Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

цинка семейство

Энциклопедия Кольера

ПОДГРУППА IIB. СЕМЕЙСТВО ЦИНКА

ЦИНК, КАДМИЙ, РТУТЬ

Положение элементов семейства цинка как членов рядов переходных металлов, рассмотрено ранее (см. разд. Подгруппа IB и Переходные элементы). Хотя валентный электрон, отличающий их от элементов подгруппы IB, поступает на ns-уровень и у каждого из них заполнена (n1)d 10-орбиталь, по своим химическим и физическим свойствам они все-таки очень отличаются от B-подгрупп; в то же время существует некоторое сходство с непереходными металлами. Так, есть аналогия с элементами подгруппы IIA все они проявляют степень окисления II. Эти переходные металлы имеют сравнительно невысокую плотность, низкие температуры плавления и кипения, проявляя тем самым сходство с непереходными металлами. Температуры плавления и кипения, в целом, увеличиваются к серединам рядов переходных металлов и затем постепенно, но нерегулярно, уменьшаются, поэтому металлы, завершающие серии переходных элементов, должны иметь относительно низкие значения этих величин, что мы и видим в табл. 18. Однако удивительно, что у этих элементов ионные радиусы M2+ меньше ионных радиусов M+ элементов подгруппы IB, хотя металлический радиус заметно больше. Неожиданное увеличение атомного радиуса цинка нарушает закономерность сжатия, начинающуюся с подгруппы IIIB вдоль рядов переходных металлов. Большие значения потенциалов ионизации (энергия, затрачиваемая на отрыв внешних электронов от атома, находящегося в газообразном состоянии) для элементов IIB подгруппы выглядят странно на фоне легкости, с которой Zn и Cd реагируют с кислотами-восстановителями (например, с HCl), вытесняя водород. Исчерпывающее объяснение этому находится за пределами данного рассмотрения, однако причина связана с реальным количеством энергии, выделяющимся при образовании ионов в растворе (энергия гидратации).

Другой тенденцией, отличающей их от непереходных элементов, т.е. элементов A-подгрупп, является то, что цинк проявляет только степень окисления II, а кадмий реализует степень окисления II как наиболее стабильную, но может давать соединения и со степенью окисления I, и, наконец, для ртути стабильны обе степени окисления (I и II). Эта тенденция к проявлению низких степеней окисления нехарактерна для непереходных элементов. 6s2-Электронная пара ртути близка по поведению к инертной электронной паре. Например, у висмута инертная электронная пара стабилизирует состояние в низшей степени окисления III и дестабилизирует состояние V. Внутренний заполненный слой из 18 электронов сохраняется у каждого элемента, так как эти электроны не участвуют в образовании химической связи. В этой подгруппе больше сходства между Zn и Cd, чем между Cd и Hg, тогда как у непереходных элементов, наоборот, первый член подгруппы отличается от других. Цинк и кадмий не так явно различаются, как медь и серебро. Между подгруппами IB и IIB имеется небольшое сходство, при этом элементы IIB-подгруппы более реакционноспособны. Первые члены действительно имеют существенно более высокие электродные потенциалы.

Извлечение металлов из их сульфидных руд не представляет слишком сложной задачи, так как все сульфиды достаточно легко окислить до оксидов, а затем восстановить оксиды углеродом или металлом при термической обработке. Перед переработкой сульфидную руду цинка (сфалерит или цинковую обманку) подвергают обогащению, после грубого измельчения примерно до размера гравия добавляют к гомогенному шламу (в больших танках), состоящему из ферросилиция FeSi (получают в обжиговых печах сталеплавильной промышленности). Плотность этого жидкообразного шлама достаточна для флотации кремнистого материала из более тяжелых сульфидных руд ZnS в присутствии примеси PbS. Дальнейшее обогащение руды достигается после пенной флотации. Сульфид цинка при обжиге превращают в ZnO и затем восстанавливают до металла коксом при температурах, достаточных для испарения цинка из зоны восстановления. Если в руде присутствовал кадмий, его отделяют благодаря его большей летучести. Чистый цинк получают электролизом аналогично процессу рафинирования меди. Ртуть может быть как в свободном состоянии, так и в связанном в виде киновари HgS. При обжиге на воздухе металл улетучивается из печи, так как при температурах обжига HgO неустойчив и разлагается на ртуть с выделением кислорода. Сульфидная сера образует SO2. Очистку загрязненного материала проводят, отжимая через замшевый фильтр с последующей обработкой азотной кислотой и повторной перегонкой без доступа воздуха.

См. также ЦИНКОВАЯ ПРОМЫШЛЕННОСТЬ.

Применение. Металлы подгруппы находят разнообразное применение. Большие количества цинка применяют для коррозионной защиты железа и стали. Металлический цинк достаточно активен, но первоначально в природных условиях образуется инертное защитное покрытие из основного карбоната Zn2(OH)2CO3. Цинковое покрытие можно получать разными способами горячим погружением, как в электролитических методах, испарением цинка с последующей конденсацией на защищаемую поверхность, разбрызгиванием, распылением, напылением и сушкой сформованного материала в больших печах. Много цинка расходуется в производстве бронз и латуней из меди и цинка (см. табл. 17б). Эти сплавы применяют для придания высокой коррозионной стойкости, например, марганцевая бронза (90% Cu, 5% Zn, 3% Sn и 2% Mn) отличается особой коррозионной стойкостью. Кадмирование один из способов коррозионной защиты стальных поверхностей, однако это покрытие неустойчиво к кислотам. Кадмий используют в технологии низкоплавких сплавов, например, сплава Вуда (12,5% Cd), сплава Липовича (10% Cd). Кроме того, кадмий часто добавляют в подшипниковые сплавы. Все металлы подгруппы IIB находят широкое применение в технологии аккумуляторов и батарей. Например, цинк используют как оболочку в сухих батареях, где он выполняет двоякую функцию, контейнера и анода; кадмий используют как анод в никель-кадмиевых элементах типа щелочного аккумулятора Эдисона, в котором ставят кадмиевый анод вместо железного; оксид ртути(II) применяют в ртутных элементах; в стандартном элементе Вестона анод состоит из амальгамы Cd-Hg, а электролит из раствора CdSO4, такой элемент отличается стабильным и хорошо сохраняющимся напряжением. Ртуть единственный из металлов, который является жидкостью при обычной температуре (кроме ртути только галлий и цезий имеют очень низкие (около 29° С) температуры плавления, но они твердые при комнатной температуре). Ртуть отличается большой химической инертностью, высокой электропроводностью и находит разнообразное применение в электротехнических контрольно-измерительных приборах, газоразрядных лампах, переключателях и контактах. Кадмий входит в состав сплава, из которого сделаны регулирующие стержни в активных зонах ядерных реакторов, так как ядро атома кадмия отличается большим сечением захвата нейтронов.

Реакции. Цинк и кадмий активно реагируют со всеми кислотами и даже с водой (при достаточном нагревании), вытесняя из них H2. Реакции с кислотой протекают следующим образом:

ЦИНКА СЕМЕЙСТВО

Цинк растворяется в щелочах с выделением водорода и образованием цинкат-иона Zn(OH)42. Ртуть реагирует только с сильными кислотами-окислителями, такими, как HNO3 и царская водка. При этом могут образовываться нитраты ртути(I) и ртути(II), Hg2(NO3)2 и Hg(NO3)2. В этом заключается, в частности, ее отличие от меди, которая тоже способна проявлять степени окисления I и II, но с азотной кислотой образует только Cu(NO3)2. В зависимости от ряда факторов (размера реагирующих частиц, концентрации кислоты и температуры) медь реагирует с HNO3 с образованием различных соединений. Из раствора выделяются газообразные оксиды азота, азот и частично водород, в растворе образуются ион Cu(II), NH2OH, N2H4, NH4+, может образовываться осадок CuO.

Оксиды. Все металлы подгруппы (Zn, Cd, Hg) при нагревании реагируют с кислородом. Цинк образует белый ZnO, который при повышении температуры желтеет. Белый ZnO получается при термической диссоциации солей оксокислот; его используют как пигмент. Кадмий при прямом окислении образует коричневый оксид CdO, который при повышении температуры до ЦИНКА СЕМЕЙСТВО700° C разлагается на кадмий и кислород. Напротив, ZnO исключительно стабилен (см. в табл. 18 более отрицательное значение энтальпии образования ZnO). Ртуть медленно окисляется до HgO на воздухе при ЦИНКА СЕМЕЙСТВО300° С и вновь разлагается до металла при температурах чуть выше этой. HgO имеет желтую и красную модификации. Нет данных, свидетельствующих об образовании Hg2O.

Амфотерность. Оксид цинка проявляет типичные амфотерные свойства, реагируя как с основаниями, так и с кислотами и образуя соответственно цинкат-ион Zn(OH)42и Zn2+. Гидроксид цинка Zn(OH)2 получается по реакции с основанием, но в избытке основания растворяется, образуя растворимый цинкат:

Zn(OH)2 +2OH- = Zn(OH)4 2-При использовании раствора аммиака в качестве основания тоже образуется вначале гидроксид, который в избытке NH3 образует комплексный ион тетраамминцинка: Zn(OH)2 + 4NH3 = [[Zn(NH3)4]]2+ + 2OH

Кадмий образует аналогичный ион тетраамминкадмия [[Cd(NH3)4]]2.

Оксид и гидроксид кадмия в отличие от таких же соединений цинка не проявляют амфотерных свойств. Кадмиат CdO22образуется только при сплавлении оксида кадмия(II) со щелочью. Оксид ртути(II) тоже устойчив к действию оснований, но амфотерность ртути проявляется в том, что HgS растворяется в растворе Na2S с образованием тиомеркурат(II)-иона HgS22.

Взаимодействие с кислотами. При обработке оксидов элементов подгруппы IIB кислотами образуются соли нитраты, сульфаты, галогениды, фосфаты и карбонаты. Карбонаты, нитраты и сульфаты при термической диссоциации разлагаются с образованием CO2, NO2, SO3 (SO2 + O2) соответственно. Карбонат ртути(I) Hg2CO3 получается при смешении растворов Hg2(NO3)2 и карбоната щелочного металла. Образование Hg2CO3 свидетельствует об отсутствии гидролиза иона Hg(I).

Галогениды. Все металлы подгруппы реагируют с галогенами, образуя галогениды; галогениды получаются также при действии галогеноводородов на оксиды и гидроксиды этих металлов. Хлорид цинка ZnCl2, получаемый хлорированием Zn, используют для консервации древесины. Расплав ZnCl2 является умеренным электролитом, что свидетельствует о частично ионном характере связи. Фторид цинка ZnF2 получают прямым фторированием цинка либо реакцией HF c ZnO или ZnCl2. Кадмий со всеми галогенами образует CdIIX2, а также CdICl. Ртуть образует галогениды ртути(I) и ртути(II). Хлорид ртути(II) (сулема), в отличие от хлорида ртути(I) Hg2Cl2, растворим в воде. HgCl2 получают по реакции обмена HgSO4 + 2NaCl -> HgCl2 + Na2SO4 Из раствора его выделяют сублимацией. Сулема высокотоксичное вещество. Хлорид ртути(I) (каломель) нерастворим в воде, неядовит и находит ограниченное применение в медицине как слабительное. Водному слою над осадком каломель придает красивый шелковистый оттенок. Ион ртути(I) Hg22+, или [[Hg:Hg]]2+, имеет необычный для ионов металлов состав, но он существует, что подтверждено результатами химических, электрохимических и спектральных исследований. Ртуть металлическая и HgCl2 находятся в равновесии с Hg2Cl2: Hg0 + HgCl2 = Hg2Cl2

Хлорид ртути(II) практически полностью неионное соединение с ковалентным типом связи. Однако то, что при действии H2S на раствор HgCl2 или на раствор с ионом Hg22+ выделяется только HgS, подтверждает наличие определенного количества ионов Hg2+. Аналогично при действии гидроксид-иона образуется только гидроксид ртути(II) Hg(OH)2. Галогениды металлов подгруппы IIB проявляют тенденцию к образованию галогено- и псевдогалогенокомплексов при реакциях растворимых галогенидов или псевдогалогенидов, например:

ЦИНКА СЕМЕЙСТВО

Комплексообразование настолько сильно выражено у Cd, что аутокомплексы существуют в растворах солей кадмия (например, в растворе CdCl2): 2CdCl2 = Cd[[CdCl4]] В соединениях XHgX (X галоген) ковалентная связь столь прочна, что комплексные соединения ртути намного менее стабильны, чем соответствующие соединения цинка или кадмия. Поэтому в растворе HgCl2 преобладают ионы HgCl+ и Cl, а добавление Cl-иона к раствору HgCl2 не увеличивает стабильность комплексных ионов типа HgCl42. При взаимодействии галогенидов (а также других солей) ртути с аммиаком в зависимости от его физического состояния (газ или раствор) получается белый плавкий либо неплавкий осадок: HgCl2 + 2NH3 (газ) = Hg(NH3)2Cl2 (плавкий белый осадок) HgCl2 + 2NH3 (водн.) = NH4Cl + HgNH2Cl (неплавкий белый осадок) Вторая реакция тормозится в присутствии больших количеств хлорида аммония NH4Cl. Среди других реакций для обнаружения аммиака в воде используется реактив Несслера щелочной раствор K2[[HgI4]]. При его взаимодействии с NH3 и солями аммония образуется красно-коричневый осадок: 2[[HgI4]]2+ NH3 + 3OH -> [[OHg2NH2]]I + 7I+ 2H2O Образование этого осадка возможно уже при ничтожных количествах аммиака в растворе. Таким способом можно обнаруживать начало разложения (гниения) продуктов животного или растительного происхождения. Известны и другие соединения ртути с азотом, например, аммиачные комплексы типа иона тетраамминртути(II) [[Hg(NH3)4]]2+, получаемого из аммиака и соли ионного типа: Hg(ClO4)2 + 4NH3 [[Hg(NH3)4]]2+ + 2ClO4

Очевидно, что ртуть имеет координационное число 2 (как в HgCl2 или [[Hg(NH3)2]]2+, оба линейного строения) или 4, как в [[Hg(NH3)4]]2+ (тетраэдрического строения).

Гидриды. Все металлы подгруппы IIB образуют гидриды состава MH2. Так, гидрид цинка ZnH2 получается при взаимодействии ZnI2 с LiAlH4 или LiH. Все гидриды реагируют с водой, выделяя водород, аналогично поведению гидридов элементов подгрупп IA и IIA. Термическая устойчивость гидридов убывает в ряду ZnH2 > CdH2 > HgH2, причем HgH2 начинает разлагаться при 125° С.

Сульфиды. Сульфиды двухвалентных металлов образуются по реакции прямого синтеза, а также при действии сероводорода на растворы солей. Сульфид цинка ZnS белое и растворимое в кислотах вещество, одно время он как пигмент в смеси с наполнителем BaSO4 (литопон) широко применялся для приготовления красок, в производстве пластмасс, линолеума и т.п. Сульфид кадмия CdS светложелтое вещество также применяют как пигмент, но он растворяется только в сильных кислотах или с окислителями. Для ртути известен только сульфид HgS, так как Hg22+ при обработке сероводородом образует только HgS:

Hg22+ + H2S -> Hg0 + HgS + 2H+ Приведенная реакция является реакцией диспропорционирования и хорошим доказательством чрезвычайной нерастворимости HgS: только смесь HNO3 + HCl растворяет этот сульфид.

Реакции Льюиса. Все ионы рассматриваемых металлов Zn, Cd, Hg обладают большим сродством к электронной паре, и поэтому можно полагать, что они являются сильными кислотами Льюиса, однако ртуть в меньшей степени, чем цинк и кадмий. Координационное число цинка преимущественно равно 4, но может достигать и 6. Получение двух 6-координационных комплексных ионов с октаэдрической структурой приведено ниже: Zn2+ + 6NH3 = [[Zn(NH3)6]]2+ Zn2+ + 3NH2CH2CH2NH2 = [[Zn(en)3]]2+

Последнее соединение представляет собой комплексный ион с бидентатными лигандами: en молекула этилендиамина NH2CH2CH2NH2, донор двух электронных пар.

Полезные сервисы

азот

Энциклопедия Кольера

N (nitrogenium),

химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом) и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3-), нитриты (NO2-), цианиды (CN-), нитриды (N3-) и азиды (N3-).

Историческая справка. Опыты А. Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает "безжизненный". В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его "вредный воздух". Латинское название азота происходит от греческих слов nitron и gen, что означает "образующий селитру".

Фиксация азота и азотный цикл. Термин "фиксация азота" означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (N содержит 7 протонов и 7 нейтронов) и с массовым числом 15 ( содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно. Схематически электронное строение атома азота таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (-III) до (V), и они известны.

См. также АТОМА СТРОЕНИЕ.

Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь :N:::N:, формируя электронные пары. Измеренное межатомное расстояние N-N равно 1,095 . Как и в случае с водородом (см. ВОДОРОД), существуют молекулы азота с различным спином ядра - симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a - кубическая и b - гексагональная с температурой перехода a (r) b -237,39° С. Модификация b плавится при -209,96° С и кипит при -195,78° C при 1 атм (см. табл. 1). Энергия диссоциации моля (28,016 г или 6,023*10 23 молекул) молекулярного азота на атомы (N2 2N) равна примерно -225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.

Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.

Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.

Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:

АЗОТ

Очень удобен процесс окисления иона аммония нитрит-ионом:

АЗОТ

Известны и другие способы - разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:

АЗОТ

При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

АЗОТ

Физические свойства. Некоторые физические свойства азота приведены в табл. 1.

Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА

Плотность, г/см3 0,808 (жидк.) Температура плавления, ° С -209,96 Температура кипения, ° С -195,8 Критическая температура, ° С -147,1 Критическое давление, атма 33,5 Критическая плотность, г/см3 а 0,311 Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С) Электроотрицательность по Полингу 3 Ковалентный радиус, 0,74 Кристаллический радиус, 1,4 (M3-) Потенциал ионизации, Вб

первый 14,54 второй 29,60

а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.

б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.

Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl5 - стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ

Степень окисления Примеры соединений

-III Аммиак NH3, ион аммония NH4+, нитриды M3N2 -II Гидразин N2H4 -I Гидроксиламин NH2OH I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O II Оксид азота(II) NO III Оксид азота(III) N2O3, нитрит натрия NaNO2 IV Оксид азота(IV) NO2, димер N2O4 V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты) Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами - нитриды, - похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M-N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.

Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3-. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.

Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN - высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.

Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов - Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.

Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ). Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода - аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).

Аммиак NH3. Аммиак - один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).

Строение молекулы. Молекула NH3 имеет почти пирамидальное строение. Угол связи H-N-H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.

АЗОТ

Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ

Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).

Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

АЗОТ

Синий цвет связывают с сольватацией и движением электронов или с подвижностью "дырок" в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация

АЗОТ

аналогично процессу, протекающему в воде

АЗОТ

Некоторые химические свойства обеих систем сопоставлены в табл. 4. Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой. Получение аммиака. Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

АЗОТ

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:

АЗОТ

Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака ("нашатырный спирт") состоит преимущественно из NH3, H2O и малых концентраций ионов NH4+ и OH-, образующихся при диссоциации

АЗОТ

Основной характер аммиака объясняется наличием неподеленной электронной пары азота :NH3. Поэтому NH3 - это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

АЗОТ

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:

АЗОТ

Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4. Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

АЗОТ

Аммиак реагирует с гидридами и нитридами также с образованием амидов:

АЗОТ

Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

АЗОТ

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

АЗОТ

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3. Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:

АЗОТ

Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2. Чистый безводный гидразин - бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

АЗОТ

В кислой среде (H+) гидразин образует растворимые соли гидразония типа [[NH2NH2H]]+X-. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N2O, NO, N2O3, NO2 (N2O4), N2O5. Имеется скудная информация об образовании пероксидов азота (NO3, NO4). Оксид азота(I) N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

АЗОТ

Молекула имеет линейное строение

АЗОТ

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как "веселящий газ", используют для умеренной анестезии в медицине. Оксид азота(II) NO - бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:

АЗОТ

NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

АЗОТ

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например, в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N2O2. Оксид азота(III) N2O3 (триоксид азота) - ангидрид азотистой кислоты: N2O3 + H2O 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (-20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. -102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2. Оксид азота(IV) NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):

АЗОТ

NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:

АЗОТ

а также по реакциям:

АЗОТ

При комнатной температуре NO2 - газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при -9,3° C димеризация протекает полностью: 2NO2 N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4. NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта - азотной кислоты. Оксид азота(V) N2O5 (устар. ангидрид азотной кислоты) - белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:

АЗОТ

N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием

АЗОТ

N2O5 - хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как

АЗОТ

Оксокислоты азота. Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3. Гипоазотистая кислота H2N2O2 - очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла - гипонитрита при действии другой кислоты: M2N2O2 + 2HX 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H-O-N=N-O-H.

Азотистая кислота HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

АЗОТ

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H-O-N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты. Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты - нитриты - хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей. Азотная кислота HNO3 - один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др.

См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.

ЛИТЕРАТУРА

Справочник азотчика. М., 1969 Некрасов Б.В. Основы общей химии. М., 1973 Проблемы фиксации азота. Неорганическая и физическая химия. М., 1982

Полезные сервисы

азота фосфора семейство

Энциклопедия Кольера

ПОДГРУППА VA. СЕМЕЙСТВО АЗОТА ФОСФОРА

Тенденция изменения свойств от неметаллических до металлических, которая выявлена в подгруппах IIIA и IVA, характерна и для этой подгруппы. Переход к металличности (хотя и нерезкий) начинается с мышьяка, у которого в отличие от фосфора уже заполнен 18 электронами электронный слой, расположенный под валентными электронами (табл. 6). Однако ни As, ни Sb не имеют типичных металлических свойств, как можно было бы ожидать у элементов с такой электронной структурой. Полностью металлическая природа элемента проявляется в этой подгруппе только у висмута, хотя и его металлические свойства не ярко выражены, особенно по проводимости.

АЗОТ

Химический элемент азот, N, седьмой элемент периодической таблицы элементов и первый элемент подгруппы VA. Наиболее распространенная форма азота изотоп 147N, в ядре которого содержится семь протонов и семь нейтронов. Общее содержание этого изотопа азота в природе равно 99,635%, остальное количество (0,365%) составляет изотоп 157N, содержащий в ядре 7 протонов и восемь нейтронов; атомная масса азота соответственно равна 14,008.

Около 79% (об.) азота в атмосфере состоит из двухатомных молекул N2. В природе существует примерный баланс азота: с одной стороны, азот из атмосферы усваивается бактериями и расходуется в химических и электрических (молния) процессах, а с другой, азот возвращается в атмосферу при разложении азотсодержащих веществ. Азот бесцветный газ. Он имеет ничтожную растворимость в воде, всего 23 мл/л при 0° C и 1 атм.

Азот выделяют из воздуха сжижением. При этом вначале азот и кислород отделяются от CO2, паров H2O и некоторых примесей химическими и механическими методами (адсорбция, охлаждение, фильтрация). При медленном нагревании жидкий воздух подвергается фракционной перегонке и при этом азот отделяется от остающегося жидкого кислорода. Благородные газы (He, Ne, Ar, Kr, Xe) выкипают раньше, чем азот, и, если необходимо, их сжижают вместе.

См. также ВОЗДУХ.

Химическая связь в молекуле азота очень прочная, поэтому азот совершенно инертен при низких температурах. В условиях электрического разряда или электрической дуги азот соединяется с кислородом, образуя несколько оксидов, в основном оксид азота(II) NO и оксид азота(IV) NO2. Известны и другие оксиды азота, их получают по следующим реакциям:

1) оксид азота(I) N2O

АЗОТА ФОСФОРА СЕМЕЙСТВО

2) оксид азота(III) N2O3

АЗОТА ФОСФОРА СЕМЕЙСТВО

3) димер оксида азота(IV) N2O4

АЗОТА ФОСФОРА СЕМЕЙСТВО

4) оксид азота(V) N2O5

Image2852

Аммиак. При высоких температуре и давлении азот соединяется с водородом на поверхности платинового катализатора, образуя важное соединение аммиак:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Этот процесс (в промышленности применяют метод Габера или метод Клода) относится к процессам фиксации азота, так как образующийся из химически инертного молекулярного атмосферного азота аммиак способен к участию в химических реакциях и образованию других соединений азота и может использоваться для удобрения почвы. Количества азота в атмосфере, находящегося над 1 кв. километром земной поверхности, теоретически достаточно для получения 7 млн. т аммиака. Среди других соединений азота, пригодных в качестве удобрений для почвы и получаемых из аммиака, известны нитрат аммония NH4NO3, получаемый по реакции аммиака с азотной кислотой, фосфат аммония (NH4)3PO4, получаемый по реакции аммиака с фосфорной кислотой H3PO4, и мочевина, образующаяся из аммиака и CO2. Из аммиака также можно получать азотную кислоту HNO3 (окислением аммиака на воздухе с поглощением оксидов азота водой), гидразин NH2NH2 (по реакции аммиака с гипохлоритом натрия NaOCl). Гидразин и некоторые его производные используются в качестве ракетного топлива. Аммиак, гидразин и азотистоводородная кислота HN3 это гидриды азота. Аммиак и вода имеют ряд сходных свойств, позволяющих использовать аммиак как растворитель для некоторых неорганических веществ. Для сравнения приведены два процесса автоионизации аммиака и воды:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Нитриды. При высокой температуре азот реагирует с некоторыми металлами, образуя соединения класса нитридов. Например,

АЗОТА ФОСФОРА СЕМЕЙСТВО

Нитрид магния гидролизуется:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Другие азотсодержащие соединения. Азот также реагирует с карбидом кальция CaC2 при высокой температуре с образованием цианамида кальция CaCN2. При гидролизе цианамида образуется аммиак:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Нитрат натрия NaNO3, известный как чилийская селитра, добывается в больших количествах в Чили. Он используется как сырье для производства азотной кислоты по следующей реакции:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Азот, образуя связь с углеродом, входит в состав многих природных органических соединений, например аминокислот RCHNH2COOH, аминов RNH2 и амидов RCONH2

(см. также АЗОТ).

ФОСФОР, МЫШЬЯК, СУРЬМА, ВИСМУТ

Получение. Некоторые элементы этой подгруппы встречаются в свободном состоянии и известны с древних времен; они относительно легко получаются из их оксидов или сульфидов. Сурьма иногда встречается в свободном состоянии, а другие элементы в основном в виде оксидов или сульфидов и реже в соединениях с другими неметаллами (см. табл. 6). Фосфор занимает 12-е место по распространенности элементов в природе. Он входит в состав многих горных пород и содержится в живых организмах (в костях, зубах и т.д.). Фосфор впервые был выделен из человеческой мочи. Химические связи PO в фосфат-ионе PO43одни из наиболее прочных, поэтому для получения свободного фосфора требуются большие затраты энергии. В промышленности фосфор получают при прокаливании смеси фосфата кальция, оксида кремния(IV) (песка) и кокса при высокой температуре в соответствии с реакцией Ca3(PO4)2 + 3SiO2 + 5C (r) 3CaSiO3 + 0,5P4 + 5CO

Фосфор возгоняют и плавят, в результате образуется белая модификация фосфора, которую хранят под слоем холодной воды (с холодной водой он не реагирует). Другие элементы этого семейства получают из оксидов восстановлением углеродом.

Аллотропия. Все элементы подгруппы, встречающиеся в свободном состоянии, имеют аллотропные модификации (состояния с различной кристаллической или атомной структурой вещества). С ростом атомного номера многообразие и сложность модификаций постепенно уменьшаются. У фосфора известны более 10 аллотропических модификаций, из которых наиболее важные белый, красный и черный фосфор; взаимопревращения между ними представлены следующей схемой:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Отметим некоторые различия в свойствах. Белая модификация как более реакционноспособная активно реагирует с молекулярным кислородом, поэтому белый фосфор применяют в устройствах для воспламенения. Он растворим в CS2, но нерастворим в холодной воде. Белый фосфор очень ядовит, вызывает сильные ожоги и работа с ним требует особой осторожности. Белый фосфор имеет тетраэдрическое строение, компактность такой молекулы объясняет высокую летучесть фосфора. Ковалентные связи в тетраэдре не очень прочные, чем и объясняется образование оксидов, некоторых сульфидов и других соединений. Красная модификация фосфора значительно менее реакционноспособна, чем белая; красный фосфор нерастворим в любых растворителях (как и черный), воде и не так ядовит. Структура ближе к форме связанных треугольников, чем к тетраэдру. Соединения, образуемые из белого или красного фосфора, идентичны. Черный фосфор обладает металличностью некоторой проводимостью и блеском. Мышьяк образует аллотропные модификации, частично подобные модификациям фосфора. Сурьма существенно отличается от фосфора и мышьяка, а висмут демонстрирует многие свойства, характерные для металлических структур.

Применение. Фосфор применяется в основном для химических синтезов, другие элементы находят применение в технологии сплавов. Сурьму добавляют к свинцу для увеличения твердости; сплавы, содержащие до 12% (масс.) сурьмы, применяют в производстве аккумуляторов. Сплавы свинца с висмутом, как и с другими элементами этого семейства, используют в производстве легкоплавких материалов, например, сплава Вуда (Pb, Bi, Sn, Cd). Соединения мышьяка являются инсектицидами. Фосфид натрия (Na3P), синтезируемый из элементов, применяют для изготовления морских сигнальных огней. При реакции фосфидов с водой образуется ядовитое вещество фосфин PH3, запах которого часто обнаруживается при реакции цинка или железа с HCl в водной среде, так как фосфиды могут присутствовать как примеси.

Реакции. Для всех элементов подгруппы характерно общее строение внешнего электронного слоя ns2np3, однако трудно достаточно точно предсказать химические свойства элементов. Азот проявляет все степени окисления от III до V, у фосфора (см. табл. 6) реализуются почти все степени окисления от III до V. Разнообразие степеней окисления уменьшается с ростом массы элемента; висмут в степени окисления V неустойчив, легко восстанавливается до степени окисления III, основной для висмута. В особых условиях все же можно получить соединения этих элементов с необычными степенями окисления. Азот может принимать только 8 электронов от 4 доноров, а остальные элементы являются акцепторами 10, 12 и более электронов (от 5, 6 и более доноров или лигандов). Однако в этом у них мало общего, определенные сходства и различия более четко проявляются при рассмотрении соединений этих элементов.

Оксиды. Кроме азота, все элементы подгруппы VA активно реагируют с кислородом, фосфор образует оксид P(V) P4O10, а другие, более тяжелые элементы только оксиды в степени окисления III. Более легкие элементы образуют оксиды тетраэдрического строения. Для мышьяка и сурьмы кроме As4O6 и Sb4O6 известны также As2O5, Sb2O4 и Sb2O5, но структуры их недостаточно изучены. As2O5 и Sb2O5 получают дегидратацией соответствующих кислот, H3AsO4 и HSb(OH)6. Sb2O4 образуется при прокаливании Sb4O6 или Sb2O5 на воздухе.

Кислоты. Фосфорные кислоты легко получаются при растворении оксидов фосфора. Схема образования многообразных кислот и солей фосфора приведена ниже:

АЗОТА ФОСФОРА СЕМЕЙСТВО

В этой схеме отсутствует фосфорноватистая (гипофосфористая) кислота H3PO2 (сильный восстановитель, образуется в небольших количествах при реакции белого фосфора с кипящей водой), а также фосфорноватая (гипофосфорная) кислота H4P2O6 (получается по реакции красного фосфора с NaOCl в кислой среде). Ниже приводятся структурные формулы некоторых кислот фосфора:

АЗОТА ФОСФОРА СЕМЕЙСТВО

Кислоты других элементов, проявляющих больше металлических свойств, отчасти сходны по форме, однако с ростом молекулярной массы уменьшается способность атомов образовывать прочные двойные связи (такие, как P=O). Поэтому образуются одиночные OH-группы, например, состав ортосурьмяной кислоты HSb(OH)6, а не H3SbO4.

Фосфорные кислоты и их соли находят многочисленные применения в промышленности. Средние фосфаты и полифосфаты Na3P3O6 и более сложного состава применяют в многотоннажном производстве моющих средств, в процессах умягчения и очистки воды. Фосфат кальция CaH4P2O8 применяют при изготовлении муки и в качестве заменителя дрожжей. Ca3P2O8 применяют в производстве зубных порошков и паст, пирофосфаты расходуются для изготовления буровых растворов, в стекольном производстве, в водоподготовке, для очистки металлов и антикоррозионной защиты. Тысячи тонн фосфатов используют как удобрение в сельском хозяйстве: практически нерастворимый Ca3(PO4)2 переводят в растворимую форму Ca(H2PO4)2 добавлением серной или азотной кислоты, причем при использовании азотной кислоты в почву вводится помимо фосфора также и азот в усвояемой форме.

Сульфиды. Сера реагирует непосредственно со всеми элементами подгруппы VA, с фосфором образуются P4S3, P4S7, P4S5, а с P4O10 образуется оксосульфид P4O6S2. P4S3 используют для производства легковоспламеняющихся (небезопасных) спичек, а для изготовления безопасных спичек применяют смесь P4S3 и Sb2S3: сульфид сурьмы входит в состав спичечной головки вместе с окислителем KClO3, а смесь P4S3 и Sb2S3 с песком покрывает боковую поверхность спичечного коробка. Существование As2S5 и Sb2S5 не установлено надежно, а образующийся Bi2S5 самопроизвольно разлагается на S и Bi2S3.

Гидриды. Изменения свойств гидридов элементов этой подгруппы вполне предсказуемы. Аммиак NH3 стабильное соединение со слабыми основными свойствами (донор электронной пары), а в жидком состоянии слабый донор H+. Устойчивость гидридов в подгруппе убывает с увеличением атомного номера, ослабевают донорные способности электронной пары, но возрастает способность к отщеплению водорода; получить BiH3 не просто.

Галогениды. В ряду галогенидов систематичности свойств не наблюдается. Только BiF3 является ионным соединением, что связано с максимальной металличностью висмута в этой подгруппе элементов. Все элементы образуют галогениды состава MX3, а фосфор также и P2Cl4 и P2I4. Среди галогенидов MX5 не установлено образование AsCl5, а висмут образует только BiF5, легко разлагающийся на F2 и BiF3 (поэтому BiF5 хороший фторирующий агент). Фосфор несмотря на малый радиус способен образовывать PCl5 и даже PBr5. Устойчивость этих галогенидов фосфора объясняется слабым окислительным действием P(V) в отличие от Bi(V), а также особенностями строения галогенида (в случае хлорида PCl4+ PCl6). Галогениды MX3 несмотря на наличие неподеленной электронной пары не образуют аддуктов по донорно-акцепторному механизму. Все галогениды энергично реагируют с водой (гидролиз), например:

PCl3 + 3H2O -> P(OH)3 + 3HCl

Однако гидролиз галогенидов азота(III) протекает иначе, чем у галогенидов остальных элементов этой группы.

Взаимодействие с кислотами. Элементы этой группы по-разному реагируют с кислотами. Ни один из них самопроизвольно не взаимодействует с HCl с выделением водорода. Кислоты-окислители, такие, как HNO3, реагируют с As и Sb; сурьма при длительной обработке образует Sb2O4. Висмут растворяется в азотной кислоте, образуя нитрат Bi(NO3)3. Сульфаты мышьяка, сурьмы и висмута можно получать при растворении соответствующих оксидов в серной кислоте.

См. также ФОСФОР; МЫШЬЯК; СПИЧКИ.

Полезные сервисы