Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

биоэлектрические потенциалы

Энциклопедический словарь

Биоэлектри́ческие потенциа́лы - электрические потенциалы в тканях и клетках (главным образом в клеточных мембранах) живых организмов. Связаны с процессами возбуждения и торможения у животных и человека и раздражимости у растений. Исследования биоэлектрических потенциалов применяют с диагностическими целями (электрокардиография, электроэнцефалография и др.).

* * *

БИОЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ - БИОЭЛЕКТРИ́ЧЕСКИЕ ПОТЕНЦИА́ЛЫ, электрические потенциалы в тканях и клетках (главным образом в клеточных мембранах) живых организмов. Связаны с процессами возбуждения и торможения у животных и человека и раздражимости у растений. Исследования биоэлектрических потенциалов применяют с диагностическими целями (электрокардиография, электроэнцефалография и др.).

* * *

БИОЭЛЕКТРИ́ЧЕСКИЕ ПОТЕНЦИА́ЛЫ (биопотенциалы), электрические потенциалы в тканях и клетках живых организмов. Обусловлены способностью клеток и тканей быть источниками электрического тока и выступать в качестве так называемых электрических проводников второго рода с неоднородной структурой (в отличие от металлов, являющихся электрическими проводниками первого рода с однородной структурой).

Опыты Гальвани

Приоритет в открытии «животного электричества» принадлежит итальянскому врачу и естествоиспытателю Л. Гальвани (см. ГАЛЬВАНИ Луиджи), описавшему в 1791 сокращение мышцы в ответ на приложение к ней или иннервирующему ее нерву особого пинцета, одна половина которого состояла из меди, а другая - из железа (впоследствии он получил название гальванического пинцета). Гальвани объяснял это явление способностью нерва и мышцы быть источниками электричества, пинцет же, по мнению Гальвани, играл роль проводника, замыкающего электрическую цепь. В подтверждение своей теории Гальвани приводил способность некоторых рыб (электрического ската, электрического угря) вырабатывать электричество и генерировать разряд, подобный молнии, которая была известна еще в далекой древности. На самом деле Гальвани открыл не «животное», а химическое электричество, так как концы его пинцета составили так называемую электрохимическую пару (подобно любой паре химически разнородных металлов, в месте контакта которых возникает электрохимический потенциал, см. Гальванический элемент (см. ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ)). Таким образом, в опытах Гальвани источником электричества являлся именно сам пинцет, а не мышца или нерв. Этот факт был убедительно доказан современником Гальвани, выдающимся итальянским физиком А. Вольта (см. ВОЛЬТА Алессандро). Научная дискуссия Гальвани и Вольта о существовании «животного электричества» («великий спор», по воспоминаниям современников), в конце 18 в. дала мощный толчок развитию физики электричества и электробиологии. Гальвани судил об электрических явлениях лишь косвенно - по сокращению лапки лягушки, его же ученик и последователь - Карло Маттеуччи, используя один из первых приборов для измерения электрического тока - струнный гальванометр, в 1837-1841 впервые прямо измерил электрические токи, возникающие и текущие в мышце лягушки. Эти опыты полностью подтвердили и реабилитировали идеи Гальвани о существовании биотоков и биопотенциалов.

Мембранная теория биопотенциалов

Первые систематические исследования природы биопотенциалов и токов в 19 веке принадлежат немецкому электрофизиологу Э. Дюбуа-Реймону. Измеряя с помощью серебряных электродов разность потенциалов между поверхностью мышцы (где устанавливался один электрод) и ее внутренней средой (куда втыкался заостренный второй электрод), он впервые доказал, что в основе биопотенциалов лежит пространственное разделение положительных и отрицательных электрических зарядов между наружной и внутренней поверхностью мембраны любой клетки. В состоянии покоя наружная поверхность клетки всегда заряжена положительно, а внутренняя - отрицательно, и такой трансмембранный «потенциал покоя (см. ПОТЕНЦИАЛ ПОКОЯ)» составляет порядка 0,05-0,09В. Физико-химическую природу потенциала покоя впервые удалось научно объяснить ученику Дюбуа-Реймона Ю. Бернштейну, разработавшему в 1903-1911«мембранную теорию биопотенциалов». Опираясь на данные физикохимии и коллоидной химии о движении ионов в растворах электролитов и через полупроницаемые органические пленки, а также данные об электролитическом составе цитоплазмы клетки и внеклеточных жидкостей, Бернштейн предположил, что мембрана клетки в состоянии покоя не пропускает органические анионы (которых много внутри клетки) и избирательно проницаема только для ионов калия, концентрация которых в клетке в 50-100 раз выше, чем в межклеточном пространстве. Ионы калия диффундируют через мембрану по концентрационному градиенту наружу, где они скапливаются и придают наружной стороне мембраны положительный заряд. Одновременно неспособные проходить вслед за калием наружу органические анионы - противоионы - скапливаются на внутренней поверхности мембраны и заряжают ее отрицательно. Такой потенциал покоя, возникающий по разные стороны мембраны, называют диффузионным. В 1930-1940-е мембранная теория Бернштейна подверглась ревизии. Было показано, что потенциал покоя обусловлен не только калиевым, но и отчасти натриевым и хлорным диффузионными потенциалами, и может быть описан с помощью уравнения Гольдмана-Ходжкина-Катца (см. Потенциал покоя (см. ПОТЕНЦИАЛ ПОКОЯ)). В 1950-е был установлен новый важный факт, доказывающий, что сохранение стабильного уровня потенциала покоя клетки требует постоянного поддержания трансмембранных ионных градиентов калия, натрия и хлора. Как выяснилось, это происходит за счет работы специальных трансмембранных молекул - так называемых ионных насосов, трансмембранных сопряженных переносчиков ионов калия и натрия. Используя энергию АТФ (см. АДЕНОЗИНТРИФОСФАТ), они постоянно выкачивают ионы натрия из клетки и закачивают ионы калия внутрь клетки, тем самым поддерживая постоянство трансмембранных ионных градиентов.

Открытие потенциала действия

Важнейшим этапом в исследовании природы биопотенциалов в 20 в. стали работы электрофизиологов А. Л. Ходжкина (см. ХОДЖКИН Алан Ллойд), А. Ф. Хаксли (см. ХАКСЛИ Андрю Филдинг) (Великобритания) и Дж. К. Эклса (см. ЭКЛС Джон Кэрью) (Австралия) на гигантских аксонах (см. АКСОН) кальмара. Используя новый метод фиксации мембранного потенциала с помощью электронной схемы с отрицательной обратной связью, они впервые прямо зарегистрировали трансмембранные ионные токи при возбуждении клетки. Было показано, что возбуждение сопровождается реверсией потенциала (перезарядкой мембраны): внутренняя поверхность мембраны становится заряженной положительно, а наружная - отрицательно. Причина перезарядки заключается в том, что в момент возбуждения мембрана клетки становится кратковременно проницаемой к ионам натрия, которые, быстро входя в клетку, перезаряжают мембрану. Ходжкин и Хаксли теоретически, в модельных экспериментах предсказали строение специальных ионных каналов (см. ИОННЫЕ КАНАЛЫ), способных открываться и пропускать ионы натрия внутрь клетки лишь кратковременно и в строгой зависимости от величины потенциала на мембране. Предсказанные свойства молекул натриевых каналов были впоследствии подтверждены в прямых экспериментах. За раскрытие природы трансмембранных электрических процессов, происходящих в нервных и других клетках при возбуждении, Ходжкину, Хаксли и Эклсу в 1963 была присуждена Нобелевская премия. В 1960-1970 годы с помощью техники введения в клетки тонких стеклянных микроэлектродов (с диаметром кончика около 0,5 мкм) удалось обнаружить важную роль не только натриевых, но и кальциевых трансмембранных потоков при возбуждении и генерации потенциалов действия в нервных и мышечных клетках. В 1980-е годы в работах Э. Неера и Б. Сакмана был изобретен и впервые использован метод локального присасывания к мембране клетки с помощью стеклянной пипетки (с диаметром кончика в несколько микрон), позволивший регистрировать и анализировать ионные токи, текущие через отдельные ионные каналы.

Таким образом, только в 20 в. стало очевидным, что «животное электричество», то есть всевозможные биопотенциалы и биотоки обусловлены движением не электронов, а ионов (натрия, калия, кальция, хлора) через специальные сложно организованные ионные каналы в мембране, а также обусловлены диффузией ионов в межклеточной и внутриклеточной средах, представляющих собой растворы электролитов.

Наряду с потенциалом покоя и потенциалом действия в 1950-1960 годы были описаны синаптические потенциалы (см. СИНАПТИЧЕСКИЕ ПОТЕНЦИАЛЫ), возникающие в синапсах (см. СИНАПС) и предназначенные для передачи возбуждения от клетки к клетке.

Биоэлектрические потенциалы у растений

Биоэлектрические потенциалы характерны не только для животных, но и для растений. В 1950-х годах при помощи микроэлектродов, вводимых в клетку, у нитчатой водоросли нителлы (см. НИТЕЛЛА) были обнаружены такие же значения потенциалов покоя, как и у животных клеток - порядка 0,09-0,05 В. Было установлено, что электрические, механические, химические и другие раздражители умеренной интенсивности вызывают в местах своего приложения к органам растения (листу, корню и т. д.) изменения потенциалов, сходные с местными (подпороговыми) потенциалами у животных клеток. Обнаружены у растений и специальные потенциалы возбуждения, подобные потенциалам действия животных клеток. Наиболее приближаются к классическим потенциалам действия электрические потенциалы, возникающие при распространении волны возбуждения по органам растения. Так, типичные двухфазные токи действия длительностью 0,1-0,2 мс сопровождают быстрые движения насекомоядного растения дианова мухоловка, а также защитную двигательную реакцию складывания листьев у стыдливой мимозы (Mimosa pudica) в ответ на механическое или электрическое раздражение растения.

Таким образом, биопотенциалы лежат в основе нормальной жизнедеятельности любой клетки и особенно важны для процессов возбуждения и торможения у животных и человека и раздражимости у растений. Нарушения проводимости клеточных мембран могут приводить к серьезным патологиям организма (вплоть до смерти). Исследования биоэлектрических потенциалов применяют с диагностическими целями в электрокардиографии (см. ЭЛЕКТРОКАРДИОГРАФИЯ), электроэнцефалографии (см. ЭЛЕКТРОЭНЦЕФАЛОГРАФИЯ), электромиографии.

Большой энциклопедический словарь

БИОЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ - электрические потенциалы в тканях и клетках (главным образом в клеточных мембранах) живых организмов. Связаны с процессами возбуждения и торможения у животных и человека и раздражимости у растений. Исследования биоэлектрических потенциалов применяют с диагностическими целями (электрокардиография, электроэнцефалография и др.).

Новый словарь иностранных слов

биоэлектри́ческие потенциалы

- электрические потенциалы, возникающие в тканях и клетках человека, животных, растений; различают потенциал, или ток, покоя и потенциал, или ток, действия, возникающий при возбуждении; б-ие потенциалы - важная составная часть жизнедеятельности клеток и тканей, непременный компонент процессов возбуждения и торможения.

Полезные сервисы

биоэлектрический

Толковый словарь

прил.

Связанный с электрическими зарядами, возникающими в организме человека или животного.

Энциклопедический словарь

БИОЭЛЕКТРИ́ЧЕСКИЙ -ая, -ое. Относящийся к электрическому полю живых организмов и их органов; связанный с ним. Б. потенциал сердца. Б-ая активность мозга. Б-ая энергия организма.

Слитно. Раздельно. Через дефис

биоэлектри/ческий

Орфографический словарь

биоэлектри́ческий

Формы слов для слова биоэлектрический

би́оэлектри́ческий, би́оэлектри́ческая, би́оэлектри́ческое, би́оэлектри́ческие, би́оэлектри́ческого, би́оэлектри́ческой, би́оэлектри́ческих, би́оэлектри́ческому, би́оэлектри́ческим, би́оэлектри́ческую, би́оэлектри́ческою, би́оэлектри́ческими, би́оэлектри́ческом, би́оэлектри́ческ, би́оэлектри́ческа, би́оэлектри́ческо, би́оэлектри́чески

Морфемно-орфографический словарь

био/электр/и́ческ/ий.

Полезные сервисы

биоэлектричество

Энциклопедия Кольера

БИОЭЛЕКТРИЧЕСТВО - естественные электрические процессы в живых организмах, лежащие в основе многих физиологических и поведенческих реакций. К проблемам биоэлектричества относят также все эффекты, возникающие в организме на различных его уровнях при воздействии электричества от внешних источников. Биоэлектричество в классическом понимании. В 1791 Л.Гальвани обнаружил, что если к изолированной мышце лягушки прикоснуться металлическим предметом, то мышца сократится. Он объяснил это явление существованием "животного электричества". Проанализировав опыты Гальвани, А.Вольта пришел к заключению (1792), что электричество возникает в тот момент, когда металл касается мышцы; в дальнейшем его вывод лег в основу создания электрической батареи. Такие батареи стали использовать для лечения нервных и мышечных нарушений. Электротерапия широко вошла в медицинскую практику в 19 в., но с развитием биохимии и появлением новых лекарственных препаратов утратила прежнее значение. Позже Гальвани показал, что мышцы лягушки сокращаются и в том случае, когда никаким металлическим предметом к ним не прикасаются. Это привело к выводу, что процессы, протекающие в нервной системе, имеют электрическую природу и что сокращение мышцы происходит в ответ на электрический сигнал, проходящий по нерву. Сигнал может возникать и произвольно; например, при подсоединении к нерву источника электрического тока последний генерирует нервный сигнал, запускающий мышечное сокращение.

См. также

БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ;

ЭЛЕКТРОХИМИЯ. При достаточно большой силе тока, подводимого к ткани с помощью проводников или бесконтактным способом, выделяется тепло (на этом принципе основана работа микроволновой печи). Генерация тепла в тканях под действием электричества (диатермия) используется в лечебных целях. Электрические сигналы регулируют работу сердца. Если через тело человека проходит электрический ток от внешнего источника, он нарушает сердечную деятельность и может вызвать остановку сердца и смерть. Электрический сигнал можно измерить, подведя проводники к любым двум точкам тела. У человека обычно исследуют электрические сигналы трех видов. Электроэнцефалография регистрирует относительно слабый, быстро изменяющийся сигнал в головном мозге. Записываемая при этом кривая - электроэнцефалограмма (ЭЭГ) - используется в исследовательских и диагностических целях. Какова конкретная физиологическая роль этого сигнала в норме - неизвестно. Электрокардиография регистрирует биоэлектрический потенциал работающего сердца; электрический сигнал в этом случае примерно в 100 раз мощнее. Электрокардиограмма (ЭКГ) широко используется для диагностики болезней сердца. Сигнал третьего вида, поверхностный электрический потенциал, сравним по величине с генерируемым сердечной мышцей, но меняется медленнее. Его происхождение и роль неизвестны. Примерно до начала 1940-х годов термин "биоэлектричество" использовали в тех случаях, когда речь шла о нейрофизиологических исследованиях, об измерениях описанных выше электрических сигналов у человека или (главным образом в историческом контексте) о применении электричества в терапии.

Биоэлектричество в современном понимании. Все проявления жизнедеятельности организма зависят от сложных последовательностей химических реакций, в основе которых лежит, в частности, явление электричества. Иногда соответствующие процессы можно изучать, не рассматривая эти силы в явном виде. Такой подход вполне применим при исследовании, например, регуляции экспрессии генов или механизма иммунного ответа. Он гораздо менее успешен, когда речь идет о памяти, научении и регуляции регенеративных процессов. Трудности, с которыми сталкиваются исследователи, когда пытаются объяснить по крайней мере некоторые биологические явления - включая саму жизнь - исходя исключительно из биохимических концепций, заставляют их обратиться к биоэлектрическим факторам. На эту проблему впервые обратил внимание в 1941 венгерский биохимик А.Сент-Дьердьи. Он пришел к выводу, что феномен жизни нельзя должным образом объяснить просто наличием каких-то химических веществ: необходимо, чтобы эти вещества находились в определенном электрическом состоянии. Согласно этой точке зрения, живые и мертвые животные различаются по своему биоэлектрическому, а не биохимическому статусу. Эти идеи привели к возрождению интереса к биоэлектричеству. Одним из первых результатов новых исследований в этой области стало обнаружение пьезоэлектрических свойств костной ткани, т.е. генерации в ней электричества при механическом воздействии (например, при нагрузке во время ходьбы). Известно, что если костная ткань не испытывает регулярной механической нагрузки, то ее механические свойства утрачиваются. Возможно, пьезоэлектричество - это "передаточное звено" между внешним воздействием (нагрузкой) и внутренними процессами (образованием новой костной ткани). Полученные экспериментальные данные подтверждают эту идею. Возможно, электротерапия окажется полезной при лечении инфекционных заболеваний, наркомании, рака. Еще одно направление биоэлектрических исследований занимается изучением биологического эффекта высоковольтных линий электропередачи. Эти системы, а также радио- и телепередающие и радарные установки создают вокруг себя электромагнитное поле, которое может оказывать влияние на людей, постоянно живущих или работающих в нем. Интерес к этой проблеме возник в связи с публикацией данных об изменении роста и развития, а также эндокринных и нервных нарушениях у людей и животных, подвергавшихся действию электромагнитных полей в лабораторных условиях. В начале 1980-х годов появились данные о связи между длительным воздействием электромагнитных полей и развитием злокачественных опухолей, частотой самоубийств и возникновением других патологий. Природные электрические и магнитные факторы оказывают несомненное влияние на жизненный цикл различных организмов. Бактерии, насекомые, птицы и, возможно, киты воспринимают магнитное поле Земли и используют эту способность для ориентации и навигации в поисках пищи и во время миграций. Мы хорошо знаем, как устроены наши пять органов чувств - зрение, слух, обоняние, осязание, вкус; в них выявлены клетки, воспринимающие внешние стимулы, и нервы, по которым информация передается в мозг. Для большинства же биоэлектрических эффектов соответствующие клетки и пути передачи сигналов неизвестны. Механизм восприятия клетками электромагнитных полей объясняется двумя теориями, причем обе постулируют принципиально новые процессы. Согласно первой из них, между нервными клетками возможны кооперативные взаимодействия, зависимые от электромагнитных полей; согласно второй - восприятие поля происходит только в определенных условиях, а именно при наличии у клеток особого электрического статуса. Еще одна теория объясняет связь между воздействием электромагнитного поля и развитием того или иного заболевания: предполагается, что это воздействие вызывает стресс, и если оно достаточно длительное, то происходит ослабление иммунной системы, соответственно снижаются адаптивные возможности организма и на этом фоне легко возникает болезнь.

См. также

БИОЛОГИЯ;

БИОСФЕРА;

БИОФИЗИКА;

БИОХИМИЯ;

НЕЙРОМЕДИАТОРЫ.

ЛИТЕРАТУРА

Биогенный магнетит и магниторецепция. М., 1989 Плонси Р., Барр Р. Биоэлектричество. Количественный подход. М., 1992 Физиология человека, под ред. Р.Шмидта, Г.Тевса; т. 1. М., 1996

Полезные сервисы