Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

атмосфера

Толковый словарь

I ж.

1. Газообразная оболочка, окружающая Землю и некоторые другие планеты и движущаяся с ними в мировом пространстве как единое целое.

отт. перен. Окружающая обстановка, условия, обстоятельства, психологический климат, в которых проходит, протекает что-либо.

2. разг.

Дыхательная среда человека и живых организмов; воздух I 1..

II ж.

Внесистемная единица измерения давления.

АТМОСФЕ́РА - сущ., ж., употр. сравн. часто

Морфология: (нет) чего? атмосфе́ры, чему? атмосфе́ре, (вижу) что? атмосфе́ру, чем? атмосфе́рой, о чём? об атмосфе́ре; мн. что? атмосфе́ры, (нет) чего? атмосфе́р, чему? атмосфе́рам, (вижу) что? атмосфе́ры, чем? атмосфе́рами, о чём? об атмосфе́рах

1. Атмосфера Земли - это воздушный слой вокруг нашей планеты.

Прозрачная, голубая атмосфера. | Плотные слои атмосферы. | Загрязнять атмосферу.

2. Атмосферой вы называете окружающие вас условия, обстановку, отношения с людьми.

Атмосфера доверительности, веселья. | Накалить, разрядить атмосферу. | Отмечать юбилей в дружеской атмосфере. | В их доме всегда царила творческая атмосфера.

3. Когда вы говорите, что где-либо сгущается атмосфера, вы имеете в виду, что там нарастает напряжённость человеческих отношений.

Я чувствовал, как атмосфера в комнате сгущалась от моих вопросов.

4. В физике атмосфера - это единица измерения давления.

Давление в сто атмосфер.

атмосфе́рный прил.

атмосфери́ческий прил.

Толковый словарь Ушакова

АТМОСФЕ́РА (атмо́сфера неправ.), атмосфе́ры, жен. (от греч. atmos - дыхание и sphaira - шар).

1. только ед. Воздушная оболочка, окружающая землю (ест.).

|| Газообразная оболочка, окружающая некоторые планеты (астр.). Атмосфера Марса.

2. только ед. Воздух (разг.). В атмосфере чувствовалось приближение грозы. В комнате спертая атмосфера. Тухлое мясо отравляет атмосферу.

3. перен., только ед. Окружающие условия, моральная обстановка (книжн.). Столичная атмосфера. Вокруг этого дела необходимо создать атмосферу сочувствия.

4. Единица для измерения давления газообразных тел, равная 1,033 кг или 1 кг на 1 см2 (физ., тех.).

Толковый словарь Ожегова

АТМОСФЕ́РА, -ы, жен.

1. Газообразная оболочка, окружающая Землю, нек-рые другие планеты, Солнце и звёзды. А. Земли. Солнечная а.

2. перен. Окружающие условия, обстановка. Товарищеская а. А. доверия. В атмосфере дружбы.

3. Единица давления.

| прил. атмосферический, -ая, -ое (к 1 знач.) и атмосферный, -ая, -ое (к 1 знач.). Атмосферное давление.

Толковый словарь Даля

АТМОСФЕРА - жен. окружающий шар земной или иное небесное тело воздух, со всеми природными примесями его: испарениями, облаками и пр., мироколица, колоземица. Земная мироколица не подымается от земли и на сто верст. От густоты летней колоземицы марево в глазах играет.

| Круг или пространство испарения или действия какого-либо тела, вещества. Атмосфера человека или цветка, магнита; околица. Атмосферный, атмосферический воздух, коим мы дышим. Атмосферные перемены, погода, ведро и ненастье и все, что к тому относится. Атмосферное давление, тяжесть воздуха мироколицы, лежащей на известной площади; вес воздушного столба данного основания. Вес этот, по погоде глядя, изменчив, на чем и основано устройство погодника, барометра. Атмосферология жен. наука об атмосфере и обо всех ее изменениях.

Популярный словарь

Атмосфера

-ы, ж.

1) только ед. Газообразная оболочка Земли и некоторых других небесных тел.

Атмосфера Земли.

Синонимы:

во́здух

2) перен., только ед. Обстановка, окружающие условия.

Творческая атмосфера.

Праздничная атмосфера.

Синонимы:

среда́

3) спец. Внесистемная единица давления, равная давлению, которое производит столб ртути высотой в 760 мм.

Родственные слова:

атмосфе́рный, атмосфери́ческий

Этимология:

От греческого athmos ‘пар’ и sphaire ‘шар’.

Энциклопедический комментарий:

Атмосфера Земли защищает ее поверхность от разрушительного действия падающих метеоритов, большая часть которых сгорает в плотных слоях воздуха. Атмосфера задерживает ультрафиолетовое излучение Солнца, которое губительно действует на многие живые организмы на Земле. От вредного коротковолнового излучения их предохраняет слой озона, расположенный на высоте 20-25 км. Атмосферный кислород используется при дыхании животными и растениями, атмосферная углекислота - в питании растений. Циркуляция атмосферы влияет на погоду и климат Земли. Слои атмосферы: тропосфера - нижний основной слой (до 8-10 км в полярных и 16-18 км в тропических широтах); стратосфера - средний слой; ионосфера - верхний слой (50-80 км).

Словарь существительных

АТМОСФЕ́РА, -ы, ж Перен. То же, что обстановка.

Встреча глав государств проходила в атмосфере доверия и взаимопонимания.

Энциклопедический словарь

АТМОСФЕ́РА -ы; ж. [греч. atmos - дыхание и sphaira - шар].

1. Газообразная оболочка небесных тел, движущаяся с ними как единое целое. А. Земли, Венеры. // Об околоземном воздушном пространстве. Загрязнять атмосферу. Космический корабль вошёл в плотные слои атмосферы.

2. чего и с опр. Окружающие условия, обстановка, психологический настрой где-л. Идейная, творческая а. А. спектакля, диспута, переговоров. А. взаимопонимания, доверительности, нервозности. Накалить, разрядить атмосферу. А. сгущается где-л. (о нарастании напряжённости где-л.). Вечер прошёл в дружеской атмосфере.

3. Физ., техн. Единица измерения давления. Давление в сто атмосфер.

Атмосфе́рный, -ая, -ое (1 зн.). А. кислород. А-ая пыль. А-ые осадки. А-ое давление. Атмосфери́ческий, -ая, -ое. Спец. (1 зн.). А-ие пары, разряды.

* * *

атмосфе́ра - внесистемная единица давления. Нормальная, или физическая, атмосфера (обозначается атм) равна

101325Па = 1013,25гПа = 760 мм рт. ст. = 10332 мм вод. ст. = 1,0332 ат;

техническая атмосфера (ат) равна

1кгс/см2 = 735,56 мм рт. ст. =104мм вод. ст. = 98066,5 Па.

* * *

АТМОСФЕРА - АТМОСФЕ́РА, внесистемная единица давления. Нормальная, или физическая, атмосфера (обозначается атм.) равна 101 325 Па - 1013,25 гПа - 760 мм ртутного столба - 10 332 мм водяного столба - 1,0332 ат; техническая атмосфера (ат) равна 1 кгс/см2 - 735,56 мм ртутного столба - 104 мм водяного столба - 98066,5 Па.

Большой энциклопедический словарь

АТМОСФЕРА - внесистемная единица давления. Нормальная, или физическая, атмосфера (обозначается атм.) равна 101 325 Па - 1013,25 гПа - 760 мм ртутного столба - 10 332 мм водяного столба - 1,0332 ат; техническая атмосфера (ат) равна 1 кгс/см² - 735,56 мм ртутного столба - 104 мм водяного столба - 98066,5 Па.

Академический словарь

-ы, ж.

1. Газообразная оболочка Земли и некоторых других планет.

2. разг. Воздух.

Даже среди знойной атмосферы палящего дня чувствуется, как пышет от них [печей] жаром. Серафимович, На заводе.

3. перен.; чего или какая.

Окружающие условия, обстановка.

[Никитин] радостно окунался в атмосферу кипучей деятельности, немедленно принимался за работу. Бек, Талант.

4. физ., тех.

Единица измерения давления.

[От греч. ’ατμός - дыхание и σφαι̃ρα - шар]

Энциклопедия Кольера

АТМОСФЕРА - газовая оболочка, окружающая небесное тело. Ее характеристики зависят от размера, массы, температуры, скорости вращения и химического состава данного небесного тела, а также определяются историей его формирования начиная с момента зарождения. Атмосфера Земли образована смесью газов, называемой воздухом. Ее основные составляющие - азот и кислород в соотношении приблизительно 4:1. На человека оказывает воздействие главным образом состояние нижних 15-25 км атмосферы, поскольку именно в этом нижнем слое сосредоточена основная масса воздуха. Наука, изучающая атмосферу, называется метеорологией, хотя предметом этой науки являются также погода и ее влияние на человека. Состояние верхних слоев атмосферы, расположенных на высотах от 60 до 300 и даже 1000 км от поверхности Земли, также изменяется. Здесь развиваются сильные ветры, штормы и проявляются такие удивительные электрические явления, как полярные сияния. Многие из перечисленных феноменов связаны с потоками солнечной радиации, космического излучения, а также магнитным полем Земли. Высокие слои атмосферы - это также и химическая лаборатория, поскольку там в условиях, близких к вакууму, некоторые атмосферные газы под влиянием мощного потока солнечной энергии вступают в химические реакции. Наука, изучающая эти взаимосвязанные явления и процессы, называется физикой высоких слоев атмосферы.

ОБЩАЯ ХАРАКТЕРИСТИКА АТМОСФЕРЫ ЗЕМЛИ

Размеры. Пока ракеты-зонды и искусственные спутники не исследовали внешние слои атмосферы на расстояниях, в несколько раз превосходящих радиус Земли, считалось, что по мере удаления от земной поверхности атмосфера постепенно становится более разреженной и плавно переходит в межпланетное пространство. Сейчас установлено, что потоки энергии из глубоких слоев Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до внешних пределов Солнечной системы. Этот т.н. солнечный ветер обтекает магнитное поле Земли, формируя удлиненную "полость", внутри которой и сосредоточена земная атмосфера. Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, - с противоположной, ночной стороны.

Граница магнитного поля Земли называется магнитопаузой. С дневной стороны эта граница проходит на расстоянии около семи земных радиусов от поверхности, но в периоды повышенной солнечной активности оказывается еще ближе к поверхности Земли. Магнитопауза является одновременно границей земной атмосферы, внешняя оболочка которой называется также магнитосферой, так как в ней сосредоточены заряженные частицы (ионы), движение которых обусловлено магнитным полем Земли. Общий вес газов атмосферы составляет приблизительно 4,5*1015 т. Таким образом, "вес" атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м2.

Значение для жизни. Из сказанного выше следует, что Землю от межпланетного пространства отделяет мощный защитный слой. Космическое пространство пронизано мощным ультрафиолетовым и рентгеновским излучением Солнца и еще более жестким космическим излучением, и эти виды радиации губительны для всего живого. На внешней границе атмосферы интенсивность излучения смертоносна, но значительная его часть задерживается атмосферой далеко от поверхности Земли. Поглощением этого излучения объясняются многие свойства высоких слоев атмосферы и особенно происходящие там электрические явления. Самый нижний, приземный слой атмосферы особенно важен для человека, который обитает в месте контакта твердой, жидкой и газообразной оболочек Земли. Верхняя оболочка "твердой" Земли называется литосферой. Около 72% поверхности Земли покрыто водами океанов, составляющими большую часть гидросферы. Атмосфера граничит как с литосферой, так и с гидросферой. Человек живет на дне воздушного океана и вблизи или выше уровня океана водного. Взаимодействие этих океанов является одним из важных факторов, определяющих состояние атмосферы.

Состав. Нижние слои атмосферы состоят из смеси газов (см. табл.). Кроме приведенных в таблице, в виде небольших примесей в воздухе присутствуют и другие газы: озон, метан, такие вещества, как оксид углерода (СО), оксиды азота и серы, аммиак.

СОСТАВ АТМОСФЕРЫ

В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, которое приводит к распаду молекул кислорода на атомы. Атомарный кислород является основным компонентом высоких слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы - водород и гелий. Поскольку основная масса вещества сосредоточена в нижних 30 км, то изменения состава воздуха на высотах более 100 км не оказывают заметного влияния на общий состав атмосферы.

Энергообмен. Солнце является главным источником энергии, поступающей на Землю. Находясь на расстоянии ок. 150 млн. км от Солнца, Земля получает примерно одну двухмиллиардную часть излучаемой им энергии, главным образом в видимой части спектра, которую человек называет "светом". Большая часть этой энергии поглощается атмосферой и литосферой. Земля также излучает энергию, в основном в виде длинноволновой инфракрасной радиации. Таким образом устанавливается равновесие между получаемой от Солнца энергией, нагреванием Земли и атмосферы и обратным потоком тепловой энергии, излучаемой в пространство. Механизм этого равновесия крайне сложен. Пыль и молекулы газов рассеивают свет, частично отражая его в мировое пространство. Еще большую часть приходящей радиации отражают облака. Часть энергии поглощается непосредственно молекулами газов, но в основном - горными породами, растительностью и поверхностными водами. Водяной пар и углекислый газ, присутствующие в атмосфере, пропускают видимое излучение, но поглощают инфракрасное. Тепловая энергия накапливается главным образом в нижних слоях атмосферы. Подобный эффект возникает в теплице, когда стекло пропускает свет внутрь и почва нагревается. Поскольку стекло относительно непрозрачно для инфракрасной радиации, в парнике аккумулируется тепло. Нагрев нижних слоев атмосферы за счет присутствия водяного пара и углекислого газа часто называют парниковым эффектом. Существенную роль в сохранении тепла в нижних слоях атмосферы играет облачность. Если облака рассеиваются или возрастает прозрачность воздушных масс, температура неизбежно понижается по мере того, как поверхность Земли беспрепятственно излучает тепловую энергию в окружающее пространство. Вода, находящаяся на поверхности Земли, поглощает солнечную энергию и испаряется, превращаясь в газ - водяной пар, который выносит огромное количество энергии в нижние слои атмосферы. При конденсации водяного пара и образовании при этом облаков или тумана эта энергия освобождается в виде тепла. Около половины солнечной энергии, достигающей земной поверхности, расходуется на испарение воды и поступает в нижние слои атмосферы. Таким образом, вследствие парникового эффекта и испарения воды атмосфера прогревается снизу. Этим отчасти объясняется высокая активность ее циркуляции по сравнению с циркуляцией Мирового океана, который прогревается только сверху и потому значительно стабильнее атмосферы.

См. также МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ. Помимо общего нагревания атмосферы солнечным "светом", значительное прогревание некоторых ее слоев происходит за счет ультрафиолетового и рентгеновского излучения Солнца. Строение. По сравнению с жидкостями и твердыми телами, в газообразных веществах сила притяжения между молекулами минимальна. По мере увеличения расстояния между молекулами газы способны расширяться беспредельно, если им ничто не препятствует. Нижней границей атмосферы является поверхность Земли. Строго говоря, этот барьер непроницаем, так как газообмен происходит между воздухом и водой и даже между воздухом и горными породами, но в данном случае этими факторами можно пренебречь. Поскольку атмосфера является сферической оболочкой, у нее нет боковых границ, а имеются только нижняя граница и верхняя (внешняя) граница, открытая со стороны межпланетного пространства. Через внешнюю границу происходит утечка некоторых нейтральных газов, а также поступление вещества из окружающего космического пространства. Большая часть заряженных частиц, за исключением космических лучей, обладающих высокой энергией, либо захватывается магнитосферой, либо отталкивается ею. На атмосферу действует также сила земного притяжения, которая удерживает воздушную оболочку у поверхности Земли. Атмосферные газы сжимаются под действием собственного веса. Это сжатие максимально у нижней границы атмосферы, поэтому и плотность воздуха здесь наибольшая. На любой высоте над земной поверхностью степень сжатия воздуха зависит от массы вышележащего столба воздуха, поэтому с высотой плотность воздуха уменьшается. Давление, равное массе вышележащего столба воздуха, приходящейся на единицу площади, находится в прямой зависимости от плотности и, следовательно, также понижается с высотой. Если бы атмосфера представляла собой "идеальный газ" с не зависящим от высоты постоянным составом, неизменной температурой и на нее действовала бы постоянная сила тяжести, то давление уменьшалось бы в 10 раз на каждые 20 км высоты. Реальная атмосфера незначительно отличается от идеального газа примерно до высоты 100 км, а затем давление с высотой убывает медленнее, так как изменяется состав воздуха. Небольшие изменения в описанную модель вносит и уменьшение силы тяжести по мере удаления от центра Земли, составляющее вблизи земной поверхности ок. 3% на каждые 100 км высоты. В отличие от атмосферного давления температура с высотой не понижается непрерывно. Как показано на рис. 1, она убывает приблизительно до высоты 10 км, а затем вновь начинает расти. Это происходит при поглощении ультрафиолетовой солнечной радиации кислородом. При этом образуется газ озон, молекулы которого состоят из трех атомов кислорода (О3). Он тоже поглощает ультрафиолетовое излучение, и поэтому этот слой атмосферы, называемый озоносферой, нагревается. Выше температура вновь понижается, так как там гораздо меньше молекул газа, и соответственно сокращается поглощение энергии. В еще более высоких слоях температура вновь повышается вследствие поглощения атмосферой наиболее коротковолнового ультрафиолетового и рентгеновского излучения Солнца. Под воздействием этого мощного излучения происходит ионизация атмосферы, т.е. молекула газа теряет электрон и приобретает положительный электрический заряд. Такие молекулы становятся положительно заряженными ионами. Благодаря наличию свободных электронов и ионов этот слой атмосферы приобретает свойства электропроводника. Полагают, что температура продолжает повышаться до высот, где разреженная атмосфера переходит в межпланетное пространство. На расстоянии нескольких тысяч километров от поверхности Земли, вероятно, преобладают температуры от 5000° до 10 000° С. Хотя молекулы и атомы имеют очень большие скорости движения, а следовательно, и высокую температуру, этот разреженный газ не является "горячим" в привычном смысле. Из-за мизерного количества молекул на больших высотах их суммарная тепловая энергия весьма невелика. Таким образом, атмосфера состоит из отдельных слоев (т.е. серии концентрических оболочек, или сфер), выделение которых зависит от того, какое свойство представляет наибольший интерес. На основании осредненного распределения температур метеорологи разработали схему строения идеальной "средней атмосферы" (см. рис. 1).

Рис. 1. ВЕРТИКАЛЬНЫЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ в атмосфере по результатам наблюдений в Уайт-Сандсе (шт. Нью-Мексико, США) и Форт-Черчилле (Канада). Показаны температурные различия в термосфере на разных широтах.

Рис. 1. ВЕРТИКАЛЬНЫЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ в атмосфере по результатам наблюдений в Уайт-Сандсе (шт. Нью-Мексико, США) и Форт-Черчилле (Канада). Показаны температурные различия в термосфере на разных широтах.

Тропосфера - нижний слой атмосферы, простирающийся до первого термического минимума (т.н. тропопаузы). Верхняя граница тропосферы зависит от географической широты (в тропиках - 18-20 км, в умеренных широтах - ок. 10 км) и времени года. Национальная метеорологическая служба США провела зондирование вблизи Южного полюса и выявила сезонные изменения высоты тропопаузы. В марте тропопауза находится на высоте ок. 7,5 км. С марта до августа или сентября происходит неуклонное охлаждение тропосферы, и ее граница на короткий период в августе или сентябре поднимается приблизительно до высоты 11,5 км. Затем с сентября по декабрь она быстро понижается и достигает своего самого низкого положения - 7,5 км, где и остается до марта, испытывая колебания в пределах всего 0,5 км. Именно в тропосфере в основном формируется погода, которая определяет условия существования человека. Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и в более высоких слоях. Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определенного направления. Турбулентные вихри, подобные небольшим водоворотам, образуются под воздействием трения и динамического взаимодействия между медленно и быстро движущимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют "турбулентностью ясного неба".

Стратосфера. Вышележащий слой атмосферы часто ошибочно описывают как слой со сравнительно постоянными температурами, где ветры дуют более или менее устойчиво и где метеорологические элементы мало меняются. Верхние слои стратосферы нагреваются при поглощении кислородом и озоном солнечного ультрафиолетового излучения. Верхняя граница стратосферы (стратопауза) проводится там, где температура несколько повышается, достигая промежуточного максимума, который нередко сопоставим с температурой приземного слоя воздуха. На основе наблюдений, проведенных с помощью самолетов и шаров-зондов, приспособленных для полетов на постоянной высоте, в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особенно опасны для высокоскоростных летательных аппаратов. Сильные ветры, называемые струйными течениями, дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и проявляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты. Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образование озона), оказывает воздействие на процессы в тропосфере. Особенно активное перемешивание связано с атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекался в нижние слои стратосферы. Значительные успехи были достигнуты в изучении вертикальной структуры нижних слоев атмосферы в связи с совершенствованием техники запуска на высоты 25-30 км радиозондов. Мезосфера, располагающаяся выше стратосферы, представляет собой оболочку, в которой до высоты 80-85 км происходит понижение температуры до минимальных показателей для атмосферы в целом. Рекордно низкие температуры до -110° С были зарегистрированы метеорологическими ракетами, запущенными с американо-канадской установки в Форт-Черчилле (Канада). Верхний предел мезосферы (мезопауза) примерно совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца, что сопровождается нагреванием и ионизацией газа. В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока еще недостаточно изучены. Термосфера представляет собой слой атмосферы, в котором непрерывно повышается температура. Его мощность может достигать 600 км. Давление и, следовательно, плотность газа с высотой постоянно уменьшаются. Вблизи земной поверхности в 1 м3 воздуха содержится ок. 2,5ґ1025 молекул, на высоте ок. 100 км, в нижних слоях термосферы, - приблизительно 1019, на высоте 200 км, в ионосфере, - 5*10 15 и, по расчетам, на высоте ок. 850 км - примерно 1012 молекул. В межпланетном пространстве концентрация молекул составляет 10 8-10 9 на 1 м3. На высоте ок. 100 км количество молекул невелико, и они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически движущаяся молекула до столкновения с другой такой же молекулой, называется ее средним свободным пробегом. Слой, в котором эта величина настолько увеличивается, что вероятностью межмолекулярных или межатомных столкновений можно пренебречь, находится на границе между термосферой и вышележащей оболочкой (экзосферой) и называется термопаузой. Термопауза отстоит от земной поверхности примерно на 650 км. При определенной температуре скорость движения молекулы зависит от ее массы: более легкие молекулы движутся быстрее тяжелых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме того, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы. Поэтому по мере удаления от поверхности Земли атомарный кислород приобретает все большее значение в составе атмосферы и на высоте ок. 200 км становится ее главным компонентом. Выше, приблизительно на расстоянии 1200 км от поверхности Земли, преобладают легкие газы - гелий и водород. Из них и состоит внешняя оболочка атмосферы. Такое разделение по весу, называемое диффузным расслоением, напоминает разделение смесей с помощью центрифуги. Экзосферой называется внешний слой атмосферы, выделяемый на основе изменений температуры и свойств нейтрального газа. Молекулы и атомы в экзосфере вращаются вокруг Земли по баллистическим орбитам под воздействием силы тяжести. Некоторые из этих орбит параболические и похожи на траектории метательных снарядов. Молекулы могут вращаться вокруг Земли и по эллиптическим орбитам, как спутники. Некоторые молекулы, в основном водорода и гелия, имеют разомкнутые траектории и уходят в космическое пространство (рис. 2).

Рис. 2. ОРБИТЫ атмосферных частиц в экзосфере.

Рис. 2. ОРБИТЫ атмосферных частиц в экзосфере.

СОЛНЕЧНО-ЗЕМНЫЕ СВЯЗИ И ИХ ВЛИЯНИЕ НА АТМОСФЕРУ

Атмосферные приливы. Притяжение Солнца и Луны вызывает в атмосфере приливы, подобные земным и морским приливам. Но атмосферные приливы имеют существенное отличие: атмосфера сильнее всего реагирует на притяжение Солнца, тогда как земная кора и океан - на притяжение Луны. Это объясняется тем, что атмосфера нагревается Солнцем и в дополнение к гравитационному возникает мощный термальный прилив. В целом механизмы образования атмосферных и морских приливов сходны, за исключением того, что для прогноза реакции воздуха на гравитационные и термические воздействия необходимо учитывать его сжимаемость и распределение температуры. Не до конца понятно, почему полусуточные (12-часовые) солнечные приливы в атмосфере преобладают над суточными солнечными и полусуточными лунными приливами, хотя движущие силы двух последних процессов гораздо мощнее. Раньше считалось, что в атмосфере возникает резонанс, усиливающий именно колебания с 12-часовым периодом. Однако наблюдения, проведенные при помощи геофизических ракет, свидетельствуют об отсутствии температурных причин такого резонанса. При решении этой проблемы, вероятно, следует учитывать все гидродинамические и термические особенности атмосферы. У земной поверхности близ экватора, где влияние приливных колебаний максимально, оно обеспечивает изменение атмосферного давления на 0,1%. Скорость приливных ветров составляет ок. 0,3 км/ч. Благодаря сложной термической структуре атмосферы (особенно наличию минимума температуры в мезопаузе) приливные воздушные течения усиливаются, и, например, на высоте 70 км их скорость примерно в 160 раз выше, чем у земной поверхности, что имеет важные геофизические последствия. Считается, что в нижней части ионосферы (слой Е) приливные колебания перемещают ионизированный газ вертикально в магнитном поле Земли, и следовательно, здесь возникают электрические токи. Эти постоянно возникающие системы токов на поверхности Земли устанавливаются по возмущениям магнитного поля. Суточные вариации магнитного поля достаточно хорошо согласуются с расчетными величинами, что убедительно свидетельствует в пользу теории приливных механизмов "атмосферного динамо". Электрические токи, возникающие в нижней части ионосферы (слой Е), должны куда-то перемещаться, и, следовательно, цепь должна замкнуться. Аналогия с динамо-машиной становится полной, если рассматривать встречное движение как работу двигателя. Предполагается, что обратная циркуляция электрического тока осуществляется в более высоком слое ионосферы (F), и этим встречным потоком могут объясняться некоторые своеобразные черты этого слоя. Наконец, приливный эффект должен порождать также горизонтальные потоки в слое Е и, следовательно, в слое F.

Ионосфера. Пытаясь объяснить механизм возникновения полярных сияний, ученые 19 в. предположили, что в атмосфере существует зона с электрически заряженными частицами. В 20 в. экспериментально были получены убедительные доказательства существования на высотах от 85 до 400 км слоя, отражающего радиоволны. В настоящее время известно, что его электрические свойства являются результатом ионизации атмосферного газа. Поэтому обычно этот слой называют ионосферой. Воздействие на радиоволны происходит главным образом из-за наличия в ионосфере свободных электронов, хотя механизм распространения радиоволн связан с наличием крупных ионов. Последние также представляют интерес при изучении химических свойств атмосферы, поскольку они активнее нейтральных атомов и молекул. Химические реакции, протекающие в ионосфере, играют важную роль в ее энергетическом и электрическом балансе.

Нормальная ионосфера. Наблюдения, проведенные при помощи геофизических ракет и спутников, дали массу новой информации, свидетельствующей, что ионизация атмосферы происходит под воздействием солнечной радиации широкого спектра. Основная ее часть (более 90%) сосредоточена в видимой части спектра. Ультрафиолетовое излучение с меньшей длиной волны и большей энергией, чем у фиолетовых световых лучей, испускается водородом внутренней части атмосферы Солнца (хромосферы), а рентгеновское излучение, обладающее еще более высокой энергией, - газами внешней оболочки Солнца (короны). Нормальное (среднее) состояние ионосферы обусловлено постоянным мощным излучением. Регулярные изменения происходят в нормальной ионосфере под воздействием суточного вращения Земли и сезонных различий угла падения солнечных лучей в полдень, но происходят также непредсказуемые и резкие изменения состояния ионосферы.

Возмущения в ионосфере. Как известно, на Солнце возникают мощные циклически повторяющиеся возмущения, которые достигают максимума каждые 11 лет. Наблюдения по программе Международного геофизического года (МГГ) совпали с периодом наиболее высокой солнечной активности за весь срок систематических метеорологических наблюдений, т.е. с начала 18 в. В периоды высокой активности яркость некоторых областей на Солнце возрастает в несколько раз, и они посылают мощные импульсы ультрафиолетового и рентгеновского излучения. Такие явления называются вспышками на Солнце. Они продолжаются от нескольких минут до одного-двух часов. Во время вспышки извергается солнечный газ (в основном протоны и электроны), и элементарные частицы устремляются в космическое пространство. Электромагнитное и корпускулярное излучение Солнца в моменты таких вспышек оказывает сильное воздействие на атмосферу Земли. Первоначальная реакция отмечается через 8 мин после вспышки, когда интенсивное ультрафиолетовое и рентгеновское излучение достигает Земли. В результате резко повышается ионизация; рентгеновские лучи проникают в атмосферу до нижней границы ионосферы; количество электронов в этих слоях возрастает настолько, что радиосигналы почти полностью поглощаются ("гаснут"). Дополнительное поглощение радиации вызывает нагрев газа, что способствует развитию ветров. Ионизированный газ является электрическим проводником, и когда он движется в магнитном поле Земли, проявляется эффект динамо-машины и возникает электрический ток. Такие токи могут в свою очередь вызывать заметные возмущения магнитного поля и проявляться в виде магнитных бурь. Эта начальная фаза занимает лишь короткое время, соответствующее продолжительности солнечной вспышки. Во время мощных вспышек на Солнце в космическое пространство устремляется поток ускоренных частиц. Когда он направлен в сторону Земли, наступает вторая фаза, оказывающая большое влияние на состояние атмосферы. Многие природные явления, среди которых наиболее известны полярные сияния, свидетельствуют о том, что значительное количество заряженных частиц достигает Земли (см. также ПОЛЯРНОЕ СИЯНИЕ). Тем не менее процессы отрыва этих частиц от Солнца, их траектории в межпланетном пространстве и механизмы взаимодействия с магнитным полем Земли и магнитосферой пока еще недостаточно изучены. Проблема усложнилась после открытия в 1958 Джеймсом Ван Алленом удерживаемых геомагнитным полем оболочек, состоящих из заряженных частиц. Эти частицы перемещаются из одного полушария в другое, вращаясь по спиралям вокруг силовых линий магнитного поля. Вблизи Земли на высоте, зависящей от формы силовых линий и от энергии частиц, располагаются "точки отражения", в которых частицы меняют направление движения на противоположное (рис. 3). Поскольку напряженность магнитного поля уменьшается с удалением от Земли, орбиты, по которым движутся эти частицы, несколько искажаются: электроны отклоняются к востоку, а протоны - к западу. Поэтому они распределяются в виде поясов вокруг земного шара.

Рис. 3. ПОЯСА ВАН АЛЛЕНА - два концентрических тороидальных радиационных пояса, охватывающих Землю. В них заключены высокоэнергетичные заряженные частицы, излучаемые Солнцем и захватываемые магнитным полем Земли.

Рис. 3. ПОЯСА ВАН АЛЛЕНА - два концентрических тороидальных радиационных пояса, охватывающих Землю. В них заключены высокоэнергетичные заряженные частицы, излучаемые Солнцем и захватываемые магнитным полем Земли.

Некоторые последствия нагрева атмосферы Солнцем. Солнечная энергия оказывает влияние на всю атмосферу. Выше уже упоминались пояса, образованные заряженными частицами в магнитном поле Земли и вращающиеся вокруг нее. Эти пояса ближе всего подходят к земной поверхности в приполярных районах (см. рис. 3), где наблюдаются полярные сияния. На рисунке 1 показано, что в районах проявления полярных сияний в Канаде температуры термосферы значительно выше, чем на Юго-Западе США. Вероятно, захваченные частицы отдают часть своей энергии в атмосферу, особенно при столкновении с молекулами газа вблизи точек отражения, и сходят со своих прежних орбит. Так происходит нагрев высоких слоев атмосферы в зоне полярных сияний. Еще одно важное открытие было сделано при изучении орбит искусственных спутников. Луиджи Яккиа, астроном из Смитсоновской астрофизической обсерватории, полагает, что небольшие отклонения этих орбит обусловлены изменениями плотности атмосферы при ее нагреве Солнцем. Он предположил существование на высоте более 200 км в ионосфере максимума концентрации электронов, который не соответствует солнечному полудню, а под воздействием силы трения запаздывает по отношению к нему примерно на два часа. В это время значения плотности атмосферы, обычные для высоты 600 км, наблюдаются на уровне ок. 950 км. Кроме того, максимум концентрации электронов испытывает нерегулярные колебания вследствие кратковременных вспышек ультрафиолетового и рентгеновского излучения Солнца. Л.Яккиа обнаружил также кратковременные колебания плотности воздуха, соответствующие вспышкам на Солнце и возмущениям магнитного поля. Эти явления объясняются вторжением частиц солнечного происхождения в атмосферу Земли и нагревом тех ее слоев, где проходят орбиты спутников.

АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО

В приземном слое атмосферы небольшая часть молекул подвергается ионизации под воздействием космических лучей, излучения радиоактивных горных пород и продуктов распада радия (в основном радона) в самом воздухе. В процессе ионизации атом теряет электрон и приобретает положительный заряд. Свободный электрон быстро соединяется с другим атомом, образуя отрицательно заряженный ион. Такие парные положительные и отрицательные ионы имеют молекулярные размеры. Молекулы в атмосфере стремятся группироваться вокруг этих ионов. Несколько молекул, объединившихся с ионом, образуют комплекс, называемый обычно "легким ионом". В атмосфере присутствуют также комплексы молекул, известные в метеорологии под названием ядер конденсации, вокруг которых при насыщении воздуха влагой начинается процесс конденсации. Эти ядра представляют собой частички соли и пыли, а также загрязняющих веществ, поступающих в воздух от промышленных и других источников. Легкие ионы часто присоединяются к таким ядрам, образуя "тяжелые ионы". Под воздействием электрического поля легкие и тяжелые ионы перемещаются из одних областей атмосферы в другие, перенося электрические заряды. Хотя обычно атмосфера не считается электропроводной средой, она все же обладает небольшой проводимостью. Поэтому оставленное на воздухе заряженное тело медленно утрачивает свой заряд. Проводимость атмосферы возрастает с высотой из-за увеличения интенсивности космического излучения, уменьшения потерь ионов в условиях более низкого давления (и, следовательно, при большем среднем свободном пробеге), а также из-за меньшего количества тяжелых ядер. Проводимость атмосферы достигает максимальной величины на высоте ок. 50 км, т.н. "уровне компенсации". Известно, что между поверхностью Земли и "уровнем компенсации" постоянно существует разность потенциалов в несколько сотен киловольт, т.е. постоянное электрическое поле. Выяснилось, что разность потенциалов между некоторой точкой, находящейся в воздухе на высоте нескольких метров, и поверхностью Земли очень велика - более 100 В. Атмосфера имеет положительный заряд, а земная поверхность заряжена отрицательно. Поскольку электрическое поле - область, в каждой точке которой имеется некоторое значение потенциала, можно говорить о градиенте потенциала. В ясную погоду в пределах нижних нескольких метров напряженность электрического поля атмосферы почти постоянна. Из-за различий электропроводности воздуха в приземном слое градиент потенциала подвержен суточным колебаниям, ход которых существенно меняется от места к месту. При отсутствии локальных источников загрязнения воздуха - над океанами, высоко в горах или в полярных районах - суточный ход градиента потенциала в ясную погоду одинаков. Величина градиента зависит от всемирного, или среднего гринвичского, времени (UТ) и достигает максимума в 19 ч. Э. Эплтон предположил, что этот максимум электропроводности, вероятно, совпадает с наибольшей грозовой активностью в планетарном масштабе. Разряды молний во время гроз переносят отрицательный заряд к поверхности Земли, поскольку основания наиболее активных кучево-дождевых грозовых облаков обладают значительным отрицательным зарядом. Верхние части грозовых облаков обладают положительным зарядом, который, по расчетам Хольцера и Саксона, во время гроз стекает с их вершин. Без постоянного пополнения заряд земной поверхности был бы нейтрализован за счет проводимости атмосферы. Предположение о том, что разность потенциалов между земной поверхностью и "уровнем компенсации" поддерживается благодаря грозам, подкрепляется статистическими данными. Например, максимальное число гроз отмечается в долине р. Амазонки. Чаще всего грозы бывают там в конце дня, т.е. ок. 19 ч среднего гринвичского времени, когда градиент потенциала максимален в любой точке земного шара. Более того, сезонные вариации формы кривых суточного хода градиента потенциала тоже находятся в полном соответствии с данными о глобальном распределении гроз. Некоторые исследователи утверждают, что источник электрического поля Земли, возможно, имеет внешнее происхождение, поскольку электрические поля, как полагают, существуют в ионосфере и магнитосфере. Этим обстоятельством, вероятно, объясняется возникновение очень узких удлиненных форм полярных сияний, похожих на кулисы и арки

(см. также ПОЛЯРНОЕ СИЯНИЕ). Благодаря наличию градиента потенциала и проводимости атмосферы между "уровнем компенсации" и поверхностью Земли начинают двигаться заряженные частицы: положительно заряженные ионы - по направлению к земной поверхности, а отрицательно заряженные - вверх от нее. Сила этого тока составляет ок. 1800 А. Хотя эта величина кажется большой, необходимо помнить, что она распределяется по всей поверхности Земли. Сила тока в столбе воздуха с площадью основания 1 м2 составляет лишь 4*10 -12 А. С другой стороны, сила тока при разряде молнии может достигать нескольких ампер, хотя, конечно, такой разряд имеет малую продолжительность - от долей секунды до целой секунды или немного больше при повторных разрядах. Молния представляет большой интерес не только как своеобразное явление природы. Она дает возможность наблюдать электрический разряд в газовой среде при напряжении в несколько сотен миллионов вольт и расстоянии между электродами в несколько километров. В 1750 Б. Франклин предложил Лондонскому королевскому обществу поставить опыт с железной штангой, укрепленной на изолирующем основании и установленной на высокой башне. Он ожидал, что при приближении грозового облака к башне на верхнем конце первоначально нейтральной штанги сосредоточится заряд противоположного знака, а на нижнем - заряд того же знака, что у основания облака. Если напряженность электрического поля при разряде молнии возрастет достаточно сильно, заряд с верхнего конца штанги будет частично стекать в воздух, а штанга приобретет заряд того же знака, что и основание облака. Предложенный Франклином эксперимент не был осуществлен в Англии, однако его поставил в 1752 в Марли под Парижем французский физик Жан д'Аламбер. Он использовал вставленную в стеклянную бутылку (служившую изолятором) железную штангу длиной 12 м, но не помещал ее на башню. 10 мая его ассистент сообщил, что, когда грозовое облако находилось над штангой, при поднесении к ней заземленной проволоки возникали искры. Сам Франклин, не зная об успешном опыте, реализованном во Франции, в июне того же года провел свой знаменитый эксперимент с воздушным змеем и наблюдал электрические искры на конце привязанной к нему проволоки. На следующий год, изучая заряды, собранные со штанги, Франклин установил, что основания грозовых обл

Практический толковый словарь

авто единица измерения давления, напр., в шинах

Сборник слов и иносказаний

атмосфера (иноск.) - Среда, сфера, веяние (собств. окружающий нас воздух, которым мы дышим)

Ср. Ольга Федоровна была хороший барометр для определения домашней атмосферы: она как нельзя более основательно предсказывала грозу...

Лесков. Захудалый род. 2, 12.

Ср. Как вы, с вашим умом, не видите, что делается вокруг вас? Одним словом, повторяю вам: здешняя атмосфера вам не годится... вредна вам, молодой человек.

Тургенев. Первая любовь. 10.

Ср. Отчего сосед мой - малый весьма развязный на руку... вместо того, чтоб действовать чубуком наотмашь... только стискивал свой чубучище в руке, но бить им никого не бил... изменилась лишь атмосфера, изменились лишь отношения.

Салтыков. Сатиры в прозе. Клевета.

Ср. ατμός - пар, σφαιρα - шар, сфера.

См. развязный.

Поговорки

Колебать (колыхать) атмосферу. Жарг. мол. 1. Неодобр. Неприятно пахнуть. 2. Неодобр. Издавать резкие звуки. 3. Шутл. Драться. Максимов, 17.

Накалять/ накалить (раскалять/ раскалить) атмосферу. Книжн. Создавать напряжённую обстановку. ФСРЯ, 263; Ф 2, 118.

Орфографический словарь

атмосфе́ра, -ы

Словарь ударений

атмосфе́ра

Трудности произношения и ударения

атмосфе́ра (неправильно атмо́сфера; встречается в профессиональной речи в знач. «единица измерения давления»).

Формы слов для слова атмосфера

атмосфе́ра, атмосфе́ры, атмосфе́р, атмосфе́ре, атмосфе́рам, атмосфе́ру, атмосфе́рой, атмосфе́рою, атмосфе́рами, атмосфе́рах

Синонимы к слову атмосфера

1. см. воздух 1.

2. см. среда 1

сущ.

воздух

дух

Воздух.

См. воздух, круг...

Тезаурус русской деловой лексики

1.

Syn: обстановка

2.

Syn: климат

Эпитеты

густая (Серафимович); душная (Зограф); неподвижная (Серафимович); тяжелая (Альбов); удушливая (Серафимович); хмурая (Зограф)

Эпитеты русского языка

Окружающие условия, обстановка.

При положительной оценке.

Благоприятная, благожелательная, вдохновенная, веселая, деловая, доброжелательная, домашняя, дружеская, дружественная, дружная, душевная, естественная, живительная, животворящая (устар.), завидная, здоровая, знакомая, интимная, мирная, миролюбивая, неповторимая, нормальная, образцовая, освежающая, отличная, праздничная, привычная, приподнятая, рабочая, свежая, светлая, сердечная, спокойная, счастливая, творческая, теплая, товарищеская, человеческая.

При отрицательной оценке.

Армейская, безрадостная, враждебная, гнилая, густая, густопсовая (разг. пренебр.), душная, загнивающая, затхлая, казарменная, ледяная, мрачная, мучительная, накаленная, напряженная, нездоровая, нервная, отвратительная, отупляющая, сгущенная, скучная, собачья (разг.), тепличная, тлетворная, тревожная, тусклая, тяжелая, удушающая, удушливая, холодная. Обломовская, парниковая, прапорщицкая, пьянящая. Духовная, идейная, историческая, международная, моральная, нравственная, общая, производственная, социальная, сценическая и т. п.

Идеография

среда

состоящий из (какого вещества), газ

атмосфера - газовая среда.

Морфемно-орфографический словарь

атмо/сфе́р/а.

Грамматический словарь

атмосфе́ра ж 1a

Словарь галлицизмов русского языка

АТМОСФЕРА ы, ж. atmosphère f., н.- лат. atmosphaera <гр.

1. физ., метеор. Воздушная оболочка земли, воздух. Сл. 18. В атмосфере, или в воздухе, которой нас .. окружает и которым мы дышем. Карамзин 11 111. Разсеивание света атмосферою. Астр. Лаланда 415. Одни сверкающие безпрестанно молнии освещали атмосферу. 1789. Толченов 230. Вся земля отовсюду окружена оною <материею>, которою Атмосферою называют. 1790. Эйлер Письма 1 45. Брызги <фонтана>, летающие по воздуху, поднимались около 15 фут над землею и представляли желтоватую атмосферу. 1795. Ю. Ф. Лисянский Дн. // Взгляд 47. Услаждение .. чистейшим воздухом божественной атмосферы, напитанной благовонием ароматических трав и цветов. 1808. Горихвостов 3 256. Зеленый огонь <на мачте> должен быть виден в темную ночь, при чистой атмосфере, на разстоянии двух миль. 1853. ПСЗ-2 28 (1 94). | шутл. Одним из любимейших разсказов между школьниками был анекдот о мифическом семинаристе, попавшем к барину в учителя или гувернеры .. он например сморкнулся в "атмосферу" за неимением платка. Н. Гиляров-Платонов Из пережитого. // РВ 1884 7 283.

2. О газообразной оболочке солнца, комет, луны. Сл. 18. Ефир или тонкая материя, солнечную Атмосферу составляющая. Рум. Обращ. земли 11. // Сл. 18. Это <солнце> по его <Гершелю> мнению темный и вовсе не жаркий сфероид, он окружен пламенною атмосферою на 1500 французских миль от своего тела. СО 1829 10 229. || Невидимая материя, окружающая предметы и объясняющая взаимодействие тел (в картезианской физике). Сл. 18. Думают, что магнит окружен некоторым родом атмосферы, которую назвали магнитною материей. Карамзин ДВ 11 117. У всякого электричества есть атмосфера. Атмосфера положительного электричества более напряженная, или более бурная (если мне будет позволено так выразиться), т. е. Кроме завихрений, свойственных всякой атмосфере, она обладает еще и лучами. Д. А. Голицын - Б. Франклину. 17. 1. 1777. // Россия - США 38. Ампер полагает, что каждая неделимая частица материи (атом) содержит неотъемлемое от нея количество электричества .. вследствие этого бывает окружена электрическими атмосферами. ОЗ 1848 56 8 240. Допустим, говорит он <Лавуазье>, - что земля наша переместилась бы в такие холодные слои атмосферы, в которых находятся, например, Юпитер или Сатурн, тогда наши реки, моря .. превратились бы в твердыя, ледяныя горы. Дело 1878 3 1 344. | О климатическом поясе. Сл. 18. Наступление и исход жара в здешней <крымской> атмосфере. Суворов 2 26. После невыносимого двухнедельного путешествия, в котором довелось мне испытать все четыре времени года, все возможные климаты и перемены атмосферы, в котором я плыл то над водой, то под водою, то покрытый снегом. 29. 4. 1854. Д. Т. Ленский - А. Н. Верстовскому. // ВИЖ 2001 1 88.

3. Дурной запах, вонь, зловоние. В. С. Елистратов Старомоск. глоссарий. // РР 1996 4 73-75. В качестве практикующего врача, нам, конечно, нередко приходилось выслушивать грудь .. большинства хворающих русских людей, и подчас буквально задыхались в атмосфере, заключающейся между влажной рубашкой и потной грудью. Дело 1869 1 18.

4. перен. Обстановка, среда, окружение. Сл. 18. Политическая атмосфера покрылась облаками. Пожар Капа. На бульваре дышишь в упоительной атмосфере безчисленнаго множества женщин. ММ 2 111. Венеция первая обратила на себя изумленное внимание наций, появившись в блистательной атмосфере чрез прибыточную Азиатскую и Африканскую торговлю. 1808. Горихвостов 3 52. В неограниченном правлении народ не соединен и не имеет пункта соединения: Престол монарха в отдельной атмосфере, он над народом, не в народе. Н. И. Тургенев Дн. 14. 8. 1821. // АБТ 5 278. Поэт бросается невольно из своего прежнего мира призраков в новую атмосферу существ, дышащих жизнию. МВ 1828. // Веселит. 214. Литературная атмосфера. ВЕ 1828. // Веселит. 214. Привычки заключают нас в какую-то нравственную атмосферу. МВ 1827. // Веселит. 214. Болезни вкуса зарождаются в атмосфере ложных идей. ЭЛ. // Веселит. 214. Атмосфера больничной комнаты вытянула из нея все соки жизни. П. Летнев Бархатные когти. // Дело 1877 12 1 41. Атмосфера настоящего времени наполнена миазмами нервных растройств. Дело 1878 5 1 290. Разные petits crevés - с извращенностью их вкусов - жалки и вредны по создаваемой ими атмосфере. ВЕ 1902 10 540. Однако он был молод и мил только потому, что не было, при его образе жизни, соблазнов. Теперь же "атмосфера" Жюли непременно должна была на него подействовать. Вс. Соловьев Вопрос. // РВ 1889 4 84. ♦ Оживить атмосферу. Создать более непринужденную обстановку, ослабить напряженность ситуации. Желая "оживить атмосферу", Никон Федорович подсел к дочери, стал гладить ее по руке и говорить что-то утешительное. Н. Тимковский Фараоновы коровы. // РБ 1901 10 1 80. Княжны Несвицкие в промежутки этого времени предавались беззаботно упоению бальной атмосферы. Сабанеева 122. Эпоха была жуткая, настроение было гнусное, и атмосфера бы мерзопакостная, но рыба в Каме была. 1969. Н. Антонов. // Душенко 17. ♦ Высшие атмосферы. Руководящие круги. Вероятно, по аналогии со сферами. Авторитет Верещагина - в высших атмосферах, по случаю его протеста против чинов - подорван. 10. 1. 1875. П. М. Третьяков - И. Н. Крамскому. // Боткина 155. Не банковские ли воротилы получают концессии подкупами и влияниями в разных атмосферах. 24. 7. 1916. И. Шмелев - Л. Андрееву. // Ежег. Рус. отд. 1975 198.

5. простореч.. устар. Неприятный запах. Стою. Только слышу вдруг шум в передних окопчиках. Шибко там шумят, а немец, безусловно, тихий, и будто вдруг атмосферой на меня пахнуло. "Ах ты, думаю, - так твою так - газы!" А поветрие маленькое этакое в нашу в нашу, русскую сторону. // Зощенко 2003 58.

Казначей, жаба. говорит: - Вполне отличная атмосфера. И нюхать ее можно. Голова от этого не ослабевает. У меня, - говорит, - в квартире атмосфера хуже воняет, и я, - говорит, - не скулю понапрасну. Кошка и люди. // Зощенко 2003 311.

6. Единица давления газов. БАС-2. Принять за наибольший предел упругости пара < в котлах>, щесть атмосфер, или 97 1/2 фунтов на квадратный дюйм. 1843. ПСЗ-2 1 69. Смесь брикетируется при давлении около двух тыс. атмосфер и грузится в вагонетки. Природа 1933 3-4 56. - Норм. В. И. Даль предлагал заменить слова климат - погода, пропаганда - обращение, атмосфера - мироколица или колоземица; аберрация - на россыпь, абориген - на коренник; авангард на переды или артаул (французский на татарский! ), автограф - на своеручник ..! Колесов 134. - Удар. Не атмо/сфера, а атмосфе/ра. Долопчев. - Лекс. Сл. 18: атмосфе/ра 1718; Нордстет 1780: атмосфе/ра: САН 1891: атмо/сфера и атмосфе/ра.

Словарь иностранных слов

АТМОСФЕРА (греч. atmosphaira, от atmos - пар, и sphaira - шар, сфера). 1) Газообразная оболочка, окружающая землю или другую планету. 2) умственная среда, в которой кто-либо вращается. 3) единица, которою измеряется давление, испытываемое или производимое жидкостью, паром или газом.

Сканворды для слова атмосфера

- «Воздушный кокон» планеты.

- Накаляется в напряжённой обстановке.

- Окружающая обстановка в моральном плане.

- Газообразная оболочка Земли.

- Единица измерения давления.

- Математическая модель этой оболочки - главный инструмент синоптиков.

- У поверхности Земли она состоит из 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислого газа, водорода, гелия, неона и других газов.

- Даль предлагал заменить это иностранное слово на русское «колоземица» или, хотя бы, «мироколица».

- Роман Ирвина Шоу «Тревожная ...».

- Фильм Луиса Бунюэля «... накаляется в Эль-Пао».

Полезные сервисы

атмосфера земли

Энциклопедический словарь

Атмосфе́ра Земли́ (от греч. atmós - пар и сфера), воздушная среда вокруг Земли, вращающаяся вместе с нею; масса около 5,15·1015 т. Состав её у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водяной пар (у земной поверхности - от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает. На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на Земле от вредного коротковолнового излучения. Выше 100 км растёт доля лёгких газов, на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы, ионы и свободные электроны, образуя ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферы Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Атмосфера Земли обладает электрическим полем, в ней возникают различные электрические, оптические и акустические явления. Неравномерность её нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли.

Вертикальное распределение температуры в атмосфере.

* * *

АТМОСФЕРА ЗЕМЛИ - АТМОСФЕ́РА ЗЕМЛИ́ (от греч. atmos - пар и сфера (см. ИГНАТЬЕВ Сергей Михайлович)), газовая оболочка, окружающая Землю и вращающаяся вместе с нею. Атмосферой Земли принято считать ту область газовой среды, которая принимает участие в суточном и годовом вращении Земли. Масса около 5,15·1015 т. Состав у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента - углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности - от 3%, в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает.

На высоте 20-25 км расположен озоновый слой (см. ОЗОНОСФЕРА), предохраняющий живые организмы на Земле от вредного для них коротковолнового излучения. Выше 100 км возрастает доля легких газов; на очень больших высотах преобладают гелий и водород, и часть молекул разлагается на атомы и ионы, образуя ионосферу (см. ИОНОСФЕРА).

Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу (см. ТРОПОСФЕРА), стратосферу (см. СТРАТОСФЕРА), мезосферу (см. МЕЗОСФЕРА), термосферу (см. ТЕРМОСФЕРА), экзосферу (см. ЭКЗОСФЕРА). Атмосфера Земли обладает электрическим полем. Неравномерность ее нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли.

Большой энциклопедический словарь

АТМОСФЕРА ЗЕМЛИ (от греч. atmos - пар и сфера) - воздушная среда вокруг Земли, вращающаяся вместе с нею; масса ок. 5,15.1015 т. Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента уклекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности - от 3% в тропиках до 2.10-5% в Антарктиде), количество которого с высотой быстро убывает. На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на Земле от вредного коротковолнового излучения. Выше 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы и ионы, образуя ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры (рис.) атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Атмосфера Земли обладает электрическим полем. Неравномерность ее нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли.

Иллюстрированный энциклопедический словарь

Атмосфера Земли. Вертикальное распределение температуры и плотности.

Атмосфера Земли.

Вертикальное распределение температуры и плотности.

АТМОСФЕРА ЗЕМЛИ, воздушная среда вокруг Земли, вращающаяся вместе с нею; масса около 5,15´1015 т. Состав воздуха (по объему) у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, незначительные доли углекислого газа, неона, гелия, водорода и других газов. Давление и плотность воздуха убывают с высотой. До высоты 20 км в атмосфере Земли содержится водяной пар. В результате конденсации пара происходит образование облаков и выпадение атмосферных осадков в виде дождя, града, снега. На высоте 20-25 км расположен слой озона. Выше 100 км возрастает доля легких газов; на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы и ионы, образуя ионосферу. Атмосфера Земли имеет слоистое строение, которое определяется в первую очередь особенностями распределения температуры по высоте (различают тропосферу, стратосферу, мезосферу, термосферу, экзосферу).

Нагревание атмосферы в разных частях Земли неодинаково, что способствует развитию общей циркуляции атмосферы Земли, тесно связанной с распределением атмосферного давления. Под действием перепада давления воздух испытывает ускорение, направленное от высокого давления к низкому. При движении воздуха на него действуют вызванные вращением Земли Кориолиса сила и центробежная сила, а также сила трения. Все это обусловливает сложную картину воздушных течений в атмосфере Земли, некоторые из них сравнительно устойчивы (например, пассаты и муссоны). В средних широтах преобладают воздушные течения с запада на восток, в которых возникают крупные вихри - циклоны и антициклоны, обычно простирающиеся на сотни и тысячи километров. Современная атмосфера Земли имеет, по-видимому, вторичное происхождение; она образовалась из газов, выделенных твердой оболочкой Земли после формирования планеты, и в дальнейшем развивалась при участии живых организмов и растений. Атмосфера Земли обеспечивает возможность жизни на Земле, причем наибольшее значение из атмосферных газов для жизнедеятельности организмов имеют кислород, азот, водяной пар, углекислый газ, озон. В течение 20 в. происходил рост концентрации углекислого газа в атмосфере Земли, обусловленный главным образом сжиганием все возрастающих количеств угля, нефти и других видов углеродного топлива. Это привело к некоторому усилению парникового эффекта и небольшому повышению средней температуры нижнего слоя воздуха. Наряду с углекислым газом под влиянием хозяйственной деятельности в атмосфере Земли возрастает количество фреонов (которые, по-видимому, ответственны за нарушение озонового слоя атмосферы Земли; смотри озоновая дыра), окислов азота и ряда других газов, которые также способствуют изменению климата в сторону потепления.

Идеография

атмосфера

Земля

атмосфера планеты - газовая оболочка планеты, вращающаяся с ней как единое целое.

атмосферный.

геокорона. |

экзосфера. |

гетеросфера - состав газов отличается от гомосферы. |

гомопауза. |

гомосфера - нижние слои атмосферы, в которых состав, | ионосфера.

основных газов мало меняется с высотой. |

термосфера. |

мезопауза. |

мезосфера. |

стратопауза.

стратосфера - характеризуется возрастанием температуры с высотой, малой турбулентностью, ничтожным содержанием водяного пара.

тропопауза.

тропосфера - нижний слой атмосферы.

хионосфера.

↓ полярное сияние.

миллибар.

изобарическая поверхность.

аэрология. аэрономия.

барический, барометрический.

аэро...

воздушный бассейн. воздушное пространство.

АЭРОНАВТИКА, АВИАЦИЯ

см. электрические разряды в газах

Полезные сервисы

атмосфера низкого давления

Фразеологический словарь

Устар. Ирон. О тягостной, гнетущей обстановке.

[Яропегов:] Напрасно меня выдернули из живого дела. На практической работе я чувствовал себя лучше и пил меньше. У вас тут атмосфера низкого давления и какая-то… всё чихать хочется, а чихнуть некуда (М. Горький. Сомов и другие).

Полезные сервисы

атмосфера сгущается

Фразеологический словарь

вокруг кого. О приближении чего-либо неприятного, тяжёлого для кого-либо.

В Малом театре вокруг Александра Павловича сгущалась атмосфера. Враги подтачивали силы и здоровье Ленского (В. Пашенная. Искусство актрисы).

Полезные сервисы

атмосфера сгущается вокруг

Синонимы к слову атмосфера сгущается вокруг

нареч, кол-во синонимов: 1

Полезные сервисы