Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

биология

Толковый словарь

ж.

1. Комплексная научная дисциплина о живой природе и о закономерностях органической жизни.

2. Отдельная научная дисциплина, входящая в такой комплекс.

отт. Учебный предмет, содержащий теоретические основы данной научной дисциплины.

отт. разг. Учебник, излагающий содержание данного учебного предмета.

3. Совокупность признаков, характеризующих живые организмы, какой-либо разряд представителей животного или растительного мира, их жизнедеятельность, среду обитания и взаимодействие с нею.

Толковый словарь Ушакова

БИОЛО́ГИЯ, биологии, мн. нет, жен. (от греч. bios - жизнь и logos - учение). Общее учение о жизни органического мира.

Толковый словарь Ожегова

БИОЛО́ГИЯ, -и, жен. Совокупность наук о живой природе, о закономерностях органической жизни. Космическая б. (изучающая жизнедеятельность организмов в условиях космоса).

| прил. биологический, -ая, -ое.

Популярный словарь

Биология

-и, только ед., ж.

1) Комплекс научных дисциплин о живой природе, о закономерностях органической жизни.

2) Отдельная научная дисциплина, входящая в такой комплекс.

Молекулярная биология.

Биология моря.

3) Учебный предмет, содержащий теоретические основы данной научной дисциплины.

Урок биологии.

4) разг. Учебник по этому предмету.

Положить в портфель биологию.

Родственные слова:

био́лог, биологи́чка разг., биологи́ческий

Этимология:

От био... и ...логия.

Энциклопедический комментарий:

Биология устанавливает общие и частные закономерности, присущие жизни во всех ее проявлениях и свойствах: обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, раздражимость, подвижность и др.

Словарь существительных

БИОЛО́ГИЯ, -и, ж

Комплексная наука о живой природе и о закономерностях органической жизни: о населявших Землю и вымерших живых существах, их строении, функциях, происхождении, распространении, развитии, связях друг с другом и с неживой природой.

В первом номере трудов Института экспериментальной биологии он поместил научную статью о влиянии психических переживаний на вес человека (Гран.).

Энциклопедический словарь

БИОЛО́ГИЯ -и; ж. [от греч. bios - жизнь и logos - учение]

1. Комплексная наука о живой природе и закономерностях органической жизни. / Об отдельных направлениях или разделах этой науки. Молекулярная, космическая б. // Учебный предмет, излагающий эту науку. Учитель биологии. Кабинет биологии. Экзамен по биологии.

2. Разг. Учебник по этому предмету. Заглянуть в биологию. Положить в портфель биологию.

3. кого-чего. Совокупность признаков, характеризующих живые организмы и их жизнедеятельность во взаимодействии с непосредственной средой обитания и природой в целом. Б. морских черепах. Особенности биологии леса. Б. реки, моря (совокупность растительных и животных организмов водоёма в их взаимодействии и взаимоотношениях).

* * *

биоло́гия (от био... и ...логия), совокупность наук о живой природе - об огромном многообразии вымерших и ныне населяющих Землю живых существ, их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Биология устанавливает общие и частные закономерности, присущие жизни во всех её проявлениях и свойствах (обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, подвижность и др.).

Первые систематические попытки познания живой природы были сделаны античными врачами и философами (Гиппократ, Аристотель, Теофраст, Гален). Их труды, продолженные в эпоху Возрождения, положили начало ботанике и зоологии, а также анатомии и физиологии человека (Везалий и др.). В XVII-XVIII вв. в биологию проникают экспериментальные методы. На основе количественных измерений и применения законов гидравлики был открыт механизм кровообращения (У. Гарвей, 1628). Изобретение микроскопа раздвинуло границы известного мира живых существ, углубило представление об их строении. Одно из главных достижений этой эпохи - создание системы классификации растений и животных (К. Линней, 1735). Вместе с тем преобладали умозрительные теории о развитии и свойствах живых существ (самозарождения, преформации и др.). В XIX в. в результате резко возросшего числа изучаемых биологических объектов (новые методы, экспедиции в тропические и малодоступные районы Земли и др.), накопления и дифференциации знаний сформировались многие специальные биологические науки. Так, ботаника и зоология дробятся на разделы, изучающие отдельные систематические группы, развиваются эмбриология, гистология, микробиология, палеонтология, биогеография и др. Среди достижений биологии - клеточная теория (Т. Шванн, 1839), открытие закономерностей наследственности (Г. Мендель, 1865). К фундаментальным изменениям в биологии привело эволюционное учение Ч. Дарвина (1859). Для биологии XX в. характерны 2 взаимосвязанные тенденции. С одной стороны, сформировалось представление о качественно различных уровнях организации живой природы: молекулярном (молекулярная биология, биохимия и другие науки, объединяемые понятием физико-химическая биология), клеточном (цитология), организменном (анатомия, физиология, эмбриология), популяционно-видовом (экология, биогеография). С другой стороны, стремление к целостному, синтетическому познанию живой природы привело к прогрессу наук, изучающих определенные свойства живой природы на всех структурных уровнях её организации (генетика, систематика, эволюционное учение и др.). Поразительных успехов, начиная с 50-х гг., достигла молекулярная биология, вскрывшая химические основы наследственности (строение ДНК, генетический код, матричный принцип синтеза биополимеров). Учение о биосфере (В. И. Вернадский) раскрыло масштабы геохимической деятельности живых организмов, их неразрывную связь с неживой природой. Практическое значение биологических исследований и методов (в том числе генетической инженерии, биотехнологии) для медицины, сельского хозяйства, промышленности, разумного использования естественных ресурсов и охраны природы, а также проникновение в эти исследования идей и методов точных наук выдвинули биологию с середины XX в. на передовые рубежи естествознания.

* * *

БИОЛОГИЯ - БИОЛО́ГИЯ (от греч. bios - жизнь и logos - слово, учение), совокупность наук о живой природе - об огромном многообразии вымерших и ныне населяющих Землю живых существ, их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Биология устанавливает общие и частные закономерности, присущие жизни во всех ее проявлениях и свойствах (обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, подвижность и др.).

Первые систематические попытки познания живой природы были сделаны античными врачами и философами (Гиппократ (см. ГИППОКРАТ (врач)), Аристотель, Теофраст, Гален (см. ГАЛЕН)). Их труды, продолженные в эпоху Возрождения, положили начало ботанике и зоологии, а также анатомии и физиологии человека (Везалий (см. ВЕЗАЛИЙ Андреас) и др.). В 17 - 18 вв. в биологию проникают экспериментальные методы. На основе количественных измерений и применения законов гидравлики был открыт механизм кровообращения (У. Гарвей (см. ГАРВЕЙ Уильям), 1628). Изобретение микроскопа раздвинуло границы известного мира живых существ, углубило представление об их строении. Одно из главных достижений этой эпохи - создание системы классификации растений и животных (К. Линней (см. ЛИННЕЙ Карл), 1735). Вместе с тем преобладали умозрительные теории о развитии и свойствах живых существ (самозарождения, преформации и др.). В 19 в. в результате резко возросшего числа изучаемых биологических объектов (новые методы, экспедиции в тропические и малодоступные районы Земли и др.), накопления и дифференциации знаний сформировались многие специальные биологические науки. Так, ботаника и зоология дробятся на разделы, изучающие отдельные систематические группы, развиваются эмбриология, гистология, микробиология, палеонтология, биогеография и др. Среди достижений биологии - клеточная теория (Т. Шванн, 1839), открытие закономерностей наследственности (Г. Мендель, 1865). К фундаментальным изменениям в биологии привело эволюционное учение Ч. Дарвина (1859). Для биологии 20 в. характерны 2 взаимосвязанные тенденции. С одной стороны, сформировалось представление о качественно различных уровнях организации живой природы: молекулярном (молекулярная биология, биохимия и другие науки, объединяемые понятием физико-химическая биология), клеточном (цитология), организменном (анатомия, физиология, эмбриология), популяционно-видовом (экология, биогеография). С другой стороны, стремление к целостному, синтетическому познанию живой природы привело к прогрессу наук, изучающих определенные свойства живой природы на всех структурных уровнях ее организации (генетика, систематика, эволюционное учение и др.). Поразительных успехов начиная с 50-х гг. достигла молекулярная биология, вскрывшая химические основы наследственности (строение ДНК, генетический код, матричный принцип синтеза биополимеров). Учение о биосфере (В. И. Вернадский (см. ВЕРНАДСКИЙ Владимир Иванович)) раскрыло масштабы геохимической деятельности живых организмов, их неразрывную связь с неживой природой. Практическое значение биологических исследований и методов (в т. ч. генетической инженерии, биотехнологии) для медицины, сельского хозяйства, промышленности, разумного использования естественных ресурсов и охраны природы, а также проникновение в эти исследования идей и методов точных наук выдвинули биологию с сер. 20 в. на передовые рубежи естествознания.

Большой энциклопедический словарь

БИОЛОГИЯ (от био... и ...логия) - совокупность наук о живой природе - об огромном многообразии вымерших и ныне населяющих Землю живых существ, их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Биология устанавливает общие и частные закономерности, присущие жизни во всех ее проявлениях и свойствах (обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, подвижность и др.). Первые систематические попытки познания живой природы были сделаны античными врачами и философами (Гиппократ, Аристотель, Теофраст, Гален). Их труды, продолженные в эпоху Возрождения, положили начало ботанике и зоологии, а также анатомии и физиологии человека (Везалий и др.). В 17 - 18 вв. в биологию проникают экспериментальные методы. На основе количественных измерений и применения законов гидравлики был открыт механизм кровообращения (У. Гарвей, 1628). Изобретение микроскопа раздвинуло границы известного мира живых существ, углубило представление об их строении. Одно из главных достижений этой эпохи - создание системы классификации растений и животных (К. Линней, 1735). Вместе с тем преобладали умозрительные теории о развитии и свойствах живых существ (самозарождения, преформации и др.). В 19 в. в результате резко возросшего числа изучаемых биологических объектов (новые методы, экспедиции в тропические и малодоступные районы Земли и др.), накопления и дифференциации знаний сформировались многие специальные биологические науки. Так, ботаника и зоология дробятся на разделы, изучающие отдельные систематические группы, развиваются эмбриология, гистология, микробиология, палеонтология, биогеография и др.

Среди достижений биологии - клеточная теория (Т. Шванн, 1839), открытие закономерностей наследственности (Г. Мендель, 1865). К фундаментальным изменениям в биологии привело эволюционное Учение Ч. Дарвина (1859). Для биологии 20 в. характерны 2 взаимосвязанные тенденции. С одной стороны, сформировалось представление о качественно различных уровнях организации живой природы: молекулярном (молекулярная биология, биохимия и другие науки, объединяемые понятием физико-химическая биология), клеточном (цитология), организменном (анатомия, физиология, эмбриология), популяционно-видовом (экология, биогеография). С другой стороны, стремление к целостному, синтетическому познанию живой природы привело к прогрессу наук, изучающих определенные свойства живой природы на всех структурных уровнях ее организации (генетика, систематика, эволюционное Учение и др.). Поразительных успехов начиная с 50-х гг. достигла молекулярная биология, вскрывшая химические основы наследственности (строение ДНК, генетический код, матричный принцип синтеза биополимеров). Учение о биосфере (В. И. Вернадский) раскрыло масштабы геохимической деятельности живых организмов, их неразрывную связь с неживой природой. Практическое значение биологических исследований и методов (в т. ч. генетической инженерии, биотехнологии) для медицины, сельского хозяйства, промышленности, разумного использования естественных ресурсов и охраны природы, а также проникновение в эти исследования идей и методов точных наук выдвинули биологию с сер. 20 в. на передовые рубежи естествознания.

Академический словарь

-и, ж.

Совокупность наук о живой природе.

[От греч. βίος - жизнь и λόγος - учение]

Энциклопедия Кольера

БИОЛОГИЯ - наука о жизни, включающая все знания о природе, структуре, функциях и поведении живых существ. Биология имеет дело не только с великим множеством форм различных организмов, но также с их эволюцией, развитием и с теми отношениями, которые складываются между ними и окружающей средой. Биологические науки можно классифицировать разными способами. Если исходить из типа изучаемых организмов, то двумя главными категориями будут ботаника, изучающая представителей царства растений, и зоология, имеющая дело с царством животных. Существуют и более мелкие подразделения. Так, например, ихтиология изучает рыб, орнитология - птиц, микология - грибы и т.д. Другие области биологии - это анатомия, физиология и эмбриология, исследующие соответственно структуру, функционирование и развитие целого организма или какой-либо его части. В свою очередь в пределах этих наук можно выделить специализации, связанные с типом изучаемых организмов; примеры тому - физиология животных, физиология растений, физиология человека или паразитология, объектом которой служат организмы, живущие внутри других организмов и использующие их в качестве источника пищи. Основными структурными элементами, из которых состоят тела живых существ, являются клетки. Их строение, состав и функции изучает цитология. Другая биологическая наука, гистология, имеет дело со свойствами и структурой тканей, т.е. групп однотипных клеток, выполняющих в организме сходную функцию. Механизмы, посредством которых признаки, свойственные особям одного поколения, передаются следующим поколениям, исследует генетика. Классификацией животных и растений и установлением их родственных связей занимается таксономия, а изучением ископаемых остатков живых существ - палеонтология. Взаимоотношения организмов с окружающей средой составляют предмет экологии. Новейшие физические и химические методы исследования позволяют количественно изучать молекулярные структуры и явления, лежащие в основе всех биологических процессов. Данное направление, затрагивающее сразу несколько биологических дисциплин, называют молекулярной биологией.

БИОЛОГИЧЕСКИЕ КОНЦЕПЦИИ

Вплоть до начала 20 в. биологи были убеждены в том, что все живое принципиально отличается от неживого и в этом отличии есть какая-то тайна. В настоящее время благодаря значительно возросшему объему знаний в области химии и физики живой материи стало ясно, что жизнь может быть объяснена в обычных понятиях химии и физики. Ниже кратко излагаются основные концепции современной биологии, касающиеся самого феномена жизни.

Биогенез. Все живые организмы происходят только от других живых организмов, и из этого правила нет исключений. Не совсем ясно, можно ли считать живыми субмикроскопические фильтрующиеся вирусы, но нет сомнений в том, что появление их в большом количестве в среде возможно только за счет размножения тех вирусов, которые уже попали туда раньше. Из невирусного вещества вирусы не возникают.

Клеточная теория. Одно из наиболее фундаментальных обобщений современной биологии - это клеточная теория, согласно которой все живые существа, включая растения и животных, состоят из клеток и продуктов выделения клеток, а новые клетки образуются путем деления существующих. Все клетки демонстрируют также сходство в основных компонентах химического состава и в основных метаболических реакциях, а активность всего организма представляет собой сумму индивидуальных активностей составляющих этот организм клеток и результатов их взаимодействия.

Генетические механизмы и эволюция. Генетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации. Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией. Грандиозный проект "Геном человека" призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома. Одно из важнейших обобщений современной биологии, формулируемое иногда как правило "один ген - один фермент - одна метаболическая реакция", было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция - как в развивающемся, так и в зрелом организме - контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках. В 1953 американский биолог Дж. Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов - способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально. Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами - полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения. Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов. Одно из наиболее удивительных открытий в генетике - это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.

Витамины и коферменты. Открытие этих веществ, которые не являются солями, белками, жирами или углеводами, но вместе с тем необходимы для полноценного питания, принадлежит американскому биохимику польского происхождения К.Функу. С 1912, когда Функ обнаружил витамины, началось интенсивное исследование их роли в метаболизме и выяснение того, почему в пищевом рационе одних организмов должны обязательно присутствовать определенные витамины, а в рационе других их может и не быть. Сейчас твердо установлено, что соединения, которые мы относим к витаминам, необходимы для нормального метаболизма всех живых существ, включая бактерии, зеленые растения и животных, однако, если некоторые организмы способны синтезировать эти соединения сами, другие должны получать их с пищей в готовом виде. Для многих витаминов в настоящее время уже выяснена их специфическая роль в метаболизме. Во всех случаях они функционируют как часть большой молекулы вещества, названного коферментом. Кофермент служит своего рода партнером фермента и субстратом для осуществления некоторых реакций. Авитаминоз, возникающий при недостаточности того или иного витамина, есть следствие нарушений в метаболизме, вызванных нехваткой кофермента.

Гормоны. Термин "гормон" был предложен в 1905 английским физиологом Э. Старлингом, который определил его как "любое вещество, в норме выделяемое клетками в какой-то одной части тела и переносимое кровью в другие части тела, где оно проявляет свое действие во благо всего организма". Можно сказать, что эндокринология (изучение гормонов) началась с 1849, когда немецкий физиолог А.Бертольд осуществил пересадку семенников от одной птицы к другой и предположил, что эти мужские половые железы выделяют в кровь какое-то вещество, определяющее развитие вторичных половых признаков. Само же это вещество - тестостерон - было выделено в чистом виде и описано только в 1935. Животные (как позвоночные, так и беспозвоночные) и растения вырабатывают большое число разных гормонов. Все гормоны образуются в каком-то небольшом участке организма, а потом переносятся в другие его части, где, присутствуя в очень низких концентрациях, оказывают исключительно важное регуляторное и координирующее действие на активность клеток. Таким образом, основная роль гормонов - это химическая координация, дополняющая координацию, осуществляемую нервной системой.

Экология. Согласно одной из важнейших обобщающих концепций современной биологии, все живые организмы, обитающие в определенном месте, тесно взаимодействуют друг с другом и с окружающей средой. Определенные виды растений и животных распределены в пространстве не случайным образом, а образуют взаимозависимые сообщества, состоящие из продуцентов, консументов и редуцентов и связанные с определенными неживыми компонентами среды. Подобные сообщества могут быть выявлены и охарактеризованы по доминирующим видам; чаще всего это виды растений, дающие пищу и укрытие другим организмам. Экология призвана ответить на вопросы - почему те или иные виды растений и животных образуют определенное сообщество, как они взаимодействуют между собой и как влияет на них человеческая деятельность.

Особенности живых организмов. Живые организмы не содержат какого-либо особого химического элемента, которого не было бы в неживой природе. Наоборот, основные составляющие их элементы - углерод, водород, кислород и азот - довольно широко распространены на Земле. В очень небольших количествах в составе живых организмов присутствует, кроме того, множество других химических элементов. Все живые существа в большей или меньшей степени могут быть охарактеризованы по таким признакам, как размеры, форма тела, раздражимость, подвижность, а также особенности метаболизма, роста, размножения и адаптаций. Способность растений и животных приспосабливаться к своей среде позволяет им выживать при тех изменениях, которые происходят во внешнем мире. Адаптация может включать как очень быстрые изменения состояния организма, определяемые клеточной раздражимостью, так и очень длительные процессы, а именно появление мутаций и их естественный отбор.

Биологические ритмы. Многие проявления жизнедеятельности организмов имеют циклический характер. Существуют, например, сезонные циклы в динамике численности некоторых видов; известны также циклические явления в жизни популяций, повторяющиеся каждый год, каждый лунный месяц, каждый день или каждый морской прилив (или отлив). Многие биологические функции отдельно взятого организма тоже имеют периодическую природу, например, чередование сна и бодрствования. По крайней мере некоторые из этих циклов, по-видимому, регулируются внутренними биологическими часами.

Происхождение жизни. Современные теории возникновения мутаций, естественного отбора и популяционной динамики дают объяснение того, как произошли современные животные и растения от ранее существовавших форм. Вопрос о первоначальном происхождении жизни на Земле рассматривался многими биологами. Некоторые из них считали, что формы жизни были принесены из космоса, с других планет. Сторонники подобной точки зрения ссылаются на обнаруженные в 1961 и 1966 структуры в метеоритах, напоминающие окаменелости микроскопических организмов. Теорию происхождения первых живых существ из неживой материи развивали немецкий физиолог Э. Пфлюгер, английский генетик Дж. Холдейн и русский биохимик А. И. Опарин. Известен целый ряд реакций, посредством которых можно получить органические вещества из неорганических. Американский химик М.Калвин экспериментально показал, что излучение с высокой энергией, например космические лучи или электрические разряды, могут способствовать образованию органических соединений из простых неорганических компонентов. В 1953 американские химики Г. Юри и С. Миллер обнаружили, что некоторые аминокислоты, например глицин и аланин, и даже более сложные вещества могут быть получены из смеси паров воды, метана, аммиака и водорода, через которую всего лишь в течение недели пропускают электрические разряды. Спонтанное зарождение живых организмов в той обстановке, которая существует на Земле в настоящее время, в высшей степени маловероятно, однако оно вполне могло произойти в прошлом. Все дело в различии условий, существовавших тогда и сейчас. До того, как на Земле возникла жизнь, органические соединения могли накапливаться, поскольку, во-первых, не существовало плесневых грибов, бактерий и других живых существ, способных их потреблять, а во-вторых, они не подвергались спонтанному окислению, так как в атмосфере тогда отсутствовал кислород (или его было очень мало). Сейчас разработаны вполне правдоподобные теории, позволяющие объяснить, как органические вещества могли возникать в результате простых химических реакций, индуцированных электрическими разрядами, ультрафиолетовым излучением и другими физическими факторами, как эти молекулы могли затем образовать в море разбавленный бульон и как в результате их длительного взаимодействия формировались жидкие кристаллы, а затем и более сложные молекулы, по размерам приближающиеся к белкам и нуклеиновым кислотам. Процесс, аналогичный естественному отбору, мог действовать уже среди этих еще не живых, но уже очень сложных молекул. Дальнейшее объединение молекул белков и нуклеиновых кислот могло привести к появлению организмов, напоминающих ныне существующие вирусы, от которых, возможно, произошли бактерии, давшие в конце концов начало растениям и животным. Другим крупным шагом в ранней эволюции было развитие белково-липидной мембраны, которая окружала скопление молекул и позволяла одни молекулы накапливать, а другие, наоборот, выбрасывать наружу. Все эти доводы привели ученых к заключению, что возникновение жизни на нашей планете - это событие не только вполне естественное и возможное, но и почти неизбежное. Более того, количество уже известных галактик, а соответственно и планет во Вселенной столь велико, что существование на многих из них условий, пригодных для жизни, представляется весьма вероятным. Не исключено, что жизнь на этих планетах действительно существует. Но если жизнь где-то возможна, то по прошествии достаточного времени она должна появиться и дать широкое разнообразие форм. Некоторые из этих форм могут сильно отличаться от тех, что встречаются на Земле, но другие могут быть очень похожими. Теория происхождения жизни может быть сведена к следующим тезисам: 1) органические вещества образуются из неорганических в результате воздействия физических факторов окружающей среды; 2) органические вещества взаимодействуют друг с другом, образуя все более сложные комплексы, из которых постепенно формируются ферменты и самовоспроизводящиеся системы, напоминающие гены; 3) сложные молекулы становятся более разнообразными и объединяются в примитивные, похожие на вирусы организмы; 4) вирусоподобные организмы постепенно эволюционируют и дают начало растениям и животным.

ЛИТЕРАТУРА

Фолсом К. Происхождение жизни. Маленький теплый водоем. М., 1982 Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986 Реймерс Н.Ф. Основные биологические понятия и термины. Книга для учителя. М., 1988 Кемп П., Армс К. Введение в биологию. М., 1988 Грин Н., Стаут У., Тейлор Д. Биология, тт. 1-3. М., 1996

Иллюстрированный энциклопедический словарь

БИОЛОГИЯ (от био... и ...логия), совокупность наук о живой природе. Биология изучает строение и функции организмов и их сообществ, происхождение, распространение, развитие, связи организмов друг с другом и с неживой природой. Биология устанавливает закономерности, присущие жизни во всех ее проявлениях и свойствах (обмен веществ, размножение, наследственность, изменчивость, приспособляемость, рост, подвижность и др.). Термин "биология" предложен в 1802 Ж.Б. Ламарком и немецким ботаником Г.Р. Тревиранусом независимо друг от друга.

Первые систематические попытки познания живой природы были сделаны античными врачами и философами (Гиппократом, Аристотелем, Теофрастом, Галеном). Их труды, продолженные в эпоху Возрождения, положили начало изучению анатомии и физиологии человека (Везалий и др.). Дальнейшее развитие биологии как целостной системы знаний связано с именами У. Гарвея, К. Линнея, Т. Шванна, Г. Менделя, Ч. Дарвина и др. В зависимости от объектов исследования в современной биологии выделяют ботанику, зоологию, микробиологию и др.; от структуры, свойства и характера проявления жизни - морфологию, анатомию, физиологию, генетику, биологию развития; в зависимости от методов исследования - биохимию, биофизику, биометрию; от уровня организации жизни - молекулярную биологию, цитологию, гистологию, биоценологию, учение о биосфере

(В.И. Вернадский). С середины 20 в. задачи сохранения живой природы и окружающей среды в пригодном для обитания состоянии привели к "экологизации" многих биологических наук. Практическое значение биологических исследований и методов (в том числе генетической инженерии, биотехнологии) для медицины, сельского хозяйства, промышленности, разумного использования естественных ресурсов и охраны природы выдвинуло биологию на передовые рубежи естествознания.

Орфографический словарь

биоло́гия, -и

Словарь ударений

биоло́гия, -и

Формы слов для слова биология

биоло́гия, биоло́гии, биоло́гий, биоло́гиям, биоло́гию, биоло́гией, биоло́гиею, биоло́гиями, биоло́гиях

Синонимы к слову биология

сущ., кол-во синонимов: 73

агробиология (1)

актинобиология (1)

альгология (3)

амфибиология (1)

анатомия (19)

антропология (7)

астробиология (1)

аэробиология (1)

бактериология (2)

биогеография (2)

биогеоценология (1)

биоинженерия (1)

биоинформатика (1)

биометрия (2)

биомеханика (2)

бионика (2)

биосемиотика (1)

биоспелеология (3)

биофизика (2)

биохимия (3)

биоценология (2)

биоэнергетика (2)

ботаника (29)

бриология (2)

вирусология (4)

гелиобиология (1)

гемеллология (3)

генетика (11)

геобиология (1)

геоботаника (9)

геомикробиология (1)

гидробиология (2)

гистология (7)

дендрология (7)

зообиология (1)

зоология (33)

иммунология (8)

ихтиология (4)

космобиология (1)

криобиология (1)

ксенобиология (1)

лесобиология (1)

магнитобиология (1)

микобиология (1)

микология (4)

микробиология (2)

морфология (6)

нанобиология (1)

нейробиология (1)

нейромагнитобиология (1)

онтобиология (1)

органология (1)

палеонтология (10)

радиобиология (1)

систематика (11)

таксономия (3)

токсикология (6)

фенология (3)

физиология (13)

фитобиология (2)

фотобиология (1)

фреатобиология (2)

хироптерология (2)

цитобиология (1)

цитология (7)

экзобиология (1)

экобиология (1)

электробиология (1)

эмбриология (4)

эндокринология (3)

энтомология (13)

этномология (1)

этология (2)

Морфемно-орфографический словарь

био/ло́г/и/я [й/а].

Грамматический словарь

биоло́гия ж 7a

Этимология

Заимствовано из французского (biologie), где образовано выдающимся французским естествоиспытателем Ламарком в 1802 г. из греческих слов bios - "жизнь" и logos - "речь, учение".

Этимологический словарь русского языка

Из фр. яз. в нач. XIX в. Фр. biologie- «биология» образовано выдающимся фр. естествоиспытателем Ламарком в 1802 г. из греч. слов bios - «жизнь» и logos - «речь, учение» по модели philologie, theologiem т. п.

Этимологический словарь

Заимств. в первой трети XIX в. из франц. яз., где biologie - неологизм Ламарка на базе греч. bios «жизь» и logos «слово» (по аналогии с théologie «теология» и т. п.).

Словарь галлицизмов русского языка

БИОЛОГИЯ и, ж. biologie f.

1. Комплекс научных дисциплин о живой природе, о закономерностях органической жизни. БАС-2. Ему < Антуану Батисту Пьеру Антуану де Моне шевалье де Ламарк>.. принадлежала заслуга введения в научный обиход самого термина биология. НИЖ 1999 7 71.

2. Учебный предмет, излагающий эту науку. БАС-2. || Кабинет биологии в учебном заведении. Александр Иванович выдвинул большой ящик стола, но все же как-то не мог выхватить длинный толстый ключ от "биологии", который зацепился между связками других ключей. Л. Задко Открывая глаза. // Урал 1995 3 188.

3. Совокупность признаков, характеризующих живые организмы, какой-л. разряд представителей животного или растительного мира, их жизнедеятельность, среду обитания и взаимодействие с ней. БАС-2. Биологизаторский ая, ое. Понятие толерантности появилось и в западной психологии с легкой руки сторонников биологизаторской теории. НС 2004 4 224. - Лекс. Соколов 1834: биоло/гия.

Словарь иностранных слов

БИОЛОГИЯ (греч., от bios - жизнь, и logos - слово). Наука о жизни и ее проявлениях у животных и растений.

Сканворды для слова биология

- Если воняет - химия, если не работает - физика, а если оно зелёное и дёргается?

- Наука о живой природе.

- Урок в кабинете с гербариями и чучелами.

- Альбом группы «ВИА Гра».

Полезные сервисы

биология развития

Энциклопедический словарь

Биоло́гия разви́тия - раздел биологии, изучающий механизмы и движущие силы индивидуального развития организмов. Биология развития - преемница ранее возникшего в эмбриологии экспериментального направления - механики развития; сформировалась к середине XX в. на основе эмбриологии на стыке её с цитологией, генетикой, физиологией и молекулярной биологией.

* * *

БИОЛОГИЯ РАЗВИТИЯ - БИОЛО́ГИЯ РАЗВИ́ТИЯ, раздел биологии, изучающий механизмы и движущие силы индивидуального развития организмов. Биология развития - преемница ранее возникшего в эмбриологии экспериментального направления - механики развития; сформировалась к сер. 20 в. на основе эмбриологии на стыке ее с цитологией, генетикой, физиологией и молекулярной биологией.

Большой энциклопедический словарь

БИОЛОГИЯ РАЗВИТИЯ - раздел биологии, изучающий механизмы и движущие силы индивидуального развития организмов. Биология развития - преемница ранее возникшего в эмбриологии экспериментального направления - механики развития; сформировалась к сер. 20 в. на основе эмбриологии на стыке ее с цитологией, генетикой, физиологией и молекулярной биологией.

Полезные сервисы