Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

белки

Толковый словарь

I мн.

Выпуклые непрозрачные оболочки глаз белого [белый IV 1.] цвета.

II мн. разг.-сниж.

Глаза.

III мн.

Сложное органическое вещество, являющееся важнейшей составной частью животных и растительных организмов.

IV мн. местн.

Горные вершины, покрытые снегом в течение всего года.

Толковый словарь Даля

БЕЛКИ - мн. бельма, талы, буркала, шары, баньки, вытараски, выторочки, большие глаза. Что белки выпучил?

| сиб. белки, бельцы, белогорье, снеговые горы. Белочная пена, яичная, сбитый белок. Белковая глазная оболочка, роговая. Белковый лес, с белью. Белец муж. белица жен. живущий в монастыре, но еще не постриженный в монашество. Есть общины белиц, в общежитиях, не принимающие вовсе монашеского обета. Наши белички не велички, да круглолички.

| Растение белица, Leucanthemum vulgare, поповник, из семейства ромашковых (ошибочно былица); оно же и белик муж. также белоголовник, желтушка, полевая ромашка, кутки, ромен, нивняк, иванова трава, иванов цвет; белица, судоходный конопатный топорик?

| Белик же растение Alisma Plantago, жабник (как зовут и лютик, Ranunculus), водяной подорожник, водяной шильник, подшильник, чистуха, пупошник, пуповик, баранья(?) трава.

| Белик пустошный, Gnaphalium sylvaticum, золотуха.

| Белик, вид белесоватого, сибирского гранита;

| сиб. тучная новь, целина, непашь, земля под огороды. Бельцов, белицын, беличкин, им принадлежащий. Беличий, к ним относящийся, им свойственный. Беликовый жернов, из гранита белика. Белошня ·об., архан., белошной, беложавый человек, архан. белоручка, неженка в работе. Белковина жен. вещество яичного белка, найденное химиками и в других животных и растительных частях: в крови, в мышцах, семенах и пр. Белковинный, к ней относящийся. Белковинное начало. Белковинистое вещество, содержащее белковину или на нее похожее. Белыш, что-либо белое; шуточно, белолицый, белокурый. Два белыша ведут черныша? чело печи и очелыш.

| вологод., пермяц., архан. яичный белок. Белик муж., архан. медвежье сало ломтем, продаваемое как лекарственная мазь. Беляк муж. чистяк, чистячок, опрятный человек, щеголек;

| нерабочий, белоручка. Белячок черной работы не любит.

| Беляки по ногтю (или ногти цветут) к гостинцу, к обнове.

| Белая волна, пена, завой, кудри на волне, белоголовец, барашки, зайчики. По Волге беляк ходит, белячок играет, расходился.

| астрах. рунный, стайный, гуртовой ход красной рыбы, идущей, по вскрытии реки, в устья выбивать (метать) икру. Осетрий беляк идет.

| пермяц. белая, пепелистая, холодная почва, иловатая или известковая. По беляку сеять, беляки и будут, ·т.е. чисто, голо.

| пенз., смол. гриб белянка или подгруздок.

| Растение Pyrola minor, березка;

| белый трилистник, Trifolium montanum; Cytisus biflorus, ракитник, дереза, зиновник, полевой багульник, древесный зверобой, маврот, вязник, железник, ветловник, чижовник, кагальник (ошибочно чилига).

| Заяц, Lepus variabilis, для отличия от русака; он летом серый, зимою белый; отличается и летом от русака меньшим весом, толстыми пазанками (лапами), рыжиною и черным хребтиком по цветку (хвосту).

| орл. холщевой, белый кафтан, балахон, иногда с черными гарусными костылями по спине; летник, холодник, белага.

| вологод. обувь из белой, сыромятной кожи, род поршней.

| Кожевенный снаряд, для разминки белых, сыромятных кож: две стойки, на коих растягивают кожу руками, нажимая ее коленом.

| Белый, избирательный шар, при баллотировке. Думали, что черняков наклали, ан все беляки. Думали, беляки - ан на вороных прокатили.

| сиб. излишний сбор ясака с инородцев, как бы для обелки их перед местными властями. Белоша жен., архан. беляк, ·в·знач. рунного, стайного хода рыбы. Белошный, беляшной, архан. к белоше, беляку относящийся. Белошиться, кишеть. Белячина вкусом хуже русачины, мясо зайца беляка. Беляковый, белячный, белячий, до беляка, в разных значениях относящийся. Белячка, белоручка, нерабочая.

Словарь существительных

БЕЛКИ́, -о́в, мн (ед бело́к, -лка́, м).

Сложные высокомолекулярные органические вещества, обеспечивающие жизнедеятельность животных и растительных организмов; постоянная и наиболее важная составная часть живого вещества, основа его структуры и функции.

В состав белков входят азот, углерод, водород, кислород, почти всегда сера, иногда фосфор и железо.

Энциклопедический словарь

БЕЛКИ

1. БЕЛКИ́, -о́в; мн. (ед. бело́к, -лка́; м.).

1. Выпуклые непрозрачные оболочки глаз белого цвета. Б. у неё голубоватые.

2. Разг.-сниж. О глазах. Вращать белками.

Бело́чный, -ая, -ое. Б-ые оболочки глаз.

2. БЕЛКИ́, -о́в; мн. (ед. бело́к, -лка́; м.). Сложные органические вещества, обеспечивающие жизнедеятельность животных и растительных организмов. Животные, растительные б. Синтезировать б.

Белко́вый, -ая, -ое. Б-ые соединения. Б. обмен. Б-ая недостаточность. Б-ая пища (насыщенная белками). Б-ая икра (искусственный заменитель паюсной икры).

3. БЕЛКИ́, -ов; мн. (ед. бело́к, -лка́; м.). Нар.-разг. Горные вершины, покрытые снегом в течение всего года.

* * *

Белки́ (белок), вершины гор Южной Сибири, покрытые снегом в течение всего лета или его большей части (например, Агульские Белки).

-----------------------------------

БЕЛКИ

1. БЕЛКИ́, -о́в; мн. (ед. бело́к, -лка́; м.).

1. Выпуклые непрозрачные оболочки глаз белого цвета. Б. у неё голубоватые.

2. Разг.-сниж. О глазах. Вращать белками.

Бело́чный, -ая, -ое. Б-ые оболочки глаз.

2. БЕЛКИ́, -о́в; мн. (ед. бело́к, -лка́; м.). Сложные органические вещества, обеспечивающие жизнедеятельность животных и растительных организмов. Животные, растительные б. Синтезировать б.

Белко́вый, -ая, -ое. Б-ые соединения. Б. обмен. Б-ая недостаточность. Б-ая пища (насыщенная белками). Б-ая икра (искусственный заменитель паюсной икры).

3. БЕЛКИ́, -ов; мн. (ед. бело́к, -лка́; м.). Нар.-разг. Горные вершины, покрытые снегом в течение всего года.

* * *

белки - I

бе́лки

род млекопитающих семейства беличьих. Длина тела 20-30 см, хвост длинный, пышный. Около 40 видов, в лесах Евразии, Северной и Южной Америки (северная часть). Белка обыкновенная (векша) - объект промысла.

II

белки́

природные высокомолекулярные органические соединения, построенные из остатков 20 аминокислот, которые соединены пептидными связями в длинные цепи. Молекулярная масса от нескольких тысяч до нескольких миллионов. В зависимости от формы белковой молекулы различают фибриллярные и глобулярные белки. Особая группа - сложные белки, в состав которых, кроме аминокислот входят углеводы (гликопротеиды), нуклеиновые кислоты (нуклеопротеиды) и т. д. Во всех живых организмах белки играют исключительно важную роль: участвуют в построении клеток и тканей, являются биокатализаторами (ферменты), гормонами, дыхательными пигментами (гемоглобины), защитными веществами (иммуноглобулины) и др. Биосинтез белков происходит на рибосомах и определяется генетическим кодом нуклеиновых кислот в процессе трансляции. Белки - основа кожи, шерсти, шёлка и других натуральных материалов, важнейшие компоненты пищи человека и корма животных. Со второй половины XX в. для получения пищевых и кормовых белков применяют микробиологический синтез.

Большой энциклопедический словарь

БЕЛКИ - природные высокомолекулярные органические соединения, построенные из остатков 20 аминокислот, которые соединены пептидными связями в длинные цепи. Молекулярная масса от нескольких тысяч до нескольких миллионов. В зависимости от формы белковой молекулы различают фибриллярные и глобулярные белки. Особая группа - сложные белки, в состав которых кроме аминокислот входят углеводы (гликопротеиды), нуклеиновые кислоты (нуклеопротеиды) и т. д. Во всех живых организмах белки играют исключительно важную роль: они участвуют в построении клеток и тканей, являются биокатализаторами (ферменты), гормонами, дыхательными пигментами (гемоглобины), защитными веществами (иммуноглобулины) и др. Биосинтез белков происходит на рибосомах и определяется генетическим кодом нуклеиновых кислот в процессе трансляции. Белки - основа кожи, шерсти, шелка и других натуральных материалов, важнейшие компоненты пищи человека и корма животных. Со 2-й пол. 20 в. для получения пищевых и кормовых белков применяют микробиологический синтез.

-----------------------------------

БЕЛКИ - род млекопитающих семейства беличьих. Длина тела 20-30 см, хвост длинный, пышный. Ок. 40 видов, в лесах Евразии, Сев. и Юж. Америки (северная часть). Белка обыкновенная (векша) - объект промысла.

-----------------------------------

БЕЛКИ (белок) - вершины гор Юж. Сибири, покрытые снегом в течение всего лета или его большей части (напр., Агульские Белки).

Академический словарь

-о́в, мн. (ед. бело́к, -лка́, м.). обл.

Название горных вершин, покрытых снегом в течение всего года.

Охотники возле последнего кедра развели огонь, согрели воду (холодную воду, поднимаясь в белки, охотники никогда не пьют). М. Пришвин, Золотой рог.

[Иван] поехал работать на горный рудник, высоко, на вечноснежную вершину - на белок. Горышин, До полудня.

||

Пятна снега, остающиеся лежать в горах и летом.

Энциклопедия Кольера

БЕЛКИ (протеины), класс сложных азотсодержащих соединений, наиболее характерных и важных (наряду с нуклеиновыми кислотами) компонентов живого вещества. Белки выполняют многочисленные и разнообразные функции. Большинство белков - ферменты, катализирующие химические реакции. Многие гормоны, регулирующие физиологические процессы, тоже являются белками. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы. К белкам относятся антитела, которые связывают и нейтрализуют токсичные вещества. Некоторые белки, способные реагировать на внешние воздействия (свет, запах), служат в органах чувств рецепторами, воспринимающими раздражение. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторные функции. В первой половине 19 в. многие химики, и среди них в первую очередь Ю.фон Либих, постепенно пришли к выводу, что белки представляют собой особый класс азотистых соединений. Название "протеины" (от греч. protos - первый) предложил в 1840 голландский химик Г.Мульдер.

ФИЗИЧЕСКИЕ СВОЙСТВА

Белки в твердом состоянии белого цвета, а в растворе бесцветны, если только они не несут какой-нибудь хромофорной (окрашенной) группы, как, например, гемоглобин. Растворимость в воде у разных белков сильно варьирует. Она изменяется также в зависимости от рН и от концентрации солей в растворе, так что можно подобрать условия, при которых один какой-нибудь белок будет избирательно осаждаться в присутствии других белков. Этот метод "высаливания" широко используется для выделения и очистки белков. Очищенный белок часто выпадает в осадок из раствора в виде кристаллов. В сравнении с другими соединениями молекулярная масса белков очень велика - от нескольких тысяч до многих миллионов дальтон. Поэтому при ультрацентрифугировании белки осаждаются, и притом с разной скоростью. Благодаря присутствию в молекулах белков положительно и отрицательно заряженных групп они движутся с разной скоростью и в электрическом поле. На этом основан электрофорез - метод, применяемый для выделения индивидуальных белков из сложных смесей. Очистку белков проводят и методом хроматографии.

ХИМИЧЕСКИЕ СВОЙСТВА

Строение. Белки - это полимеры, т.е. молекулы, построенные, как цепи, из повторяющихся мономерных звеньев, или субъединиц, роль которых играют у них a-аминокислоты. Общая формула аминокислот

БЕЛКИ

где R - атом водорода или какая-нибудь органическая группа. Белковая молекула (полипептидная цепь) может состоять всего лишь из относительно небольшого числа аминокислот или из нескольких тысяч мономерных звеньев. Соединение аминокислот в цепи возможно потому, что у каждой из них имеются две разные химические группы: обладающая основными свойствами аминогруппа, NH2, и кислотная карбоксильная группа, СООН. Обе эти группы присоединены к a-атому углерода. Карбоксильная группа одной аминокислоты может образовать амидную (пептидную) связь с аминогруппой другой аминокислоты:

БЕЛКИ

После того как две аминокислоты таким образом соединились, цепь может наращиваться путем добавления ко второй аминокислоте третьей и т.д. Как видно из приведенного выше уравнения, при образовании пептидной связи выделяется молекула воды. В присутствии кислот, щелочей или протеолитических ферментов реакция идет в обратном направлении: полипептидная цепь расщепляется на аминокислоты с присоединением воды. Такая реакция называется гидролизом. Гидролиз протекает спонтанно, а для соединения аминокислот в полипептидную цепь требуется энергия. Карбоксильная группа и амидная группа (или сходная с ней имидная - в случае аминокислоты пролина) имеются у всех аминокислот, различия же между аминокислотами определяются природой той группы, или "боковой цепи", которая обозначена выше буквой R. Роль боковой цепи может играть и один атом водорода, как у аминокислоты глицина, и какая-нибудь объемистая группировка, как у гистидина и триптофана. Некоторые боковые цепи в химическом смысле инертны, тогда как другие обладают заметной реакционной способностью. Синтезировать можно многие тысячи различных аминокислот, и множество различных аминокислот встречается в природе, но для синтеза белков используется только 20 видов аминокислот: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин (в белках цистеин может присутствовать в виде димера - цистина). Правда, в некоторых белках присутствуют и другие аминокислоты, помимо регулярно встречающихся двадцати, но они образуются в результате модификации какой-нибудь из двадцати перечисленных уже после того, как она включилась в белок.

Оптическая активность. У всех аминокислот, за исключением глицина, к a-атому углерода присоединены четыре разные группы. С точки зрения геометрии, четыре разные группы могут быть присоединены двумя способами, и соответственно есть две возможные конфигурации, или два изомера, относящиеся друг к другу, как предмет к своему зеркальному отражению, т.е. как левая рука к правой. Одну конфигурацию называют левой, или левовращающей (L), а другую - правой, или правовращающей (D), поскольку два таких изомера различаются направлением вращения плоскости поляризованного света. В белках встречаются только L-аминокислоты (исключение составляет глицин; он может быть представлен лишь одной формой, поскольку у него две из четырех групп одинаковы), и все они обладают оптической активностью (поскольку имеется только один изомер). D-аминокислоты в природе редки; они встречаются в некоторых антибиотиках и клеточной оболочке бактерий.

АСИММЕТРИЧЕСКИЙ АТОМ УГЛЕРОДА в молекуле аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L-конфигурации, характерной для всех природных аминокислот.

АСИММЕТРИЧЕСКИЙ АТОМ УГЛЕРОДА в молекуле аминокислоты изображен здесь в виде шарика, помещенного в центр тетраэдра. Представленное расположение четырех замещающих групп соответствует L-конфигурации, характерной для всех природных аминокислот.

Последовательность аминокислот. Аминокислоты в полипептидной цепи располагаются не случайным образом, а в определенном фиксированном порядке, и именно этот порядок определяет функции и свойства белка. Варьируя порядок расположения 20 видов аминокислот, можно получить огромное число разных белков, точно так же, как из букв алфавита можно составить множество разных текстов. В прошлом на определение аминокислотной последовательности какого-нибудь белка уходило нередко несколько лет. Прямое определение и теперь достаточно трудоемкое дело, хотя созданы приборы, позволяющие вести его автоматически. Обычно проще бывает определить нуклеотидную последовательность соответствующего гена и вывести из нее аминокислотную последовательность белка. К настоящему времени уже определены аминокислотные последовательности многих сотен белков. Функции расшифрованных белков, как правило, известны, и это помогает представить себе возможные функции сходных белков, образующихся, например, при злокачественных новообразованиях.

Сложные белки. Белки, состоящие из одних только аминокислот, называют простыми. Часто, однако, к полипептидной цепи бывают присоединены атом металла или какое-нибудь химическое соединение, не являющееся аминокислотой. Такие белки называются сложными. Примером может служить гемоглобин: он содержит железопорфирин, который определяет его красный цвет и позволяет ему играть роль переносчика кислорода. В названиях большинства сложных белков содержится указание на природу присоединенных групп: в гликопротеинах присутствуют сахара, в липопротеинах - жиры. Если от присоединенной группы зависит каталитическая активность фермента, то ее называют простетической группой. Нередко какой-нибудь витамин играет роль простетической группы или входит в ее состав. Витамин А, например, присоединенный к одному из белков сетчатки, определяет ее чувствительность к свету.

Третичная структура. Важна не столько сама аминокислотная последовательность белка (первичная структура), сколько способ ее укладки в пространстве. По всей длине полипептидной цепи ионы водорода образуют регулярные водородные связи, которые придают ей форму спирали либо слоя (вторичная структура). Из комбинации таких спиралей и слоев возникает компактная форма следующего порядка - третичная структура белка. Вокруг связей, удерживающих мономерные звенья цепи, возможны повороты на небольшие углы. Поэтому с чисто геометрической точки зрения число возможных конфигураций для любой полипептидной цепи бесконечно велико. В действительности же каждый белок существует в норме только в одной конфигурации, определяемой его аминокислотной последовательностью. Структура эта не жесткая, она как бы "дышит" - колеблется вокруг некой средней конфигурации. Цепь складывается в такую конфигурацию, при которой свободная энергия (способность производить работу) минимальна, подобно тому как отпущенная пружина сжимается лишь до состояния, соответствующего минимуму свободной энергии. Нередко одна часть цепи бывает жестко сцеплена с другой дисульфидными (-S-S-) связями между двумя остатками цистеина. Отчасти именно поэтому цистеин среди аминокислот играет особо важную роль. Сложность строения белков столь велика, что пока еще невозможно вычислить третичную структуру белка, если даже известна его аминокислотная последовательность. Но если удается получить кристаллы белка, то его третичную структуру можно определить по дифракции рентгеновских лучей. У структурных, сократительных и некоторых других белков цепи вытянуты и несколько лежащих рядом слегка свернутых цепей образуют фибриллы; фибриллы, в свою очередь, складываются в более крупные образования - волокна. Однако большинство белков в растворе имеет глобулярную форму: цепи свернуты в глобуле, как пряжа в клубке. Свободная энергия при такой конфигурации минимальна, поскольку гидрофобные ("отталкивающие воду") аминокислоты скрыты внутри глобулы, а гидрофильные ("притягивающие воду") находятся на ее поверхности. Многие белки - это комплексы из нескольких полипептидных цепей. Такое строение называется четвертичной структурой белка. Молекула гемоглобина, например, состоит из четырех субъединиц, каждая из которых представляет собой глобулярный белок. Структурные белки благодаря своей линейной конфигурации образуют волокна, у которых предел прочности на разрыв очень высок, глобулярная же конфигурация позволяет белкам вступать в специфические взаимодействия с другими соединениями. На поверхности глобулы при правильной укладке цепей возникают определенной формы полости, в которых размещены реакционноспособные химические группы. Если данный белок - фермент, то другая, обычно меньшая, молекула какого-то вещества входит в такую полость подобно тому, как ключ входит в замок; при этом меняется конфигурация электронного облака молекулы под влиянием находящихся в полости химических групп, и это вынуждает ее определенным образом реагировать. Таким способом фермент катализирует реакцию. В молекулах антител тоже имеются полости, в которых различные чужеродные вещества связываются и тем самым обезвреживаются. Модель "ключа и замка", объясняющая взаимодействие белков с другими соединениями, позволяет понять специфичность ферментов и антител, т.е. их способность реагировать только с определенными соединениями. Белки у разных видов организмов. Белки, выполняющие одну и ту же функцию у разных видов растений и животных и потому носящие одно и то же название, имеют и сходную конфигурацию. Они, однако, несколько различаются по своей аминокислотной последовательности. По мере того как виды дивергируют от общего предка, некоторые аминокислоты в определенных положениях замещаются в результате мутаций другими. Вредные мутации, являющиеся причиной наследственных болезней, выбраковываются естественным отбором, но полезные или по крайней мере нейтральные могут сохраняться. Чем ближе друг к другу два каких-нибудь биологических вида, тем меньше различий обнаруживается в их белках. Некоторые белки меняются относительно быстро, другие весьма консервативны. К последним принадлежит, например, цитохром с - дыхательный фермент, имеющийся у большинства живых организмов. У человека и шимпанзе его аминокислотные последовательности идентичны, а в цитохроме с пшеницы иными оказались лишь 38% аминокислот. Даже сравнивая человека и бактерии, сходство цитохромов с (различия затрагивают здесь 65% аминокислот) все еще можно заметить, хотя общий предок бактерии и человека жил на Земле около двух миллиардов лет назад. В наше время сравнение аминокислотных последовательностей часто используют для построения филогенетического (генеалогического) древа, отражающего эволюционные связи между разными организмами.

Денатурация. Синтезированная молекула белка, складываясь, приобретает свойственную ей конфигурацию. Эта конфигурация, однако, может разрушиться при нагревании, при изменении рН, под действием органических растворителей и даже при простом взбалтывании раствора до появления на его поверхности пузырьков. Измененный таким образом белок называют денатурированным; он утрачивает свою биологическую активность и обычно становится нерастворимым. Хорошо знакомые всем примеры денатурированного белка - вареные яйца или взбитые сливки. Небольшие белки, содержащие всего лишь около сотни аминокислот, способны ренатурировать, т.е. вновь приобретать исходную конфигурацию. Но большинство белков превращается при этом просто в массу спутанных полипептидных цепей и прежнюю конфигурацию не восстанавливает. Одна из главных трудностей при выделении активных белков связана с их крайней чувствительностью к денатурации. Полезное применение это свойство белков находит при консервировании пищевых продуктов: высокая температура необратимо денатурирует ферменты микроорганизмов, и микроорганизмы погибают.

СИНТЕЗ БЕЛКОВ

Для синтеза белка живой организм должен располагать системой ферментов, способных присоединять одну аминокислоту к другой. Необходим также источник информации, которая бы определяла, какие именно аминокислоты следует соединять. Поскольку в организме имеются тысячи видов белков и каждый из них состоит в среднем из нескольких сотен аминокислот, необходимая информация должна быть поистине огромной. Хранится она (подобно тому, как хранится запись на магнитной ленте) в молекулах нуклеиновых кислот, из которых состоят гены.

См. также

НАСЛЕДСТВЕННОСТЬ;

НУКЛЕИНОВЫЕ КИСЛОТЫ.

Активация ферментов. Синтезированная из аминокислот полипептидная цепь - это далеко не всегда белок в его окончательной форме. Многие ферменты синтезируются сначала в виде неактивных предшественников и переходят в активную форму лишь после того, как другой фермент удалит на одном из концов цепи несколько аминокислот. В такой неактивной форме синтезируются некоторые из пищеварительных ферментов, например трипсин; эти ферменты активируются в пищеварительном тракте в результате удаления концевого фрагмента цепи. Гормон инсулин, молекула которого в активной форме состоит из двух коротких цепей, синтезируется в виде одной цепи, т.н. проинсулина. Затем средняя часть этой цепи удаляется, а оставшиеся фрагменты связываются друг с другом, образуя активную молекулу гормона. Сложные белки образуются лишь после того, как к белку будет присоединена определенная химическая группа, а для этого присоединения часто тоже требуется фермент.

Метаболический кругооборот. После скармливания животному аминокислот, меченных радиоактивными изотопами углерода, азота или водорода, метка быстро включается в его белки. Если меченые аминокислоты перестают поступать в организм, то количество метки в белках начинает снижаться. Эти эксперименты показывают, что образовавшиеся белки не сохраняются в организме до конца жизни. Все они, за немногими исключениями, находятся в динамичном состоянии, постоянно распадаются до аминокислот, а затем вновь синтезируются. Некоторые белки распадаются, когда гибнут и разрушаются клетки. Это постоянно происходит, например, с эритроцитами и клетками эпителия, выстилающего внутреннюю поверхность кишечника. Кроме того, распад и ресинтез белков протекают и в живых клетках. Как ни странно, о распаде белков известно меньше, чем об их синтезе. Ясно, однако, что в распаде участвуют протеолитические ферменты, сходные с теми, которые расщепляют белки до аминокислот в пищеварительном тракте. Период полураспада у разных белков различен - от нескольких часов до многих месяцев. Единственное исключение - молекулы коллагена. Однажды образовавшись, они остаются стабильными, не обновляются и не замещаются. Со временем, однако, меняются некоторые их свойства, в частности эластичность, а поскольку они не обновляются, следствием этого оказываются определенные возрастные изменения, например появление морщин на коже.

Синтетические белки. Химики давно уже научились полимеризовать аминокислоты, но аминокислоты соединяются при этом неупорядоченно, так что продукты такой полимеризации мало похожи на природные. Правда, имеется возможность соединять аминокислоты в заданном порядке, что позволяет получать некоторые биологически активные белки, в частности инсулин. Процесс достаточно сложен, и таким способом удается получать лишь те белки, в молекулах которых содержится около сотни аминокислот. Предпочтительнее вместо этого синтезировать или выделить нуклеотидную последовательность гена, соответствующую желаемой аминокислотной последовательности, а затем ввести этот ген в бактерию, которая и будет вырабатывать путем репликации большое количество нужного продукта. У этого метода, впрочем, тоже есть свои недостатки.

См. также ГЕННАЯ ИНЖЕНЕРИЯ.

БЕЛКИ И ПИТАНИЕ

Когда белки в организме распадаются до аминокислот, эти аминокислоты могут быть снова использованы для синтеза белков. В то же время и сами аминокислоты подвержены распаду, так что они реутилизируются не полностью. Ясно также, что в период роста, при беременности и заживлении ран синтез белков должен превышать распад. Некоторые же белки организм непрерывно теряет; это белки волос, ногтей и поверхностного слоя кожи. Поэтому для синтеза белков каждый организм должен получать аминокислоты с пищей.

Источники аминокислот. Зеленые растения синтезируют из СО2, воды и аммиака или нитратов все 20 аминокислот, встречающихся в белках. Многие бактерии тоже способны синтезировать аминокислоты при наличии сахара (или какого-нибудь его эквивалента) и фиксированного азота, но и сахар, в конечном счете, поставляется зелеными растениями. У животных способность к синтезу аминокислот ограниченна; они получают аминокислоты, поедая зеленые растения или других животных. В пищеварительном тракте поглощенные белки расщепляются до аминокислот, последние всасываются, и уже из них строятся белки, характерные для данного организма. Ни один поглощенный белок не включается в структуры тела как таковой. Единственное исключение заключается в том, что у многих млекопитающих часть материнских антител может в интактном виде попасть через плаценту в кровоток плода, а через материнское молоко (особенно у жвачных) быть передано новорожденному сразу же после его появления на свет.

Потребность в белках. Ясно, что для поддержания жизни организм должен получать с пищей некоторое количество белков. Однако размеры этой потребности зависят от ряда факторов. Организму необходима пища и как источник энергии (калорий), и как материал для построения его структур. На первом месте стоит потребность в энергии. Это значит, что, когда углеводов и жиров в рационе мало, пищевые белки используются не для синтеза собственных белков, а в качестве источника калорий. При длительном голодании даже собственные белки расходуются на удовлетворение энергетических нужд. Если же углеводов в рационе достаточно, то потребление белков может быть снижено.

Азотистый баланс. В среднем ок. 16% всей массы белка составляет азот. Когда входившие в состав белков аминокислоты расщепляются, содержавшийся в них азот выводится из организма с мочой и (в меньшей мере) с калом в виде различных азотистых соединений. Удобно поэтому для оценки качества белкового питания использовать такой показатель, как азотистый баланс, т.е. разность (в граммах) между количеством азота, поступившего в организм, и количеством выведенного азота за сутки. При нормальном питании у взрослого эти количества равны. У растущего организма количество выведенного азота меньше количества поступившего, т.е. баланс положителен. При нехватке белков в рационе баланс отрицателен. Если калорий в рационе достаточно, но белки в нем полностью отсутствуют, организм сберегает белки. Белковый обмен при этом замедляется, и повторная утилизация аминокислот в синтезе белка идет с максимально возможной эффективностью. Однако потери неизбежны, и азотистые соединения все же выводятся с мочой и частично с калом. Количество азота, выведенного из организма за сутки при белковом голодании, может служить мерой суточной нехватки белка. Естественно предположить, что, введя в рацион количество белка, эквивалентное этому дефициту, можно восстановить азотистый баланс. Однако это не так. Получив такое количество белка, организм начинает использовать аминокислоты менее эффективно, так что для восстановления азотистого баланса требуется некоторое дополнительное количество белка. Если количество белка в рационе превышает необходимое для поддержания азотистого баланса, то вреда от этого, по-видимому, нет. Избыток аминокислот просто используется как источник энергии. В качестве особенно яркого примера можно сослаться на эскимосов, которые потребляют мало углеводов и примерно в десять раз больше белка, чем требуется для поддержания азотистого баланса. В большинстве случаев, однако, использование белка в качестве источника энергии невыгодно, поскольку из определенного количества углеводов можно получить намного больше калорий, чем из такого же количества белка. В бедных странах население получает необходимые калории за счет углеводов и потребляет минимальное количество белка. Если необходимое число калорий организм получает в форме небелковых продуктов, то минимальное количество белка, обеспечивающее поддержание азотистого баланса, составляет для взрослого человека ок. 30 г в день. Примерно столько белка содержится в четырех ломтиках хлеба или 0,5 л молока. Оптимальным считают обычно несколько большее количество; рекомендуется от 50 до 70 г.

Незаменимые аминокислоты. До сих пор белок рассматривался как нечто целое. Между тем для того, чтобы мог идти синтез белка, в организме должны присутствовать все необходимые аминокислоты. Некоторые из аминокислот организм животного сам способен синтезировать. Их называют заменимыми, поскольку они не обязательно должны присутствовать в рационе, - важно лишь, чтобы в целом поступление белка как источника азота было достаточным; тогда при нехватке заменимых аминокислот организм может синтезировать их за счет тех, что присутствуют в избытке. Остальные, "незаменимые", аминокислоты не могут быть синтезированы и должны поступать в организм с пищей. Для человека незаменимыми являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, гистидин, лизин и аргинин. (Хотя аргинин и может синтезироваться в организме, его относят к незаменимым аминокислотам, поскольку у новорожденных и растущих детей он образуется в недостаточном количестве. С другой стороны, для человека зрелого возраста поступление некоторых из этих аминокислот с пищей может стать необязательным.) Этот список незаменимых аминокислот приблизительно одинаков также и у других позвоночных и даже у насекомых. Питательную ценность белков обычно определяют, скармливая их растущим крысам и следя за прибавкой веса животных.

Питательная ценность белков. Питательную ценность белка определяют по той незаменимой аминокислоте, которой более всего не хватает. Проиллюстрируем это на примере. В белках нашего тела содержится в среднем ок. 2% триптофана (по весу). Допустим, что в рацион входит 10 г белка, содержащего 1% триптофана, и что других незаменимых аминокислот в нем достаточно. В нашем случае 10 г этого неполноценного белка по сути эквивалентны 5 г полноценного; остальные 5 г могут послужить только источником энергии. Отметим, что, поскольку аминокислоты в организме практически не запасаются, а для того чтобы мог идти синтез белка, должны одновременно присутствовать все аминокислоты, эффект от поступления незаменимых аминокислот можно обнаружить лишь в том случае, если все они поступят в организм одновременно. Усредненный состав большей части животных белков близок к усредненному составу белков человеческого тела, так что аминокислотная недостаточность нам вряд ли грозит, если наш рацион богат такими продуктами, как мясо, яйца, молоко и сыр. Однако есть белки, например желатин (продукт денатурации коллагена), которые содержат очень мало незаменимых аминокислот. Растительные белки, хотя они в этом смысле и лучше желатина, тоже бедны незаменимыми аминокислотами; особенно мало в них лизина и триптофана. Тем не менее и чисто вегетарианскую диету вовсе нельзя считать вредной, если только при этом потребляется несколько большее количество растительных белков, достаточное для того, чтобы обеспечить организм незаменимыми аминокислотами. Больше всего белка содержится у растений в семенах, особенно в семенах пшеницы и различных бобовых культур. Богаты белком также и молодые побеги, например у спаржи.

Синтетические белки в рационе. Добавляя небольшие количества синтетических незаменимых аминокислот или богатых ими белков к неполноценным белкам, например к белкам кукурузы, можно значительно повысить питательную ценность последних, т.е. тем самым как бы увеличить количество потребляемого белка. Другая возможность состоит в выращивании бактерий или дрожжей на углеводородах нефти с добавлением нитратов или аммиака в качестве источника азота. Полученный таким путем микробный белок может служить кормом для домашней птицы или скота, а может и непосредственно потребляться человеком. Третий, широко применяющийся, метод использует особенности физиологии жвачных животных. У жвачных в начальном отделе желудка, т.н. рубце, обитают особые формы бактерий и простейших, которые превращают неполноценные растительные белки в более полноценные микробные белки, а эти, в свою очередь, - после переваривания и всасывания - превращаются в животные белки. К корму скота можно добавить мочевину - дешевое синтетическое азотсодержащее соединение. Обитающие в рубце микроорганизмы используют азот мочевины для превращения углеводов (которых в корме значительно больше) в белок. Около трети всего азота в корме скота может поступать в виде мочевины, что по сути и означает в определенной мере химический синтез белка. В США этот метод играет важную роль как один из способов получения белка.

ЛИТЕРАТУРА

Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека, тт. 1-2. М., 1993 Албертс Б., Брей Д., Льюс Дж. и др. Молекулярная биология клетки, тт. 1-3. М., 1994

Поговорки

Белками хлопать да ширинкой трясти. Перм. Шутл. Вести себя излишне возбуждённо, беспокойно. Подюков 1989, 206.

Метусится в белках у кого. Пск. Рябит в глазах у кого-л. СРНГ 18, 142.

Вылупить белки. Обл. Неодобр. Вытаращить глаза, уставиться на кого-л. Мокиенко 1990, 25. Белки - глаза.

Словарь сленга

Деньги

Орфографический словарь

белки́, -о́в, ед. ч. бело́к, белка́ (горные вершины)

Словарь ударений

белки́, -о́в; ед. бело́к, белка́ (оболочки глаз; органические вещества; покрытые снегом вершиныгор)

Синонимы к слову белки

сущ., кол-во синонимов: 1

Сканворды для слова белки

- Вершины, покрытые летом снегом.

Полезные сервисы

белки (млекопитающие)

Энциклопедический словарь

БЕЛКИ (млекопитающие) - БЕ́ЛКИ (Sciurus, Linnaes), род грызунов семейства беличьих; включает около 29 видов, обитающих в лесах Евразии, Северной Америки и севера Южной Америки . В разных частях ареала белки выглядят по-разному. Длина тела взрослых зверьков 20-30 см, вес от 200 г до килограмма. Хвост длинный, пышный, ушки большие, у многих видов украшены кисточками. Окраска меха разных белок в разные сезоны может быть различных оттенков рыжего и серого цвета и даже почти черной.

В России обитает два основных вида: обыкновенная белка, или векша (Sciurus vulgaris), и кавказская, или персидская белка (Sciurus anomalus), обитающая в лесах Северного Кавказа. Полесский подвид векши, отличающийся особым красноватым оттенком меха, с конца 1960-х годов мигрирует в Россию и вытесняет местных белок с рыжеватым оттенком шубки и более ценным мехом. Скрещиваются они легко, в потомстве преобладают красноватые оттенки окраса.

В природе белки устраивают свои гнезда в дуплах деревьях, иногда на ветках сосен и елей. Гнездо белок (гайно) шарообразной формы, с боковым входом, сделано из мелких веток и луба. Корм зверьки добывают на деревьях и на земле. В их рацион входят сладкие ягоды, грибы, орехи, желуди, семена хвойных деревьев, их почки («сосновые пальчики»). Не брезгуют и насекомыми, яйцами птичек. Пик активности приходится на утренние и вечерние часы. На зиму не засыпают, делают припасы.

Самец и самочка проживают раздельно, и самка строго охраняет свою территорию. Период гона у самок, начиная с 2-3-летнего возраста, бывает дважды в год: в феврале-марте и июне-июле. Течка длится 2 недели. Брачные игры начинаются с ухаживаний, совместных пробежек по деревьям. После нескольких дней совместного проживания в гнезде самка прогоняет самца. При содержании в неволе клетки самцов и самок объединяют общим коридором. Продолжительность беременности 35-40 суток. Выводок состоит из 3-4 бельчат, совершенно беспомощных, голых и слепых. Шерстка растет с 14 суток, глазки открываются на 30-32 сутки. Белки - преданные матери. Молоком кормят до 1,5 месяцев. На 6 неделе детеныши отваживаются на первое путешествие за пределы гнезда, к 11 месяцам детеныши самостоятельны и их надо отсаживать от матери. Половой зрелости достигают в 8-12 месяцев.

В природе белки, несмотря на то что сами практически не болеют, являются носителями опасных инфекций - энцефалита, туляремии, рожистой инфекции. В неволе белки живут в среднем 5 лет. Для ряда видов характерны дальние миграции, для которых зверьки объединяются в большие группы (фронтовой протяженностью 100-300 км). При передвижении скорость 3-4 км в час, многие особи погибают. При движении белки форсируют водные преграды, заходят даже в тундру. Векша в России - объект пушного промысла. В старину ее шкурка служила на Руси денежной единицей.

Полезные сервисы

белки (органические соединения)

Энциклопедический словарь

БЕЛКИ (органические соединения) - БЕЛКИ́, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-a-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тыс. до 1 млн. Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений. Белки преобладают над всеми другими присутствующими в живых организмах соединениями, составляя, как правило, более половины их сухого веса. Предполагается, что в природе существует несколько миллиардов индивидуальных белков (например, только в бактерии кишечной палочки (см. КИШЕЧНАЯ ПАЛОЧКА) присутствует более 3 тыс. различных белков). Белки играют ключевую роль в процессах жизнедеятельности любого организма. К числу белков относятся ферменты (см. ФЕРМЕНТЫ), при участии которых протекают все химические превращения в клетке (обмен веществ); они управляют действием генов; при их участии реализуется действие гормонов (см. ГОРМОНЫ), осуществляется трансмембранный транспорт, в том числе генерация нервных импульсов (см. НЕРВНЫЙ ИМПУЛЬС). Они являются неотъемлемой частью иммунной системы (иммуноглобулины (см. ИММУНОГЛОБУЛИНЫ)) и системы свертывания крови (см. СВЕРТЫВАНИЕ КРОВИ), составляют основу костной и соединительной ткани, участвуют в преобразовании и утилизации энергии.

История исследования белков

Первые попытки выделить белки были предприняты еще в 18 веке. К началу 19 века появляются первые работы по химическому изучению белков. Французские ученые Ж.Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) и Л.Ж. Тенар (см. ТЕНАР Луи Жак) попытались установить элементный состав белков из разных источников, что положило начало систематическим аналитическим исследованиям, благодаря которым был сделан вывод о том, что все белки сходны по набору элементов, входящих в их состав. В 1836 голландский химик Г. Я. Мульдер предложил первую теорию строения белковых веществ, согласно которой все белки имеют некий гипотетический радикал (С40H62N10O12), связанный в различных пропорциях с атомами серы и фосфора. Он назвал этот радикал «протеином» (от греч. protein - первый, главный). Теория Мульдера способствовала увеличению интереса к изучению белков и совершенствованию методов белковой химии. Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме (гемоглобин (см. ГЕМОГЛОБИН), некоторые белки растений). Для анализа белков стали использовать их предварительное расщепление с помощью кислот и щелочей.

Одновременно все большее внимание стало уделяться изучению функции белков. Й. Я. Берцелиус (см. БЕРЦЕЛИУС Йенс Якоб)в 1835 первым высказал предположение о том, что они играют роль биокатализаторов. Вскоре были открыты протеолитические ферменты (см. ПРОТЕОЛИТИЧЕСКИЕ ФЕРМЕНТЫ)- пепсин (см. ПЕПСИН) (Т. Шванн, 1836) и трипсин (см. ТРИПСИН) (Л. Корвизар, 1856), что привлекло внимание к физиологии пищеварения (см. ПИЩЕВАРЕНИЕ)и анализу продуктов, образующихся в ходе расщепления пищевых веществ. Дальнейшие исследования структуры белка, работы по химическому синтезу пептидов (см. ПЕПТИДЫ) завершились появлением пептидной гипотезы, согласно которой все белки построены из аминокислот. К концу 19 века было изучено большинство аминокислот, входящих в состав белков. В начале 20 века немецкий химик Э. Г. Фишер (см. ФИШЕР Эмиль Герман) впервые применил методы органической химии для изучения белков и доказал, что белки состоят из a-аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков (см. ГЛОБУЛЯРНЫЕ БЕЛКИ), проведен рентгеноструктурный анализ аминокислот и пептидов (см. ПЕПТИДЫ), разработаны методы хроматографического анализа (см. Хроматография (см. ХРОМАТОГРАФИЯ)). Был выделен первый белковый гормон - инсулин (см. ИНСУЛИН) (Ф. Г. Бантинг (см. БАНТИНГ Фредерик Грант), Дж. Дж. Маклеод (см. МАКЛЕОД Джон Джеймс Рикард), 1922), доказано присутствие гамма -глобулиновв антителах (см. АНТИТЕЛА), описана ферментативная функция мышечного белка миозина (В. А. Энгельгардт (см. ЭНГЕЛЬГАРДТ Владимир Александрович), М. Н. Любимова, 1939). Впервые в кристаллическом виде были получены ферменты - уреаза (см. УРЕАЗА) (Дж. Б. Салинер, 1926), пепсин (см. ПЕПСИН) (Дж. Х. Нортрон, 1929), лизоцим (см. ЛИЗОЦИМ) (Э. П. Абрахам, Р. Робинсон (см. РОБИНСОН Роберт), 1937).

В 1950-х гг. была доказана трехуровневая организация белковых молекул - наличие у них первичной, вторичной и третичной структуры; создается автоматический анализатор аминокислот (С. Мур (см. МУР Станфорд), У. Х. Стайн (см. СТАЙН Уильям Хауард), 1950). В 60-х гг. предпринимаются попытки химического синтеза белков (инсулин, рибонуклеаза (см. РИБОНУКЛЕАЗЫ)). Существенно усовершенствовались методы рентгеноструктурного анализа; был создан прибор - секвенатор (П. Эдман, Г. Бэгг, 1967), позволявший определять последовательность аминокислот в полипептидной цепи. Следствием этого явилось установление структуры нескольких сотен белков из самых разных источников. Среди них протеолитические ферменты (пепсин, трипсин, химотрипсин (см. ХИМОТРИПСИН), субтилизин, карбоксипептидазы (см. КАРБОКСИПЕПТИДАЗЫ)), миоглобины (см. МИОГЛОБИН), гемоглобины (см. ГЕМОГЛОБИН), цитохромы (см. ЦИТОХРОМЫ), лизоцимы (см. ЛИЗОЦИМ), иммуноглобулины, гистоны (см. ГИСТОНЫ), нейротоксины, белки вирусных оболочек, белково-пептидные гормоны (см. Регуляторные пептиды (см. РЕГУЛЯТОРНЫЕ ПЕПТИДЫ)). В результате появились предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и других областей биологической химии.

В конце 20 века значительные успехи были достигнуты в изучении роли белков в ходе матричного синтеза биополимеров, понимания механизмов их действия в различных процессах жизнедеятельности организмов, установления связи между их структурой и функцией. Огромное значение при этом имело совершенствование методов исследования, появление новых способов для разделения белков и пептидов. Разработка эффективного метода анализа последовательности расположения нуклеотидов (см. НУКЛЕОТИДЫ)в нуклеиновых кислотах (см. НУКЛЕИНОВЫЕ КИСЛОТЫ) позволила значительно облегчить и ускорить определение аминокислотной последовательности в белках. Это оказалось возможным потому, что порядок расположения аминокислот в белке определяется последовательностью нуклеотидов в кодирующем этот белок гене (см. ГЕН (наследственный фактор)) (фрагменте ДНК). Следовательно, зная расстановку нуклеотидов в этом гене и генетический код (см. КОД ГЕНЕТИЧЕСКИЙ), можно безошибочно предсказать, в каком порядке располагаются аминокислоты в полипептидной цепи белка. Наряду с успехами в структурном анализе белков значительные результаты были достигнуты в изучении их пространственной организации, механизмов образования и действия надмолекулярных комплексов, в том числе рибосом (см. РИБОСОМЫ)и других клеточных органелл (см. ОРГАНЕЛЛЫ), хроматина (см. ХРОМАТИН), вирусов (см. ВИРУСЫ) и т. д.

Строение белков

Практически все белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью (см. ПЕПТИДНАЯ СВЯЗЬ)-СО-NH-, которая образуется карбоксильной и a-аминогруппой соседних аминокислотных остатков: две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (-СООН) и аминогруппа (H2N-), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь.

Участок цепи, на котором находится концевая Н2N-группа, называют N-концевым, а противоположный ему - С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами (см. ПЕПТИДЫ) или олигопептидами (от олиго (см. ОЛИГО... (часть сложных слов))...), а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более аминокислот. Наиболее часто встречаются белки, включающие 100-400 аминокислотных остатков, но известны и такие, молекула которых образована 1000 и более остатками. Белки могут состоять из нескольких полипептидных цепей. В таких белках каждая полипептидная цепь носит название субъединицы.

Пространственная структура белков

Полипептидная цепь способна самопроизвольно формировать и удерживать особую пространственную структуру. Исходя из формы белковых молекул белки делят на фибриллярные и глобулярные. В глобулярных белках одна или несколько полипептидных цепей свернуты в компактную структуру сферической формы, или глобулу. Обычно эти белки хорошо растворимы в воде. К их числу относятся почти все ферменты, транспортные белки крови и многие запасные белки. Фибриллярные белки представляют собой нитевидные молекулы, скрепленные друг с другом поперечными связями и образующие длинные волокна или слоистые структуры. Они обладают высокой механической прочностью, нерастворимы в воде и выполняют главным образом структурные и защитные функции. Типичными представителями таких белков являются кератины (см. КЕРАТИНЫ) волос и шерсти, фиброин (см. ФИБРОИН) шелка, коллаген (см. КОЛЛАГЕН) сухожилий.

Порядок расположения ковалентно связанных аминокислот в полипептидной цепи называют аминокислотной последовательностью, или первичной структурой белков. Первичная структура каждого белка, кодируемая соответствующим геном, постоянна и несет в себе всю информацию, необходимую для формирования структур более высокого уровня. Потенциально возможное число белков, которые могут образоваться из 20 аминокислот, практически не ограничено.

В результате взаимодействия боковых групп аминокислотных остатков отдельные относительно небольшие участки полипептидной цепи принимают ту или иную конформацию (см. КОНФОРМАЦИИ МОЛЕКУЛЫ) (тип укладки), известную как вторичная структура белков. Наиболее характерными элементами ее являются периодически повторяющиеся a-спираль и b-структура. Вторичная структура весьма стабильна. Так как она в значительной мере определяется аминокислотной последовательностью соответствующего участка белка, становится возможным ее предсказание с определенной степенью вероятности. Термин «a -спираль» был введен американским биохимиком Л. Полингом (см. ПОЛИНГ Лайнус), описавшим укладку полипептидной цепи в белке a -кератине в виде правосторонней спирали (a -спираль можно сравнить со шнуром от телефонной трубки). На каждый виток такой спирали в белке приходится 3,6 аминокислотных остатков. Это означает, что группа -С= О одной пептидной связи образует водородную связь (см. ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ) с группой -NH другой пептидной связи, отстоящей от первой на четыре аминокислотных остатка. В среднем каждый a -спиральный участок включает до 15 аминокислот, что соответствует 3-4 оборотам спирали. Но в каждом отдельном белке длина спирали может сильно отличаться от этой величины. В поперечном сечении a -спираль имеет вид диска, от которого наружу направлены боковые цепи аминокислот.

b-структура, или b -складчатый слой, может быть образована несколькими участками полипептидной цепи. Эти участки растянуты и уложены параллельно друг другу, связываясь между собой водородными связями, которые возникают между пептидными связями. Они могут быть ориентированы в одном и том же или в противоположных направлениях (направление движения вдоль полипептидной цепи принято считать от N-конца к С-концу). В первом случае складчатый слой называют параллельным, во втором - антипараллельным. Последний образуется, когда пептидная цепь делает резкий поворот вспять, образуя изгиб (b -изгиб). Боковые цепи аминокислот ориентированы перпендикулярно плоскости b -слоя.

Относительное содержание a -спиральных участков и b -структур может широко варьироваться в разных белках. Существуют белки с преобладанием a-спиралей (около 75% аминокислот в миоглобине и гемоглобине), а основным типом укладки цепи во многих фибриллярных белках (в том числе фиброин шелка, b-кератин) является b -структура. Участки полипептидной цепи, которые нельзя отнести ни к одной из вышеописанных конформаций, называют соединительными петлями. Их структура определяется главным образом взаимодействиями между боковыми цепями аминокислот, и в молекуле любого белка она укладывается строго определенным образом.

Третичной структурой называют пространственное строение глобулярных белков. Но часто это понятие относят к характерному для каждого конкретного белка способу сворачивания полипептидной цепи в пространстве. Третичная структура формируется полипептидной цепью белка самопроизвольно, по-видимому, по определенному пути (путям) свертывания с предварительным образованием элементов вторичной структуры. Если стабильность вторичной структуры обусловлена водородными связями, то третичная структура фиксируется разнообразной системой нековалентных взаимодействий: водородными, ионными (см. ИОННАЯ СВЯЗЬ), межмолекулярными взаимодействиями (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ), а также гидрофобными контактами между боковыми цепями неполярных аминокислотных остатков. В некоторых белках третичная структура дополнительно стабилизируется за счет образования дисульфидных связей (-S-S--связей) между остатками цистеина (см. ЦИСТЕИН). Как правило, внутри белковой глобулы расположены боковые цепи гидрофобных аминокислот, собранные в ядро (их перенос внутрь глобулы белка выгоден термодинамически), а на периферии находятся гидрофильные остатки и часть гидрофобных. Белковую глобулу окружает несколько сотен молекул гидратной воды, необходимой для стабильности молекулы белка и нередко участвующей в его функционировании. Третичная структура подвижна, отдельные ее участки могут смещаться, что приводит к конформационным переходам, которые играют значительную роль во взаимодействии белка с другими молекулами. Третичная структура является основой функциональных свойств белка. Она определяет образование в белке ансамблей функциональных групп - активных центров (см. АКТИВНЫЙ ЦЕНТР) и зон связывания, придает им необходимую геометрию, позволяет создать внутреннюю среду, являющуюся предпосылкой протекания многих реакций, обеспечивает взаимодействие с другими белками.

Третичная структура белков однозначно соответствует его первичной структуре; вероятно, существует еще нерасшифрованный стереохимический код, определяющий характер свертывания белка. Однако один и тот же способ укладки в пространстве обычно соответствует не единственной первичной структуре, а целому семейству структур, в которых совпадать может лишь небольшая доля (до 20-30%) аминокислотных остатков, но при этом в определенных местах цепи сходство аминокислотных остатков сохраняется. Результатом является образование обширных семейств белков, характеризующихся близкой третичной и более или менее сходной первичной структурой и, как правило, общностью функции. Таковы, например, белки организмов разных видов, несущие одинаковую функцию и эволюционно родственные: миоглобины и гемоглобины, трипсин, химотрипсин, эластаза и другие протеиназы животных.

Нередко, особенно в крупных белках, сворачивание полипептидной цепи проходит через формирование отдельными участками цепи более или менее автономных элементов пространственной структуры - доменов, которые могут обладать функциональной автономией, будучи ответственными за ту или иную биологическую активность белка. Так, N-концевые домены белков системы свертывания крови обеспечивают их присоединение к клеточной мембране.

Существует много белков, молекулы которых представляют собой ансамбль из глобул (субъединиц), удерживаемых вместе за счет гидрофобных взаимодействий, водородных или ионных связей. Такие комплексы называют олигомерными, мультимерными или субъединичными белками. Укладку субъединиц в функционально активном белковом комплексе называют четвертичной структурой белка. Некоторые белки способны образовывать структуры более высоких порядков, например, полиферментные комплексы, протяженные структуры (белки оболочек бактериофагов (см. БАКТЕРИОФАГИ)), надмолекулярные комплексы, функционирующие как единое целое (например, рибосомы или компоненты дыхательной цепи митохондрий (см. МИТОХОНДРИИ)). Четвертичная структура позволяет создать молекулы необычной геометрии. Так, у ферритина (см. ФЕРРИТИН), образованного 24 субъединицами, имеется внутренняя полость, благодаря которой белку удается связать до 3000 ионов железа. Кроме того, четвертичная структура позволяет в одной молекуле выполнять несколько различных функций. В триптофансинтетазе совмещены ферменты, ответственные за несколько последовательных стадий синтеза аминокислоты триптофана.

Методы исследования структуры белков

Первичная структура белков определяет все остальные уровни организации белковой молекулы. Поэтому при изучении биологической функции различных белков важно знание этой структуры. Первым белком, для которого была установлена аминокислотная последовательность, был гормон поджелудочной железы - инсулин. Эта работа, потребовавшая 11 лет, была выполнена английским биохимиком Ф. Сенгером (см. СЕНГЕР Фредерик) (1954). Он определил расположение 51 аминокислоты в молекуле гормона и показал, что она состоит из 2-х цепей, соединенных дисульфидными связями. Позже большая часть работ по установлению первичной структуры белков была автоматизирована. С развитием методов генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ)появилась возможность еще более ускорить этот процесс, определяя первичную структуру белков в соответствии с результатами анализа нуклеотидной последовательности в генах, кодирующих эти белки. Вторичную и третичную структуру белков исследуют с помощью достаточно сложных физических методов, например, кругового дихроизма или рентгеноструктурного анализа белковых кристаллов. Третичная структура была впервые установлена английским биохимиком Дж. К. Кендрю (см. КЕНДРЮ Джон Коудери) (1957) для белка мышц - миоглобина.

Денатурация белков

Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структур белка, легко разрушаются, что сопровождается потерей его биологической активности. Разрушение исходной (нативной) структуры белка, называемое денатурацией, происходит в присутствии кислот и оснований, при нагревании, изменении ионной силы и других воздействиях. Как правило, денатурированные белки плохо или совсем не растворяются в воде. При непродолжительном действии и быстром устранении денатурирующих факторов возможна ренатурация (см. РЕНАТУРАЦИЯ) белка с полным или частичным восстановлением исходной структуры и биологических свойств.

Классификация белков

Сложность строения белковых молекул, чрезвычайное разнообразие выполняемых ими функций затрудняют создание единой и четкой их классификации, хотя попытки сделать это предпринимались неоднократно, начиная с конца 19 века. Исходя из химического состава белки делят на простые и сложные (иногда их называют протеидами (см. ПРОТЕИДЫ) ). Молекулы первых состоят только из аминокислот. В составе же сложных белков помимо собственно полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды (см. ГЛИКОПРОТЕИДЫ)), липидами (липопротеиды (см. ЛИПОПРОТЕИДЫ)), нуклеиновыми кислоты (нуклеопротеиды (см. НУКЛЕОПРОТЕИДЫ)), ионами металла (металлопротеиды (см. МЕТАЛЛОПРОТЕИДЫ)), фосфатной группой (фосфопротеиды (см. ФОСФОПРОТЕИДЫ)), пигментами (хромопротеиды (см. ХРОМОПРОТЕИДЫ)) и т. д.

В зависимости от выполняемых функций различают несколько классов белков. Самый многообразный и наиболее специализированный класс составляют белки с каталитической функцией - ферменты, обладающие способностью ускорять химические реакции, протекающие в живых организмах. В этом качестве белки участвуют во всех процессах синтеза и распада различных соединении в ходе обмена веществ, в биосинтезе белков и нуклеиновых кислот, регуляции развития и дифференцировки клеток. Транспортные белки обладают способностью избирательно связывать жирные кислоты, гормоны и другие органические и неорганические соединения и ионы, а затем переносить их с током крови и лимфы в нужное место (например, гемоглобин участвует в переносе кислорода от легких ко всем клеткам организма). Транспортные белки осуществляют также активный транспорт через биологические мембраны (см. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ)ионов, липидов, сахаров и аминокислот. Структурные белки выполняют опорную или защитную функцию; они участвуют в формировании клеточного скелета. Наиболее распространены среди них коллаген соединительной ткани, кератин волос, ногтей и перьев, эластин клеток сосудов и многие другие. В комплексе с липидами они являются структурной основой клеточных и внутриклеточных мембран. Ряд белков выполняет защитную функцию. Например, иммуноглобулины (антитела) позвоночных, обладая способностью связывать чужеродные патогенные микроорганизмы и вещества, нейтрализуют их болезнетворное воздействие на организм, препятствует размножению раковых клеток. Фибриноген и тромбин участвуют в процессе свертывания крови. Многие вещества белковой природы, выделяемые бактериями, а также компоненты ядов змей и некоторых беспозвоночных относятся к числу токсинов (см. ТОКСИНЫ). Некоторые белки (регуляторные) участвуют в регуляции физиологической активности организма в целом, отдельных органов, клеток или процессов. Они контролируют транскрипцию (см. ТРАНСКРИПЦИЯ (в биологии))генов и синтез белка; к их числу относятся пептидно-белковые гормоны, секретируемые эндокринными железами. Запасные белки семян обеспечивают питательными веществами начальные этапы развития зародыша. К ним относят также казеин (см. КАЗЕИН)молока, альбумин (см. АЛЬБУМИНЫ)яичного белка (овальбумин) и многие другие. Благодаря белкам мышечные клетки приобретают способность сокращаться и в конечном итоге обеспечивать движения организма. Примером таких сократительных белков могут служить актин (см. АКТИН)и миозин (см. МИОЗИН)скелетных мышц, а также тубулин, являющиеся компонентом ресничек (см. РЕСНИЧКИ)и жгутиков (см. ЖГУТИКИ)одноклеточных организмов; они же обеспечивают расхождение хромосом при делении клеток. Белки-рецепторы являются мишенью действия гормонов и других биологически активных соединений. С их помощью клеткой воспринимается информация о состоянии внешней среды. Они играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе (см. ХЕМОТАКСИС)). Преобразование и утилизация энергии, поступающей в организм с пищей, а также энергии солнечного излучения тоже происходит при участии белков биоэнергетической системы (например, зрительного пигмента родопсина (см. РОДОПСИН), цитохромов дыхательной цепи; см. Биоэнергетика (см. БИОЭНЕРГЕТИКА)). Существует также множество белков с другими, порой довольно необычными функциями (например, в плазме крови некоторых антарктических рыб содержатся белки, обладающие свойствами антифриза (см. АНТИФРИЗЫ)).

Биосинтез белка

Вся информация о структуре того или иного белка «хранится» в соответствующих генах в виде последовательности нуклеотидов и реализуется в процессе матричного синтеза. Сначала информация с помощью фермента ДНК-зависимой РНК-полимеразы передается (считывается) с молекулы ДНК на матричную РНК (мРНК), а затем в рибосоме на мРНК, как на матрице в соответствии с генетическим кодом при участии транспортных РНК, доставляющих аминокислоты, происходит формирование полипептидной цепи (см. Трансляция (см. ТРАНСЛЯЦИЯ (в биологии))). Выходящие из рибоcoмы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают свойственную данному белку конформацию и могут подвергаться посттрансляционной модификации. Модификациям могут подвергаться боковые цепи отдельных аминокислот (гидроксилированию, фосфорилированию и т. д.). Именно поэтому в коллагене, например, встречается гидроксипролин и гидроксилизин (см. Аминокислоты (см. АМИНОКИСЛОТЫ)). Модификация может сопровождаться и разрывом полипептидных связей. Таким путем, например, происходит образование активной молекулы инсулина, состоящего из двух цепей, соединенных дисульфидными связями.

Значение белков в питании

Белки являются важнейшими компонентами пищи животных и человека. Пищевая ценность белков определяется содержанием в них незаменимых аминокислот, которые в самом организме не образуются. В этом отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном, труднее перевариваются в желудочно-кишечном тракте. Отсутствие незаменимых аминокислот в пище приводит к тяжелым нарушениям азотистого обмена. В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания (см. ВСАСЫВАНИЕ) в кишечнике поступают в кровь и разносятся ко всем клеткам. Часть из них распадается до простых соединений с выделением энергии, используемой на разные нужды клеткой, а часть идет на синтез новых белков, свойственных данному организму.

Полезные сервисы

белки (снежные вершины гор)

Энциклопедический словарь

БЕЛКИ (снежные вершины гор) - БЕЛКИ́ (белок), вершины гор Южной Сибири (см. СИБИРЬ), покрытые снегом в течение всего лета или его большей части (напр., Агульские Белки (см. АГУЛЬСКИЕ БЕЛКИ) ).

Полезные сервисы

белки завязывать

Поговорки

Жарг. мол. Шутл. Курить после приёма пищи. Максимов, 31.

Полезные сервисы

белки и стрелки

Поговорки

Жарг. шк. Шутл.-ирон. Ученики экспериментального класса. (Запись 2003 г.).

Полезные сервисы

белки-крошки

Энциклопедический словарь

БЕЛКИ-КРОШКИ - БЕ́ЛКИ-КРО́ШКИ (Nannosciurus), род грызунов семейства беличьих (см. БЕЛИЧЬИ); включает пять видов. Длина тела 7-10 см, пушистый хвост чуть короче. Несмотря на мышиные размеры, общий облик животных вполне отвечает обычным представлениям о белках. Короткий и мягкий мех похож на вельвет. Окраска спинной стороны обычно от сероватой до коричневой с золотистым оттенком. Брюшная сторона желтовато-коричневая, иногда почти красного цвета. Хвост темного цвета (у некоторых белок окаймлен белой полосой). Для белок-крошек характерны различного рода черно-белые полосы по бокам головы.

Черноухая белка-крошка (Nannosciurus melanolis) обитает на Яве, Калимантане и Суматре. Остальные четыре вида этого рода распространены на Филиппинских островах. Все белки-крошки предпочитают густые леса, часто в горах на высоте 1500-1700 м над уровнем моря. Они ведут преимущественно древесный образ жизни, но иногда спускаются на землю, бегая по упавшим стволам в поисках некоторых видов грибов. Белки-крошки размножаются в любое время года, детеныши выводятся до трех раз в год.

Полезные сервисы

белкин

Толковый словарь

прил. разг.

1. соотн. с сущ. белка, связанный с ним

2. Принадлежащий белке [белка 1.].

Энциклопедический словарь

БЕ́ЛКИН см. Бе́лка.

Грамматический словарь

Бе́лкин ф. <мс 1а>

Словарь русских фамилий

БЕЛКИН БЕЛЬЧЕНКО

Фамилии из запросов посетителей. Могут быть свзаны или с некрестильнвм именем Белка, от навзания животного. Или же нести цветовую нагрузку (см. Белов)

Сканворды для слова белкин

- Герой Олега Табакова в фильме «Выстрел».

Полезные сервисы