких контактов участвуют рецепторы, расположенные на клеточной поверхности.
Основное вещество. Этот аморфный материал содержит в основном протеогликаны (белки с присоединенными к ним специфичными полисахаридами). Для их выявления обычно применяют специальные методы окрашивания. Одна из главных функций протеогликанов - удержание в тканях воды, что обеспечивает амортизирующие свойства таких, например, структур, как суставы. Протеогликаны участвуют также в регуляции притока питательных веществ, необходимых клеткам.
Болезни соединительной ткани (коллагенозы). В 1942 американский патолог П.Клемперер объединил термином "коллагенозы" группу разнообразных заболеваний, общим проявлением которых было диффузное воспалительное и дегенеративное поражение соединительной ткани. Поскольку изменения структуры и количества коллагена при этих заболеваниях возникают как вторичное явление, Клемперер впоследствии назвал данный тип патологии диффузными болезнями соединительной ткани. К ним относят ревматоидный артрит, системную красную волчанку, системную склеродермию, дерматомиозит, а также ряд сосудистых заболеваний типа узелкового полиартериита. Женщины страдают этими болезнями примерно в 4 раза чаще, чем мужчины. Для болезней соединительной ткани типична патология иммунной системы, приводящая к развитию аутоиммунного процесса (т.е. к иммунологической атаке на те или иные собственные структуры организма). Возможно повреждение соединительной ткани суставов (ревматоидный артрит), капилляров (красная волчанка), кожи (склеродермия), мышц (миозит) и кровеносных сосудов (полиартериит). Лечение направлено на подавление нарушенной иммунологической активности.
См. также
АРТРИТ;
КРАСНАЯ ВОЛЧАНКА;
СКЛЕРОДЕРМИЯ;
ГИСТОЛОГИЯ.
Полезные сервисы
плазматическая мембрана
Энциклопедический словарь
Плазмати́ческая мембра́на (клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей её средой.
* * *
ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА - ПЛАЗМАТИ́ЧЕСКАЯ МЕМБРА́НА (плазмалемма, клеточная мембрана), поверхностная, периферическая структура, окружающая протоплазму растительных и животных клеток. Служит не только механическим барьером, но, главное, ограничивает свободный двусторонний поток в клетку и из нее низко- и высокомолекулярных веществ. Более того, плазмалемма выступает как структура, «узнающая» различные химические вещества и регулирующая избирательный транспорт этих веществ в клетку. Как и другие мембраны клетки, она возникает и обновляется за счет синтетической активности эндоплазматического ретикулюма и имеет сходное с ними строение.
Барьерно-транспортная роль плазмалеммы.
Механическая устойчивость плазматической мембраны определяется не только свойствами самой мембраны, но и свойствами прилежащих к ней гликокаликса и кортикального слоя цитоплазмы.
Внешняя поверхность плазматической мембраны покрыта рыхлым волокнистым слоем вещества толщиной 3-4 нм - гликокаликсом. Он состоит из ветвящихся полисахаридных цепей мембранных интегральных белков, между которыми могут располагаться выделенные клеткой гликолипиды и протеогликаны. Тут же обнаруживаются некоторые клеточные гидролитические ферменты, участвующие во внеклеточном расщеплении веществ (внеклеточное пищеварение, например, в эпителии кишечника). Кортикальный слой цитоплазмы, толщиной 0,1-0,5 мкм, не содержит рибосом и мембранных структур, но богат актиновыми микрофиламентами.
Плазматическая мембрана, как и другие липопротеидные мембраны клетки, является полупроницаемой. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Транспорт ионов может проходить по градиенту концентраций, т. е. пассивно, без затрат энергии. В этом случае некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые ионы проходят сквозь мембрану за счет простой диффузии. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану. Такой тип переноса называется активным транспортом и осуществляется с помощью белковых ионных насосов. Например, затрачивая 1 молекулу АТФ, система К-Nа насоса откачивает за один цикл из клетки 3 иона Nа и закачивает 2 иона К против градиента концентрации. В сочетании с активным транспортом ионов через плазмалемму проникают различные сахара, нуклеотиды и аминокислоты. Макромолекулы, такие как, например, белки, через мембрану не проходят. Они, а также более крупные частицы вещества транспортируются внутрь клетки посредством эндоцитоза. При эндоцитозе определенный участок плазмалеммы захватывает, обволакивает внеклеточный материал, заключает его в мембранную вакуоль. Эта вакуоль - эндосома - сливается в цитоплазме с первичной лизосомой и происходит переваривание захваченного материала. Эндоцитоз формально разделяют на фагоцитоз (поглощение клеткой крупных частиц) и пиноцитоз (поглощение растворов). Плазматическая мембрана принимает участие и в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу.
Рецепторная роль плазмалеммы
Белки-переносчики внешней мембраны клетки являются также рецепторами, узнающими определенные ионы и взаимодействующими с ними. В качестве рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса. Такие чувствительные к отдельным веществам участки разбросаны по поверхности клетки или собраны в небольшие зоны. Роль многих клеточных рецепторов заключается не только в связывании специфических веществ, но и в передаче сигналов с поверхности внутрь клетки. Например, при действии гормона на клетку цепь событий развертывается следующим образом: молекула гормона специфически взаимодействует с рецепторным белком плазмалеммы и, не проникая в клетку, активирует фермент, синтезирующий ЦАМФ (см. АДЕНОЗИНМОНОФОСФАТ ЦИКЛИЧЕСКИЙ). Последний активирует или ингибирует внутриклеточный фермент или группу ферментов.
Разнообразие и специфичность наборов рецепторов на поверхности клеток приводит к созданию очень сложной системы маркеров, позволяющих клеткам отличать «своих» (той же особи или того же вида) от «чужих».
Межклеточные соединения
У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли. При тесном соседстве клеток друг с другом гликокаликс обеспечивает слипание клеток за счет присутствия в нем трансмембранных гликопротеидов кадгеринов. Это простой межклеточный контакт, при котором зазор между клетками составляет 10-20 нм. В эпителиях часто встречается плотное, или запирающее, соединение, при котором внешние слои двух плазматических мембран максимально сближены и в точках их соприкосновения лежат глобулы интегральных белков мембраны. Такой контакт непроницаем для молекул и ионов, он запирает межклеточные полости.
Заякоривающие соединения, или контакты, не только соединяют плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета. Например, для десмосом (см. ДЕСМОСОМЫ), имеющих вид бляшек или кнопок, в межклеточном пространстве характерно наличие плотного слоя гликопротеидов десмоглеинов. С цитоплазматической стороны к плазмалемме прилежит слой белка десмоплакина, связанный с промежуточными филаментами цитоскелета.
Щелевые контакты считаются коммуникационными соединениями клеток. В зоне щелевого контакта может быть от 20-30 до нескольких тысяч коннексонов - цилидрических белковых структур с внутренним каналом диаметром 2 нм. Каждый коннексон состоит из 6 субъединиц белка коннектина. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку.
Полезные сервисы