мн.
Биологически активные вещества, вырабатываемые в организме железами внутренней секреции и участвующие в регуляции всех жизненно важных процессов.
мн.
Биологически активные вещества, вырабатываемые в организме железами внутренней секреции и участвующие в регуляции всех жизненно важных процессов.
ГОРМО́НЫ, -ов, мн (ед гормо́н, -а, м).
Биологически активные вещества, вырабатываемые в организме и участвующие в регуляции всех жизненно важных процессов.
Гормон - вещество, выделяемое в кровь железами внутренней секреции и возбуждающее деятельность тех или иных органов. Позвоночник человека и животных имеет развитую систему желез - гипофиз, надпочечники, половые, щитовидные и другие, которые вырабатывают гормоны.
ГОРМО́НЫ -ов; мн. (ед. гормо́н, -а; м.). [от греч. hormaō - двигаю, возбуждаю].
1. Физиол. Биологически активные вещества, вырабатываемые в организме и влияющие на все жизненно важные процессы. Г. гипофиза. Половые г.
2. Синтетические препараты, оказывающие такое же воздействие на организм.
◁ Гормо́нный, -ая, -ое (разг.).
* * *
гормо́ны (от греч. hormáō - возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других органов и тканей. Позвоночные животные и человек имеют развитую систему таких желёз (гипофиз, надпочечники, половые, щитовидная и др.), которые посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. Развитые эндокринные железы есть и у высокоорганизованных беспозвоночных - головоногих моллюсков, насекомых, ракообразных. Секретируемые ими гормоны контролируют рост, линьку, метаморфоз, половое размножение и др. Каждый из гормонов влияет на организм в сложном взаимодействии с другими гормонами; в целом гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из соответствующих органов животных. О гормонах растений см. Фитогормоны.
* * *
ГОРМОНЫ - ГОРМО́НЫ (от греч. hormao - возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других органов и тканей. Позвоночные животные и человек имеют развитую систему таких желез (гипофиз, надпочечники, половые, щитовидная и др.), которые посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. Развитые эндокринные железы есть и у высокоорганизованных беспозвоночных - головоногих моллюсков, насекомых, ракообразных. Секретируемые ими гормоны контролируют рост, линьку, метаморфоз, половое размножение и др. Каждый из гормонов влияет на организм в сложном взаимодействии с другими гормонами; в целом гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из соответствующих органов животных. О гормонах растений см. Фитогормоны (см. ФИТОГОРМОНЫ).
* * *
ГОРМО́НЫ животных (от греч. hormao - привожу в движение, побуждаю), биологически активные вещества, вырабатываемые железами внутренней секреции и скоплениями специализированных клеток. Важнейшие регуляторы физиологических процессов. Термин «гормоны» предложен в 1905 английским физиологом Э. Старлингом (см. СТАРЛИНГ Эрнест Генри).
Железы, секретирующие гормоны, имеются у позвоночных животных (в том числе у человека) и у высокоразвитых беспозвоночных - головоногих моллюсков, ракообразных, насекомых. Выделяемые ими гормоны поступают в кровь (или гемолимфу (см. ГЕМОЛИМФА)) и оказывают свое действие на определенные ткани-мишени, расположенные на значительном расстоянии от той железы, где они образуются. Отдельные группы клеток выделяют гормоны местного действия. Их часто называют гормоноидами, тканевыми гормонами, или парагормонами. К их числу относят гистамин (см. ГИСТАМИН), серотонин (см. СЕРОТОНИН), брадикинин (см. БРАДИКИНИН), простагландины (см. ПРОСТАГЛАНДИНЫ) и др. Гормоны, вырабатываемые нейросекреторными клетками нервной ткани, называют нейрогормонами (см. НЕЙРОГОРМОНЫ). По месту образования различают гипофизарные, гипоталамические, половые гормоны, кортикостероиды (см. КОРТИКОСТЕРОИДЫ) (гормоны коры надпочечников), гормоны щитовидной железы (тиреоидные гормоны) и т. д. Все гормоны отличает высокая биологическая активность (они оказывают воздействие в очень низких концентрациях - 10-6-10-10 М) и специфичность (даже очень близкие по химической структуре аналоги гормонов не дают нужного эффекта).
Химическая структура
Исходя из химического строения, гормоны делят на три группы. К первой группе относят пептидные и белковые гормоны. Пептидами являются, например, окситоцин (см. ОКСИТОЦИН), вазопрессин (см. ВАЗОПРЕССИН). Среди белковых гормонов имеются как простые белки (инсулин (см. ИНСУЛИН), глюкагон (см. ГЛЮКАГОН), соматотропин (см. РОСТОВОЙ ГОРМОН), пролактин (см. ПРОЛАКТИН) и др.), так и сложные - гликопротеины (фоллитропин, лютропин). Вторая группа - амины - объединяет гормоны, близкие по структуре аминокислотам - тирозину (см. ТИРОЗИН) и триптофану (см. ТРИПТОФАН) (тиреоидные гормоны, адреналин (см. АДРЕНАЛИН), норадреналин (см. НОРАДРЕНАЛИН)). Третью группу составляют стероидные гормоны, которые являются производными холестерина (см. ХОЛЕСТЕРИН). Среди стероидных гормонов - все половые гормоны (см. ПОЛОВЫЕ ГОРМОНЫ) и гормоны коры надпочечников - кортикостероиды.
Механизм действия гормонов
Гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) в определенное место - клеткам соответствующей ткани-мишени; что обеспечивается наличием у этих клеток высокоспецифических рецепторов - особых белков, с которыми связывается гормон (у каждого гормона свой рецептор). Ответ клеток на действие гормонов различной химической природы осуществляется по-разному. Тиреоидные и стероидные гормоны проникают внутрь клетки и связываются со специфическими рецепторами с образованием гормон-рецепторного комплекса. Этот комплекс взаимодействует непосредственно с геном, контролирующим синтез того или иного белка. Остальные гормоны взаимодействуют с рецепторами, находящимися на цитоплазматической мембране. После этого включается цепь реакций, приводящих к повышению внутри клетки концентрации так называемого вторичного посредника (например, ионов кальция или аденозинмонофосфата циклического (см. АДЕНОЗИНТРИФОСФАТ)), что, в свою очередь, сопровождается изменением активности определенных ферментов.
Биологическая роль гормонов
Гормоны контролируют основные процессы жизнедеятельности организма на всех этапах его развития с момента зарождения. Они влияют на все виды обмена веществ в организме, активность генов, рост и дифференцировку тканей, формирование пола и размножение, адаптацию к меняющимся условиям среды, поддержание постоянства внутренней среды организма (гомеостаз (см. ГОМЕОСТАЗ)), поведение и многие другие процессы. Совокупность регулирующего воздействия различных гормонов на функции организма называется гормональной регуляцией (см. также Гуморальная регуляция (см. ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ)).
У млекопитающих гормоны, как и выделяющие их железы внутренней секреции (эндокринные железы (см. ЭНДОКРИННЫЕ ЖЕЛЕЗЫ)), составляют единую эндокринную систему. Она построена по иерархическому принципу и в целом контролируется нервной системой (см. НЕРВНЫЕ БОЛЕЗНИ). Роль связующего звена между нервной и эндокринной системами выполняет гипоталамус (см. ГИПОТАЛАМУС), выделяющий нейрогормоны (см. НЕЙРОГОРМОНЫ) (рилизинг-факторы). Они регулируют (усиливают или тормозят) выделение гормонов гипофизом (см. ГИПОФИЗ) (тропных гормонов), которые в свою очередь контролируют образование гормонов периферическими железами. Например, тиреотропинрилизинг-фактор гипоталамуса стимулирует выделение тиреотропного гормона (см. ТИРЕОТРОПНЫЙ ГОРМОН) гипофизом, а он - выделение тиреоидных гормонов клетками щитовидной железы. Избыточное содержание какого-либо гормона в крови сопровождается остановкой его образования соответствующей железой, а недостаточное количество - усилением его выделения (механизм обратной связи).
Избыточное образование или недостаток того или иного гормона в организме человека приводит к эндокринным заболеваниям (см. ЭНДОКРИНОЛОГИЯ). Например, следствием недостатка гормонов щитовидной железы в организме являются кретинизм (см. КРЕТИНИЗМ), микседема (см. МИКСЕДЕМА), а их избытка - базедова болезнь (см. БАЗЕДОВА БОЛЕЗНЬ) и тиреотоксикоз (см. ТИРЕОТОКСИКОЗ); нарушение функций поджелудочной железы может сопровождаться дефицитом гормона инсулина и, как следствие, сахарным диабетом (см. ДИАБЕТ САХАРНЫЙ).
Применение гормонов
Гормоны широко используются при заболеваниях, связанных с нарушением эндокринной системы: при недостатке или отсутствии в организме того или иного гормона (например, инсулина) или для усиления или подавления функции той или иной железы. Так, гормоны гипофиза адренокортикотропин и тиреотропин могут быть использованы для того, чтобы стимулировать работу периферических желез - собственно коры надпочечников и щитовидной железы. А так как гормоны периферических желез подавляют секрецию гормонов гипофиза, то кортикотропин, например, будет препятствовать образованию адренокортикотропного гормона.
Гормоны нашли широкое применение в акушерстве и гинекологии. Хорионический гонадотропин (см. ХОРИОНИЧЕСКИЙ ГОНАДОТРОПИН) помогает при лечении бесплодия, окситоцин (см. ОКСИТОЦИН) используется для усиления родовой деятельности, пролактин стимулирует секрецию молока после родов. Стероидные половые гормоны или их аналоги применяют при нарушениях в половой сфере, в качестве противозачаточных средств и т. д. При воспалительных процессах, аллергических заболеваниях, ревматоидном артрите и ряде других используются гормоны коры надпочечников. Гормоны, вырабатываемые вилочковой железой (см. ВИЛОЧКОВАЯ ЖЕЛЕЗА) (тимусом) и стимулирующие созревание Т-лимфоцитов (см. ЛИМФОЦИТЫ), применяют для лечения онкологических заболеваний, при нарушениях иммунитета.
Получение гормонов
Многие непептидные гормоны и низкомолекулярные пептидные гормоны получают с помощью химического синтеза. Полипептидные и белковые гормоны выделяют путем экстракции из желез домашнего скота с последующей очисткой. Разработана процедура получения некоторых гормонов (в том числе инсулина и гормона роста) с помощью методов генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ). Для этого ген, ответственный за синтез того или иного гормона, включают в геном бактерий, которые после этого приобретают способность синтезировать нужный гормон. Так как бактерии активно размножаются, за короткое время оказывается возможным наработать довольно значительные его количества.
ГОРМОНЫ (от греч. hormao - возбуждаю - привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других органов и тканей. Позвоночные животные и человек имеют развитую систему таких желез (гипофиз, надпочечники, половые, щитовидная и др.), которые посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. Развитые эндокринные железы есть и у высокоорганизованных беспозвоночных - головоногих моллюсков, насекомых, ракообразных. Секретируемые ими гормоны контролируют рост, линьку, метаморфоз, половое размножение и др. Каждый из гормонов влияет на организм в сложном взаимодействии с другими гормонами; в целом гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из соответствующих органов животных. О гормонах растений см. Фитогормоны.
-ов, мн. (ед. гормо́н, -а, м.). физиол.
Вещества, выделяемые в кровь железами внутренней секреции и возбуждающие деятельность тех или иных органов.
Гормоны щитовидной железы.
[От греч. ‛ορμάω - двигаю, возбуждаю]
ГОРМОНЫ - органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них - нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая - эндокринная, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью и оказывают эффект на отдаленные от места их выделения ткани и органы. Химическая система связи взаимодействует с нервной системой; так, некоторые гормоны функционируют в качестве медиаторов (посредников) между нервной системой и органами, отвечающими на воздействие. Таким образом, различие между нервной и химической координацией не является абсолютным. Гормоны есть у всех млекопитающих, включая человека; они обнаружены и у других живых организмов. Хорошо описаны гормоны растений и гормоны линьки насекомых
(см. также ГОРМОНЫ РАСТЕНИЙ). Физиологическое действие гормонов направлено на:
1) обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов; 2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела; 3) регуляцию процессов роста, созревания и репродукции. Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые. В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме. Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология. Как медицинская дисциплина она появилась только в 20 в., однако эндокринологические наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба. Что такое гормоны? Согласно классическому определению, гормоны - продукты секреции эндокринных желез, выделяющиеся прямо в кровоток и обладающие высокой физиологической активностью. Главные эндокринные железы млекопитающих - гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон-продуцирующие участки желудочно-кишечного тракта. В организме синтезируются и некоторые соединения гормоноподобного действия. Например, исследования гипоталамуса показали, что ряд секретируемых им веществ необходим для высвобождения гормонов гипофиза. Эти "рилизинг-факторы", или либерины, были выделены из различных участков гипоталамуса. Они поступают в гипофиз через систему кровеносных сосудов, соединяющих обе структуры. Поскольку гипоталамус по своему строению не является железой, а рилизинг-факторы поступают, по-видимому, только в очень близко расположенный гипофиз, эти выделяемые гипоталамусом вещества могут считаться гормонами лишь при расширительном понимании данного термина. В определении того, какие вещества следует считать гормонами и какие структуры эндокринными железами, есть и другие проблемы. Убедительно показано, что такие органы, как печень, могут экстрагировать из циркулирующей крови физиологически малоактивные или вовсе неактивные гормональные вещества и превращать их в сильнодействующие гормоны. Например, дегидроэпиандростерон сульфат, малоактивное вещество, продуцируемое надпочечниками, преобразуется в печени в тестостерон - высокоактивный мужской половой гормон, в большом количестве секретируемый семенниками. Доказывает ли это, однако, что печень - эндокринный орган? Другие вопросы еще более трудны. Почки секретируют в кровоток фермент ренин, который через активацию ангиотензиновой системы (эта система вызывает расширение кровеносных сосудов) стимулирует продукцию гормона надпочечников - альдостерона. Регуляция выделения альдостерона этой системой весьма схожа с тем, как гипоталамус стимулирует высвобождение гипофизарного гормона АКТГ (адренокортикотропного гормона, или кортикотропина), регулирующего функцию надпочечников. Почки секретируют также эритропоэтин - гормональное вещество, стимулирующее продукцию эритроцитов. Можно ли отнести почку к эндокринным органам? Все эти примеры доказывают, что классическое определение гормонов и эндокринных желез не является достаточно исчерпывающим.
Транспорт гормонов. Гормоны, попав в кровоток, должны поступать к соответствующим органам-мишеням. Транспорт высокомолекулярных (белковых) гормонов изучен мало из-за отсутствия точных данных о молекулярной массе и химической структуре многих из них. Гормоны со сравнительно небольшой молекулярной массой, такие, как тиреоидные и стероидные, быстро связываются с белками плазмы, так что содержание в крови гормонов в связанной форме выше, чем в свободной; эти две формы находятся в динамическом равновесии. Именно свободные гормоны проявляют биологическую активность, и в ряде случаев было четко показано, что они экстрагируются из крови органами-мишенями. Значение белкового связывания гормонов в крови не совсем ясно. Предполагают, что такое связывание облегчает транспорт гормона либо защищает гормон от потери активности.
Действие гормонов. Отдельные гормоны и их основные эффекты представлены ниже в разделе "Основные гормоны человека". В целом, гормоны действуют на определенные органы-мишени и вызывают в них значительные физиологические изменения. У гормона может быть несколько органов-мишеней, и вызываемые им физиологические изменения могут сказываться на целом ряде функций организма. Например, поддержание нормального уровня глюкозы в крови - а оно в значительной степени контролируется гормонами - важно для жизнедеятельности всего организма. Гормоны иногда действуют совместно; так, эффект одного гормона может зависеть от присутствия какого-то другого или других гормонов. Гормон роста, например, неэффективен в отсутствие тиреоидного гормона. Действие гормонов на клеточном уровне осуществляется по двум основным механизмам: не проникающие в клетку гормоны (обычно водорастворимые) действуют через рецепторы на клеточной мембране, а легко проходящие через мембрану гормоны (жирорастворимые) - через рецепторы в цитоплазме клетки. Во всех случаях только наличие специфического белка-рецептора определяет чувствительность клетки к данному гормону, т.е. делает ее "мишенью". Первый механизм действия, подробно изученный на примере адреналина, заключается в том, что гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуются т.н. вторые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно циклический аденозиномонофосфат (цАМФ) и/или ионы кальция; последние высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток у самых разнообразных организмов на всех ступенях эволюционной лестницы. Однако некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путем: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращенной внутрь клетки; это и обеспечивает проявление гормонального эффекта. Второй механизм действия - через цитоплазматические рецепторы - свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (T3 и T4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон-рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определенных генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона. Регуляция гормональной секреции осуществляется несколькими связанными между собой механизмами. Их можно проиллюстрировать на примере кортизола, основного глюкокортикоидного гормона надпочечников. Его продукция регулируется по механизму обратной связи, который действует на уровне гипоталамуса. Когда в крови снижается уровень кортизола, гипоталамус секретирует кортиколиберин - фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина - и содержание кортизола в крови снова снижается. Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высока при пробуждении, но постепенно снижается до минимального уровня во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов.
ОСНОВНЫЕ ГОРМОНЫ ЧЕЛОВЕКА
Гормоны гипофиза подробно описаны в статье ГИПОФИЗ. Здесь мы лишь перечислим основные продукты гипофизарной секреции.
Гормоны передней доли гипофиза. Железистая ткань передней доли продуцирует:
- гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов). - меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами); - тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе; - фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы
(см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА). - пролактин, обозначаемый иногда как ПРЛ, - гормон, стимулирующий формирование молочных желез и лактацию.
Гормоны задней доли гипофиза - вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством "отпускать" молоко после родов.
Тиреоидные и паратиреоидные гормоны. Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком
(см. ЩИТОВИДНАЯ ЖЕЛЕЗА).
Четыре паращитовидных железы обычно расположены парами - на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены. Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т4) и трийодтиронин (Т3). Попадая в кровоток, они связываются - прочно, но обратимо - со специфическими белками плазмы. Т4 связывается сильнее, чем Т3, и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема. Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние. Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон - кальцитонин - оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.
Гормоны надпочечников. Надпочечники - небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части - мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя - адреналин - необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для "бегства или борьбы", а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги. Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды - это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов - кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат, D4-андростендион, дегидроэпиандростерон и некоторые эстрогены. Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей. Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации. Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь, описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием. Адреналин и норадреналин - два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин - вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон. Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.
Тестикулярные гормоны. Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны (андрогены), в частности D4-андростендион и тестостерон, основной мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола). Семенники находятся под контролем гонадотропинов (см. выше раздел ГОРМОНЫ ГИПОФИЗА). Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин. Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм - это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо - опосредованно - функциональная недостаточность гипофиза. Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников - хориокарциномы - продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.
Гормоны яичников. Яичники имеют две функции: развитие яйцеклеток и секреция гормонов
(см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА).
Гормоны яичников - это эстрогены, прогестерон и D4-андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула - мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию. Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы - поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют предшественник активных андрогенных гормонов - D4-андростендион. Активация стромы возникает, например, при поликистозе яичников - болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость). Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.
Гормоны плаценты человека.
Плацента - пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.
Хорионический гонадотропин (ХГ). Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны - эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.
Плацентарный лактоген человека (ПЛ). В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот - источника энергии материнского организма.
Прогестерон. Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.
Эстрогены. Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, - основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента - превращать их в эстрогены.
Гормоны поджелудочной железы.
Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент - это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки - инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона - увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны - гормон роста, кортизол и адреналин - также играют существенную роль.
Желудочно-кишечные гормоны.
Гормоны желудочно-кишечного тракта - гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы. Нейрогормоны - группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота. В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название "эндорфины", т.е. "внутренние морфины". Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.
ТЕРАПЕВТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ГОРМОНОВ
Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции. Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример - использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции. Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены - анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия. Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме. В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни - глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост. При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы. Специалисты по внутренним болезням обнаружили, что целесообразно использовать кортизоноподобные соединения при лечении некоторых типов коллагенозов, а гинекологи и акушеры применяют гормоны при терапии многих нарушений, прямо не связанных с гормональным дефицитом.
ГОРМОНЫ БЕСПОЗВОНОЧНЫХ
Гормоны беспозвоночных изучены главным образом на насекомых, ракообразных и моллюсках, причем многое в этой области все еще остается неясным. Иногда отсутствие сведений о гормонах того или иного вида животных объясняется просто тем, что у данного вида нет специализированных эндокринных желез, а отдельные группы клеток, секретирующих гормоны, с трудом поддаются обнаружению. Вероятно, любая функция, регулируемая гормонами в организме позвоночных, сходным образом регулируется и у беспозвоночных. У млекопитающих, например, нейромедиатор норадреналин учащает сердцебиение, а у краба Cancer pagurus и омара Homarus vulgaris ту же роль играют нейрогормоны - биологически активные вещества, вырабатываемые нейросекреторными клетками нервной ткани. Обмен кальция в организме регулируется у позвоночных гормоном паращитовидных желез, а у некоторых беспозвоночных - гормоном, который вырабатывается особым органом, расположенным в грудном отделе тела. Гормональной регуляции подчинены и многие другие функции у беспозвоночных, в том числе метаморфоз, движение и перегруппировка пигментных гранул в хроматофорах, интенсивность дыхания, созревание половых клеток в гонадах, формирование вторичных половых признаков и рост тела.
Метаморфоз. Наблюдения над насекомыми выявили роль гормонов в регуляции метаморфоза, причем показано, что ее осуществляют несколько гормонов. Мы остановимся на двух важнейших гормонах-антагонистах. На каждом из тех этапов развития, которые сопровождаются метаморфозом, нейросекреторные клетки головного мозга насекомых вырабатывают т.н. мозговой гормон, стимулирующий в проторакальной (переднегрудной) железе синтез стероидного гормона, индуцирующего линьку, - экдизона. В то самое время, когда в организме насекомого синтезируется экдизон, в прилежащих телах (corpora allata) - двух небольших железах, расположенных в голове насекомого - вырабатывается т.н. ювенильный гормон, который подавляет действие экдизона и обеспечивает после линьки следующую личиночную стадию. По мере роста личинки ювенильного гормона вырабатывается все меньше и, наконец, количество его оказывается уже недостаточным для того, чтобы препятствовать линьке. Например, у бабочек уменьшение содержания ювенильного гормона приводит к тому, что последняя личиночная стадия после линьки превращается в куколку.
РОЛЬ ГОРМОНОВ В МЕТАМОРФОЗЕ. Гормоны регулируют у насекомых метаморфоз. У личинки бабочки цекропиевого шелкопряда проторакальная железа, стимулируемая мозговым гормоном, начинает секретировать экдизон - гормон, инициирующий линьки, через которые личинка проходит в процессе метаморфоза. В то же время расположенные в голове парные железы - прилежащие тела - секретируют ювенильный гормон, тормозящий метаморфоз путем подавления действия экдизона. По мере роста личинки ювенильного гормона вырабатывается все меньше и меньше, пока в какой-то момент концентрация его оказывается уже недостаточной для того, чтобы предотвратить линьку.
Взаимодействие гормонов, регулирующих метаморфоз, продемонстрировано в ряде экспериментов. Известно например, что клоп Rhodnius prolixus в ходе нормального ж
ГОРМОНЫ (от греческого hormao - возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие влияние на деятельность других органов и тканей. У позвоночных животных и человека такие железы (гипофиз, надпочечники, половые, щитовидная и др.) посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. У высших беспозвоночных гормоны контролируют также линьку, метаморфоз и др. Гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из органов животных. О гормонах растений смотри в статье Фитогормоны.
ГОРМОНЫ ов, мн. hormone f., англ. hormone. Биологически активные вещества, вырабатываемые в организме и участвующие в регуляции всех жизненно важных процессов. БАС-2. Гормонный ая, ое. Крысин 1998. - Лекс. Гранат: гормоны; Уш. 1935: гормо/н, гормона/льный; Ож. 1949: гормо/нный.
ГОРМОНЫ РАСТЕНИЙ - или фитогормоны, вырабатываемые растениями органические вещества, отличные от питательных веществ и образующиеся обычно не там, где проявляется их действие, а в других частях растения. Эти вещества в малых концентрациях регулируют рост растений и их физиологические реакции на различные воздействия. В последние годы ряд фитогормонов удалось синтезировать, и теперь они находят применение в сельскохозяйственном производстве. Их используют, в частности, для борьбы с сорняками и для получения бессемянных плодов. Растительный организм - это не просто масса клеток, беспорядочно растущих и размножающихся; растения и в морфологическом, и в функциональном смысле являются высокоорганизованными формами. Фитогормоны координируют процессы роста растений. Особенно отчетливо эта способность гормонов регулировать рост проявляется в опытах с культурами растительных тканей. Если выделить из растения живые клетки, сохранившие способность делиться, то при наличии необходимых питательных веществ и гормонов они начнут активно расти. Но если при этом правильное соотношение различных гормонов не будет в точности соблюдено, то рост окажется неконтролируемым и мы получим клеточную массу, напоминающую опухолевую ткань, т.е. полностью лишенную способности к дифференцировке и формированию структур. В то же время, надлежащим образом изменяя соотношение и концентрации гормонов в культуральной среде, экспериментатор может вырастить из одной-единственной клетки целое растение с корнями, стеблем и всеми прочими органами. Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов - соединений белковой природы, контролирующих биохимические и физиологические процессы. Гормоны растений были открыты только в 1920-х годах, так что все сведения о них получены сравнительно недавно. Однако еще Ю.Сакс и Ч.Дарвин в 1880 пришли к мысли о существовании такого рода веществ. Дарвин, изучавший влияние света на рост растений, писал в своей книге Способность к движению у растений (The Power of Movement in Plants): "Когда проростки свободно выставлены на боковой свет, то из верхней части в нижнюю передается какое-то влияние, заставляющее последнюю изгибаться". Говоря о влиянии силы тяжести на корни растения, он пришел к заключению, что "только кончик (корня) чувствителен к этому воздействию и передает некоторое влияние или стимул в соседние части, заставляя их изгибаться". В течение 1920-1930-х годов гормон, ответственный за реакции, которые наблюдал Дарвин, был выделен и идентифицирован как индолил-3-уксусная кислота (ИУК). Работы эти выполнили в Голландии Ф.Вент, Ф.Кегль и А.Хаген-Смит. Примерно в то же время японский исследователь Е.Куросава изучал вещества, вызывающие гипертрофированный рост риса. Теперь эти вещества известны как фитогормоны гиббереллины. Позже другие исследователи, работавшие с культурами растительных тканей и органов, обнаружили, что рост культур значительно ускоряется, если добавить к ним небольшие количества кокосового молока. Поиски фактора, вызывающего этот усиленный рост, привели к открытию гормонов, которые были названы цитокининами.
ГЛАВНЫЕ КЛАССЫ ГОРМОНОВ РАСТЕНИЙ
Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.
Ауксины. Вещества, стимулирующие растяжение клеток растений, известны под общим названием "ауксины". Ауксины вырабатываются и накапливаются в высоких концентрациях в верхушечных меристемах (конусах нарастания побега и корня), т.е. в тех местах, где клетки особенно быстро делятся. Отсюда они перемещаются в другие части растений. Нанесенные на срез стебля ауксины ускоряют образование корней у черенков. Однако в чрезмерно больших дозах они подавляют корнеобразование. Вообще чувствительность к ауксинам у тканей корня значительно выше, чем у тканей стебля, так что дозы этих гормонов, наиболее благоприятные для роста стебля, обычно замедляют корнеобразование. Это различие в чувствительности объясняет, почему верхушка горизонтально лежащего побега проявляет отрицательный геотропизм, т.е. изгибается кверху, а кончик корня - положительный геотропизм, т.е. изгибается к земле. Когда под действием силы тяжести ауксин скапливается на нижней стороне стебля, клетки этой нижней стороны растягиваются сильнее, чем клетки верхней стороны, и растущая верхушка стебля изгибается кверху. По-другому действует ауксин на корень. Скапливаясь на нижней его стороне, он подавляет здесь растяжение клеток. По сравнению с ними клетки на верхней стороне растягиваются сильнее, и кончик корня изгибается к земле. Ауксины ответственны и за фототропизм - ростовые изгибы органов в ответ на одностороннее освещение. Поскольку под действием света распад ауксина в меристемах, по-видимому, несколько ускоряется, клетки на затененной стороне растягиваются сильнее, чем на освещенной, что заставляет верхушку побега изгибаться по направлению к источнику света. Так называемое апикальное доминирование - явление, при котором присутствие верхушечной почки не дает пробуждаться боковым почкам, - тоже зависит от ауксинов. Результаты исследований позволяют считать, что ауксины в той концентрации, в какой они накапливаются в верхушечной почке, заставляют верхушку стебля расти, а перемещаясь вниз по стеблю, они тормозят рост боковых почек. Деревья, у которых апикальное доминирование выражено резко, как, например, у хвойных, имеют характерную устремленную вверх форму, в отличие от взрослых деревьев вяза или же клена. После того как произошло опыление, стенка завязи и цветоложе быстро разрастаются; образуется крупный мясистый плод. Рост завязи связан с растяжением клеток - процессом, в котором участвуют ауксины. Теперь известно, что некоторые плоды можно получить и без опыления, если в подходящее время нанести ауксин на какой-нибудь орган цветка, например на рыльце. Такое образование плодов - без опыления - называют партенокарпией. Партенокарпические плоды лишены семян. На плодоножке созревших плодов или на черешке старых листьев образуются ряды специализированных клеток, т.н. отделительный слой. Соединительная ткань между двумя рядами таких клеток постепенно разрыхляется, и плод или лист отделяется от растения. Это естественное отделение плодов или листьев от растения называется опадением; оно индуцируется изменениями концентрации ауксина в отделительном слое.См. также ЛИСТ. Из природных ауксинов шире всего распространена в растениях индолил-3-уксусная кислота (ИУК). Однако этот природный ауксин применяется в сельском хозяйстве значительно реже, чем такие синтетические ауксины, как индолилмасляная кислота, нафтилуксусная кислота и 2,4-дихлорфеноксиуксусная кислота (2,4-Д). Дело в том, что ИУК под действием ферментов растения непрерывно разрушается, тогда как синтетические соединения не подвержены ферментативному разрушению, и потому малые их дозы способны вызывать заметный и долго сохраняющийся эффект. Синтетические ауксины находят широкое применение. Их используют для усиления корнеобразования у черенков, которые без этого плохо укореняются; для получения партенокарпических плодов, например у томатов в теплицах, где условия затрудняют опыление; для того чтобы вызвать у плодовых деревьев опадение части цветков и завязей (сохранившиеся плоды при таком "химическом прореживании" оказываются крупнее и лучше); чтобы предотвратить предуборочное опадение плодов у цитрусовых и некоторых семечковых, например у яблонь, т.е. чтобы отсрочить их естественное опадение. В высоких концентрациях синтетические ауксины применяются в качестве гербицидов для борьбы с некоторыми сорняками.
Гиббереллины. Гиббереллины широко распространены в растениях и регулируют целый ряд функций. К 1965 было идентифицировано 13 молекулярных форм гиббереллинов, очень сходных химически, но весьма различающихся по своей биологической активности. Среди синтетических гиббереллинов чаще всего применяется вырабатываемая микробиологической промышленностью гибберелловая кислота. Важный физиологический эффект гиббереллинов - ускорение роста растений. Известна, например, генетическая карликовость у растений, при которой резко укорочены междоузлия (участки стебля между узлами, от которых отходят листья); как выяснилось, это связано с тем, что у таких растений генетически заблокировано образование гиббереллинов в процессе метаболизма. Если, однако, ввести в них гиббереллины извне, то растения будут расти и развиваться нормально. Многим двулетним растениям для того, чтобы выбросить стрелку и зацвести, требуется в течение определенного времени пребывание либо при низкой температуре, либо на коротком дне, а иногда и то и другое. Обработав такие растения гибберелловой кислотой, их можно заставить зацвести в условиях, при которых возможен только вегетативный рост. Подобно ауксинам, гиббереллины способны вызывать партенокарпию. В Калифорнии их регулярно применяют для обработки виноградников. В результате такой обработки грозди получаются более крупными и лучше сформированными. Во время прорастания семян решающую роль играет взаимодействие гиббереллинов и ауксинов. После набухания семени в зародыше синтезируются гиббереллины, которые индуцируют синтез ферментов, ответственных за образование ауксина. Гиббереллины также ускоряют рост первичного корешка зародыша в то время, когда под влиянием ауксина оболочка семени разрыхляется и зародыш растет. Первым из семени появляется корешок, а за ним и само растеньице. Высокие концентрации ауксина вызывают быстрое удлинение стебелька зародыша, и в конце концов верхушка проростка пробивает почву.
Цитокинины. Гормоны, известные как цитокинины, или кинины, стимулируют не растяжение, а деление клеток. Цитокинины образуются в корнях и отсюда поступают в побеги. Возможно, они синтезируются также в молодых листьях и почках. Первый открытый цитокинин - кинетин - был получен с использованием ДНК спермы сельди. Цитокинины - "великие организаторы", регулирующие рост растений и обеспечивающие у высших растений нормальное развитие их формы и структур. В стерильных тканевых культурах добавление цитокининов в надлежащей концентрации вызывает дифференцировку; появляются примордии - нерасчлененные зачатки органов, т.е. группы клеток, из которых со временем развиваются различные части растения. Обнаружение этого факта в 1940 послужило основой для последующих успешных экспериментов. В начале 1960-х годов научились уже выращивать целые растения из одной недифференцированной клетки, помещенной в искусственную питательную среду. Еще одно важное свойство цитокининов - их способность замедлять старение, что особенно ценно для зеленых листовых овощей. Цитокинины способствуют удержанию в клетках ряда веществ, в частности аминокислот, которые могут быть направлены на ресинтез белков, необходимых для роста растений и обновления его тканей. Благодаря этому замедляются старение и пожелтение, т.е. листовые овощи не так быстро теряют товарный вид. В настоящее время предпринимаются попытки использовать один из синтетических цитокининов, а именно бензиладенин, в качестве ингибитора старения многих зеленых овощей, например салата, брокколи и сельдерея.
Гормоны цветения. Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента. Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях. Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.
Дормины. Дормины - это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество "абсцизин II". По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытому Ф.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.
Витамины группы В. К фитогормонам иногда относят и некоторые витамины группы В, а именно тиамин, ниацин (никотиновую кислоту) и пиридоксин. Эти вещества, образующиеся в листьях, регулируют не столько формообразовательные процессы, сколько рост и питание растений.
Синтетические ретарданты. Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества - фосфон, цикоцел и алар.
ЛИТЕРАТУРА
Рейвн П., Эверт Р., Айкхорн Э. Современная ботаника, тт. 1-2. М., 1990