Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

математический анализ

Энциклопедия Кольера

МАТЕМАТИЧЕСКИЙ АНАЛИЗ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела. Начало математическому анализу положил в 1665 И. Ньютон и (около 1675) независимо от него Г. Лейбниц, хотя важную подготовительную работу провели И. Кеплер (1571-1630), Ф. Кавальери (1598-1647), П. Ферма (1601-1665), Дж. Валлис (1616-1703) и И. Барроу (1630-1677). Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ,

прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные. На рис. 1 показан фрагмент кривой y = 2x - x2, заключенный между x = -1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р - произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р, причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р. Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р - вершина такого излома, то можно построить аппроксимирующую прямую PT1 - справа от точки Р и другую аппроксимирующую прямую РТ2 - слева от точки Р. Но не существует единственной прямой, проходящей через точку Р, которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

Рис. 1

1.">

Рис. 1.

Рис. 2.

Рис. 2.

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y - координаты произвольной точки на ОТ, то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y/x = 2, или y = 2x. Это уравнение касательной ОТ к кривой y = 2x - x2 в точке О. Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О, выбрана именно прямая ОТ. Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О, пересекает кривую дважды. В этом можно убедиться следующим образом. Поскольку выражение y = 2x - x2 можно получить вычитанием х2 из y = 2x (уравнения прямой ОТ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О, расположен ниже ОТ, и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx - уравнение какой-нибудь другой прямой, проходящей через точку О, то обязательно найдутся две точки пересечения. Действительно, mx = 2x - x2 не только при x = 0, но и при x = 2 - m. И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

Рис. 3.

Рис. 3.

То, что ОТ - единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x3 хорошо аппроксимируется прямой РТ, имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р. Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

Рис. 4.

Рис. 4.

Предположим, что через точку О и произвольную точку Q = (h,k) на графике кривой y = 2x - x2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k, получаем, что k = 2h - h2, следовательно, угловой коэффициент секущей равен

Рис. 5.

Рис. 5.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m "стремится к пределу", равному 2, когда h стремится к нулю, или что предел m равен 2 при h, стремящемся к нулю. Символически это записывается так:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О, с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае. Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x - x2 в произвольной точке P = (x,y), не ограничиваясь простейшим случаем, когда P = (0,0). Пусть Q = (x + h, y + k) - вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k/h секущей PQ. Точка Q находится на расстоянии

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 6.

Рис. 6.

над осью х. Раскрывая скобки, находим:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Вычитая из этого уравнения y = 2x - x2, находим расстояние по вертикали от точки Р до точки Q:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно, угловой коэффициент m секущей PQ равен

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Теперь, когда h стремится к нулю, m стремится к 2 - 2x; последнюю величину мы и примем за угловой коэффициент касательной PT. (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P.) Заметим, что при x = 0 полученный результат совпадает с предыдущим. Выражение 2 - 2x называется производной от 2x - x2. В старину производную также называли "дифференциальным отношением" и "дифференциальным коэффициентом". Если выражением 2x - x2 обозначить f(x), т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

то производную можно обозначить

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f(x) в какой-нибудь точке, необходимо подставить в f'(x) соответствующее этой точке значение х. Таким образом, угловой коэффициент f'(0) = 2 при х = 0, f'(0) = 0 при х = 1 и f'(2) = -2 при х = 2. Производную также обозначают у', dy/dx, Dхy и Dу. Тот факт, что кривая y = 2x - x2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об "угловом коэффициенте кривой" в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен -2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x - x2 имеет в этой точке стационарное значение.

Максимумы и минимумы. Мы только что показали, что кривая f(x) = 2x - x2 стационарна в точке (1,1). Так как f'(x) = 2 - 2x = 2(1 - x), ясно, что при x, меньших 1, f'(x) положительна, и, следовательно, y возрастает; при x, больших 1, f'(x) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М, значение у растет до точки М, стационарно в точке М и убывает после точки М. Такая точка называется "максимумом", поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, "минимум" определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба. В качестве примера найдем стационарную точку кривой

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная этой функции равна

) позволяют представить ее график примерно так, как показано на рис. 7.

и обращается в нуль при x = 0, х = 1 и х = -1; т.е. в точках (0,0), (1, -2/15) и (-1, 2/15). Если х чуть меньше -1, то f'(x) отрицательна; если х чуть больше -1, то f'(x) положительна. Следовательно, точка (-1, 2/15) - максимум. Аналогично, можно показать, что точка (1, -2/15) - минимум. Но производная f'(x) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) - точка перегиба. Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f(x) = 0 (т.е. при х = 0 или

) позволяют представить ее график примерно так, как показано на рис. 7.

) позволяют представить ее график примерно так, как показано на рис. 7.

Рис. 7.

Рис. 7.

В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р. (См. рис. 8, на котором касательная имеет положительный угловой коэффициент.) 1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.

Рис. 8.

Рис. 8.

2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б). В этом случае говорят, что кривая выпукла вверх или просто выпукла. 3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже - по другую. В этом случае Р - точка перегиба. Сравнивая значения f'(x) по обе стороны от Р с ее значением в точке Р, можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.

Приложения. Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s, на которой они будут находиться через t секунд по сравнению с начальной точкой составит

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Действуя так же, как в рассмотренных нами примерах, находим

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

эта величина обращается в нуль при

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная f'(x) положительна до значения

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и отрицательна по истечении этого времени.

Следовательно, s возрастает до

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

, затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела.

Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t),

мы получаем 625 футов, максимальную высоту подъема. В данной задаче f'(t) имеет физический смысл.

Эта производная показывает скорость, с которой тело движется в момент времени t.

Рассмотрим теперь приложение

другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку с квадратным дном. Каковы

должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона основания коробки и h - ее

высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh. Преобразуя уравнение,

получаем:

Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку

с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона

основания коробки и h - ее высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh.

Преобразуя уравнение, получаем:

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 9.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

откуда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная от V оказывается равной

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и обращается в нуль при х = 5. Тогда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и V = 125/2. График функции V = (75x - x3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).

Рис. 10.

Рис. 10.

Производные. Важная задача дифференциального исчисления - создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где n - любое целое число или дробь. Например,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(На этом примере видно, как полезны дробные показатели степени.) Приведем некоторые важнейшие формулы:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Существуют также следующие правила: 1) если каждая из двух функций g(x) и f(x) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

2) производная произведения двух функций вычисляется по формуле:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

3) производная отношения двух функций имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x2, нам необходимо сначала найти u = x2, а затем уже вычислить синус числа u. Производную таких сложных функций мы находим с помощью так называемого "цепного правила":

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

В нашем примере f(u) = sin u, f '(u) = cos u, следовательно,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

откуда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.

Линейные аппроксимации. То обстоятельство, что, зная производную, мы можем во многих случаях заменить график

функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче

работать. Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например,

довольно трудно вычислить значение

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и

что Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Вблизи x = 1 мы можем заменить график кривой

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен

значению производной (x1/3)' = (1/3)x-2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит

на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

или

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

На этой прямой при х = 1,033

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Полученное значение y должно быть очень близко к истинному значению y; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений. Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P - точка, соответствующая на графике функции f переменной х, и пусть функция f(x) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h, то ордината касательной изменится на величину h*f'(x). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy, то получим dy = f'(x)dx, или dy/dx = f'(x) (см. рис. 11). Поэтому вместо Dy или f'(x) для обозначения производной часто используется символ dy/dx. Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

Рис. 11.

Рис. 11.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где подразумевается, что у зависит от u, а u в свою очередь зависит от х. Величина dy называется дифференциалом у; в действительности она зависит от двух переменных, а именно: от х и приращения dx. Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y. Но предполагать, что приращение dx мало, нет необходимости. Производную функции y = f(x) мы обозначили f'(x) или dy/dx. Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x) и обозначается f"(x) или d 2y/dx2. Например, если f(x) = x3 - 3x2, то f'(x) = 3x2 - 6x и f"(x) = 6x - 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4)(x), а производную n-го порядка как f (n)(x). Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна. Если функция имеет вторую производную, то изменение величины y, соответствующее приращению dx переменной х, можно приближенно вычислить по формуле

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Это приближение, как правило, лучше, чем то, которое дает дифференциал f'(x)dx. Оно соответствует замене части кривой уже не прямой, а параболой. Если у функции f(x) существуют производные более высоких порядков, то

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Остаточный член имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где x - некоторое число между x и x + dx. Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f(x) имеет производные всех порядков, то обычно Rn (r) 0 при n (r) Ґ.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Площади. При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.

Рис. 12.

Рис. 12.

Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена. Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x2.

Рис. 13.

Рис. 13.

Основная теорема. Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна. Начнем с площади под графиком линейной функции y = 1 + x, поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии. Пусть A(x) - часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A(x) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,

Рис. 14.

Рис. 14.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Скорость изменения площади A(x) определяется ее производной

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Мы видим, что A'(x) совпадает с ординатой у точки Р. Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x) под параболой у = х2 в интервале от 0 до х равна A(x) = (1/3)(x)(x2) = x3/3. Скорость изменения этой площади определяется выражением

Рис. 15.

Рис. 15.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

которое в точности совпадает с ординатой у движущейся точки Р. Если предположить, что это правило выполняется в общем случае так, что

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

есть скорость изменения площади под графиком функции y = f(x), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A'(x) = f(x) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х, равна значению функции f (x) в точке х. Например, чтобы найти площадь под графиком функции y = x3 от 0 до х (рис. 16), положим

Рис. 16.

Рис. 16.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Возможный ответ гласит:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

так как производная от х4/4 действительно равна х3. Кроме того, A(x) равна нулю при х = 0, как и должно быть, если A(x) действительно является площадью. В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A(x), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В(x). Если A(x) и В(x) "стартуют" одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение. Как можно обосновать соотношение A'(x) = f(x) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m - наименьшее значение функции f (x) в интервале от х до (x + h), а M - наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h. Меньший прямоугольник имеет высоту m и площадь mh, больший, соответственно, М и Mh. На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h, значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh. Угловой коэффициент секущей на этом графике находится между m и M. Что происходит, когда h стремится к нулю? Если график функции y = f(x) непрерывен (т.е. не содержит разрывов), то и М, и m стремятся к f(x). Следовательно, угловой коэффициент A'(x) графика площади как функции от х равен f(x). Именно к такому заключению и требовалось придти.

Рис. 17.

Рис. 17.

Рис. 18.

Рис. 18.

Лейбниц предложил для площади под кривой y = f(x) от 0 до а обозначение

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A(x), которая обращается в нуль при х = 0 и имеет производную A'(x), равную f (x). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

то

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

в чем нетрудно убедиться, продифференцировав A(x). Чтобы вычислить площадь А1 под кривой y = 1 + x + x2/2, заключенную между ординатами 0 и 1, мы просто записываем

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и, подставляя х = 1, получаем A1 = 1 + 1/2 + 1/6 = 5/3. Площадь A(x) от 0 до 2 равна A2 = 2 + 4/2 + 8/6 = 16/3. Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A2 - A1 = 11/3. Обычно она записывается в виде определенного интеграла

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 19.

Рис. 19.

Объемы. Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем

это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных

им методов, удалось решить с великим трудом. Повернем часть плоскости, заключенной внутри четверти круга радиуса r,

на угол 360° вокруг оси х. В результате мы получим полушарие (рис. 20), объем которого обозначим V(x).

Требуется определить, с какой скоростью возрастает V(x) с увеличением x. Переходя от х к х + h, нетрудно

убедиться в том, что приращение объема меньше, чем объем p(r2 - x2)h кругового цилиндра радиуса

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ и высотой h, и больше, чем объем p[[r2 - (x + h)2]]h

цилиндра радиуса Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ и высотой h.

Следовательно, на графике функции V(x) угловой коэффициент секущей заключен между p(r2 - x2) и p[[r2 - (x + h)2]].

Когда h стремится к нулю, угловой коэффициент стремится к

Рис. 20.

Рис. 20.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При x = r мы получаем

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

для объема полушария, и, следовательно, 4pr3/3 для объема всего шара. Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a(x) - длина дуги PR на рис. 21, то наша задача состоит в вычислении a'(x). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а(x) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P. Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а(x) меняется на

Рис. 21.

Рис. 21.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно, скорость изменения функции a(x) составляет

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Чтобы найти саму функцию a(x), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудн

Полезные сервисы

механика

Энциклопедия Кольера

МЕХАНИКА - раздел физики, в котором изучается движение тел под действием сил. Механика охватывает очень широкий круг вопросов - в ней рассматриваются объекты от галактик и систем галактик до мельчайших, элементарных частиц вещества. В этих предельных случаях выводы механики представляют, конечно, чисто научный интерес. Но предметом механики является также проектирование строений, мостов и механизмов; этот раздел, обычно называемый прикладной механикой, сам по себе достаточно обширен. Фундаментальное значение для всей этой тематики имеет механика материальной точки, разделяющаяся на кинематику, предметом которой является математическое описание возможных движений материальной точки, и динамику, которая рассматривает движение материальных точек под действием заданных сил. Основные принципы динамики сведены в законы движения, которые в случае материальных точек имеют самый простой вид. Эти законы были впервые сформулированы в 1687 И.Ньютоном. Если материальные точки движутся с очень большими скоростями, то ньютоновские законы движения следует модифицировать в соответствии с теорией относительности; если же это частицы атомных масштабов, то необходима иная формулировка законов движения - так называемая квантовая механика. Ниже будет изложена ньютоновская механика; ее модификациям посвящены статьи ОТНОСИТЕЛЬНОСТЬ;

КВАНТОВАЯ МЕХАНИКА. Протяженное тело можно формально рассматривать как совокупность идеализированных материальных точек, совершенно не имея в виду атомное строение вещества. Выводы о движении таких тел можно делать, исходя из совокупности движений материальных точек. Здесь тоже проводится различие между кинематикой и динамикой и, кроме того, существует статика, изучающая условия равновесия твердых тел, на которые действуют внешние силы. Эти вопросы обсуждаются ниже. Механические свойства газов и жидкостей в какой-то мере сходны, и законы, которым подчиняется их движение, тоже можно вывести, рассматривая их как системы материальных точек. Этот раздел, обычно называемый "механикой жидкостей и газов", подразделяется на гидростатику и гидродинамику. Им посвящена статья ГИДРОАЭРОМЕХАНИКА. Специальные вопросы течения газов рассматриваются в статье АЭРОДИНАМИКА, а вопросы движения электропроводящих жидкостей и газов - в статье МАГНИТНАЯ ГИДРОДИНАМИКА. Остаются еще три специальных раздела - аналитическая динамика, небесная механика и статистическая механика. Аналитическая динамика - это математическая дисциплина, в центре внимания которой находятся общие методы составления уравнений движения и их решения, а не анализ конкретных механических систем. В небесной механике методы аналитической динамики применяются при изучении чрезвычайно сложного движения планетных систем. Статистическая механика опирается на теорию газов и рассматривает в общем виде поведение системы, содержащей огромное число молекул или атомов, исходя из свойств таких отдельных частиц и законов, управляющих их поведением. По этим вопросам имеются отдельные статьи

НЕБЕСНАЯ МЕХАНИКА;

СТАТИСТИЧЕСКАЯ МЕХАНИКА. Подобное деление механики отражает историческое развитие физики и, кроме того, соответствует использованию различных математических методов. В конечном итоге механика и физика как наука составляют единое целое, ибо чем больше мы узнаем, например, о таких явлениях, как свет и электричество, которые обычно не рассматриваются в механике, тем яснее становится их фундаментальная связь с атомными явлениями, тесно связанными с механикой. Исторически развитие статики началось с Архимеда в 3 в. до н.э. До этого периода и много столетий спустя проблемы динамики обсуждались лишь с качественной стороны и соотносились с принципами, которые мы полагаем сегодня ошибочными либо не имеющими отношения к делу. Начало динамике было положено Ньютоном, который сформулировал законы движения и закон всемирного тяготения, опубликованные в первом издании Математических начал натуральной философии (Philosophiae naturalis principia mathematica, 1687). Ньютону удалось в своей книге заложить основы, а в ряде случаев и далеко продвинуться в изучении динамики, небесной механики, механики твердого тела, гидродинамики и баллистики. Хотя принципы статики к тому времени были хорошо известны, Ньютон впервые рационально обосновал их, показав, как их можно вывести из законов динамики. На протяжении примерно двух столетий после этого механика развивалась путем построения более совершенных математических методов без необходимости внесения каких-либо изменений в основные принципы, и лишь после 1900 развитие теории электромагнетизма и атомной физики потребовало модификации механики для распространения ее принципов на явления, которые она не могла удовлетворительно описывать. Но теория относительности и квантовая механика не отменили ньютоновской теории - она по-прежнему точна, как и раньше, и можно показать, что она строго вытекает из обеих новых теорий в том случае, когда рассматриваемые тела имеют макроскопические размеры и движутся с умеренными скоростями. В остальной части этой статьи мы будем иметь дело только с такими ситуациями.

Механика материальной точки. Чтобы можно было описывать движение материальной точки, нужно определить ее положение в данный момент. На рис. 1 показана прямоугольная система координат, которая позволяет характеризовать положение материальной точки, находящейся в точке Р, координатами (x, y, z). Поскольку материальная точка не имеет размеров и, следовательно, не может быть ориентирована в том или ином направлении, эти три числа полностью характеризуют ее положение в любой момент. Если раcсматривать их как функции времени t, то функция [[x (t), y(t), z (t)]] прочерчивает в пространстве траекторию, полностью определяющую движение материальной точки. Основная задача динамики материальной точки - найти зависимость x, y и z от t, если заданы силы, действующие на материальную точку. (Возможна, конечно, задача о нескольких материальных точках, оказывающих силовое воздействие друг на друга; подобные задачи решаются труднее.)

РИС. 1

РИС. 1

Рассмотрим сначала материальную точку, движущуюся прямолинейно, скажем, вдоль оси x, в отсутствие каких-либо сил. В средневековой механике вслед за Аристотелем утверждалось, что тело движется, пока на него действует сила. Однако Галилей, а за ним и Ньютон установили, что единственное действие силы состоит в изменении движения тела и что в отсутствие силы тело либо остается в покое, либо продолжает двигаться равномерно и прямолинейно. В этом заключается первый закон механики Ньютона. Под равномерным движением подразумевается движение с постоянной скоростью v, при котором путь x, проходимый за время t, равен: x = vt. Точнее было бы формулировать это определение, рассматривая короткие интервалы пути и времени: если частица начинает двигаться из точки x0 в момент времени t0 и достигает точки х в момент t, то средняя скорость за это время определяется как

МЕХАНИКА

Конечно, если материальная точка движется с постоянной скоростью, то нет необходимости говорить о среднем значении. Но если на материальную точку действует сила, то ее движение не является равномерным. В этом случае скорость меняется во времени, и можно говорить о мгновенной скорости v (t) в момент времени t как пределе представленного выше выражения при очень малых интервалах времени и пути. Это записывается следующим образом:

МЕХАНИКА

Точно так же можно говорить об изменении скорости во времени, т.е. об ускорении. Если мгновенная скорость изменяется от v0 в момент t0 до v в момент t, то среднее ускорение за этот промежуток определяется как

МЕХАНИКА

а мгновенное ускорение в момент времени t

МЕХАНИКА

Таким образом, скорость характеризует быстроту изменения положения, а ускорение - быстроту изменения скорости. Рассматривать скорость изменения ускорения и т.д. не имеет особого смысла, поскольку, как это первым понял Ньютон, сила создает лишь ускорение. Действительно, если к небольшому телу приложена сила F, то, как показывает опыт, его ускорение остается постоянным, если сила постоянна, и в любой момент времени ускорение пропорционально этой силе. Данное положение можно записать в виде a МЕХАНИКА F или F МЕХАНИКА a. В этом соотношении коэффициент пропорциональности m есть величина, постоянная для рассматриваемой частицы независимо от того, где и как она движется. Эта величина m называется массой (инертной массой) частицы, и, следовательно, равенство F = ma

есть установленное опытным путем соотношение между мгновенными значениями величин F и a. В этом суть второго закона Ньютона. Третий закон, который мы приведем в дальнейшем, относится к случаю, когда имеется более одного тела. Единицы измерения механических величин вводятся следующим образом. На основе эталонов единиц длины и времени - метра и секунды - определяются единицы скорости - метр в секунду (м/с) и ускорения - метр в секунду в квадрате (м/с2). Единица массы килограмм (кг) определяется как масса международного прототипа килограмма, изготовленного из сплава иридия с платиной и хранящегося в Международном бюро мер и весов в Севре под Парижем. Единица силы в системе СИ называется ньютоном (Н) и определяется как сила, сообщающая телу массой 1 кг ускорение 1 м/с2. Таким образом, согласно второму закону Ньютона, 1 H = 1 кг*м/с2. Направление вектора ускорения совпадает с направлением вектора силы.

Тяготение. Представленное выше определение единицы силы, основанное на незыблемых физических принципах, тем не менее, не удобно для практических измерений. Удобнее исходить из понятия веса, т.е. силы притяжения Земли. Согласно закону всемирного тяготения, сформулированному тоже Ньютоном, между любыми двумя телами во Вселенной действует сила притяжения, пропорциональная произведению масс этих тел и обратно пропорциональная квадрату расстояния между ними. Это положение математически выражается соотношением

МЕХАНИКА

где G - универсальная гравитационная постоянная, а mG и MG - гравитационные массы тел. Если тела протяженные, то все материальные точки этих тел попарно взаимодействуют друг с другом в соответствии с этой формулой и, чтобы найти полную силу, нужно суммировать все отдельные взаимодействия. В чрезвычайно важном случае тел сферической формы оказывается, что притяжение будет в точности таким, как если бы масса каждого из них находилась в центре сферы. Предположим теперь, что телу с гравитационной массой mG и инертной массой m, удерживаемому не очень высоко над поверхностью Земли, предоставляется возможность свободно падать. Сила тяжести ускоряет тело вниз, и мы имеем

МЕХАНИКА

где MG - гравитационная масса Земли, а R - ее радиус. Ускорение падающего тела можно записать в виде

МЕХАНИКА

где первый множитель не зависит от свойств тела. Экспериментально установлено, что ускорение несколько изменяется в разных точках на поверхности Земли, поскольку Земля не является идеальной сферой и к тому же вращается. Однако в данном месте оно в точности одно и то же для всех тел. Это означает, что величины m и mG всегда и всюду пропорциональны, а при надлежащем выборе единиц измерения одинаковы. В таком случае нет необходимости различать гравитационную и инертную массы, и выражение для FG приобретает вид

МЕХАНИКА

где

МЕХАНИКА

Аналогично выражению для ускорения a, ускорение силы тяжести g в любой точке дается формулой

МЕХАНИКА

Величина g составляет примерно 9,81 м/с2 и позволяет определить массу Земли (5,97*10 24 кг) и ее среднюю плотность, в 5,5 раз превышающую плотность воды. Предположим, теперь, что вес тела равен W. Так как сила веса создает ускорение g, соотношение между массой, весом и ускорением приобретает вид W = mg.

Между экватором и полюсами на поверхности земли величина g изменяется от 9,78 до 9,83 м/с2. Соответственно этому изменяется и вес, но в одной точке вес двух тел с одинаковой массой всегда одинаков, и на этом опытном факте основан гораздо более удобный способ измерения массы и силы, нежели основанный на втором законе Ньютона. Массы двух тел равны, если в одном и том же месте равны их веса.

Импульс и энергия. Импульс тела р определяется как произведение его массы на скорость: p = mv.

Эта величина имеет важное значение. В самом деле, предположим, что два тела с массами m и M действуют друг на друга с силой, стремящейся ускорить оба тела. На рис. 2 такую силу создает пружина (происхождение силы может быть любым). Согласно третьему закону Ньютона, в любой момент времени сила, с которой масса m действует на массу M, равна по величине и противоположна по направлению силе, с которой масса M действует на m (действие равно противодействию). Предположим, что в момент времени t0 скорости масс равны v0 и V0. Комбинируя выражение для ускорений со вторым законом Ньютона, мы найдем, что скорости изменяются в соответствии с выражениями

МЕХАНИКА

РИС. 2

РИС. 2

где Fm и FM - силы, действующие на m и M. Поскольку эти силы равны и противоположно направлены, имеем

МЕХАНИКА

откуда, умножая на (t - t0) получаем

МЕХАНИКА

Из этого равенства следует, что хотя отдельные импульсы изменяются, их сумма в момент времени t0 равна их же сумме в момент t, т.е. в процессе всего движения остается постоянной. Это - так называемый закон сохранения импульса. Он универсален в том смысле, что справедлив независимо от природы сил и длительности их действия между телами. Работа U, совершаемая силой, приложенной к движущемуся телу, определяется как произведение силы на расстояние: U = F(x - x0),

где (как и далее) точки x и x0 должны выбираться достаточно близко друг к другу, чтобы силу F можно было считать постоянной. Воспользуемся тем, что, как легко доказать, точка, движущаяся с постоянным ускорением, проходит за время (t - t0) такое же расстояние, как если бы все это время она двигалась со средней скоростью 1/2(v + v0). Таким образом, из выражения для второго закона Ньютона вытекает:

МЕХАНИКА

или

МЕХАНИКА

Величина 1/2mv2 называется кинетической энергией. Если обозначить ее через Т, то выражение U = T - T0

означает, что работа, совершаемая за любой малый промежуток времени, а следовательно (если просуммировать), и за любой произвольный промежуток времени, равна разности конечной и начальной кинетических энергий. Это положение справедливо независимо от того, какова сила и как она изменяется со временем, а также от того, каково расстояние, на котором она действует. Путем точно таких же рассуждений можно показать, что тело, обладающее кинетической энергией Т, может совершить работу, равную T - T0, если его Т уменьшится до величины T0, или равную Т, если тело в конце останавливается. Таким образом, всю работу, совершенную над телом при его ускорении, можно снова получить, остановив тело. Поэтому движущееся тело можно рассматривать как "носителя" работы. Под энергией понимается способность совершать работу, а запасенная телом кинетическая энергия зависит только от его скорости (и массы) и не зависит от того, как эта скорость была приобретена. Предположим, что тело массой m поднято на высоту h над поверхностью земли, а затем свободно падает. Если оно падает в течение времени t с постоянным ускорением g, то соотношение между g, h и t можно получить из правила для средних скоростей

МЕХАНИКА

где v - скорость, с которой тело ударяется о землю, причем мы положили v0 = 0, поскольку до начала падения тело покоится. Вновь, поскольку v = gt, можно написать h = v2/2g, а умножив обе части равенства на mg, получим mgh = 1/2mv2.

Поскольку mg - вес тела, величина mgh есть работа по подъему тела на высоту h, а 1/2mv2 - кинетическая энергия тела в момент достижения им земли, равная работе, которую тело может совершить при ударе. Анализируя весь процесс, мы видим, что работа по подъему тела, равная mgh, запасается телом в виде его потенциальной энергии перед тем, как оно начинает падать. По мере падения потенциальная энергия переходит в кинетическую, которая может снова перейти в работу, равную mgh, при ударе тела о землю. Когда тело окончательно приходит в состояние покоя, то на первый взгляд энергия исчезает. Но более тщательный анализ показывает, что она сохранилась в форме усилившегося молекулярного движения в месте падения, т.е. в форме звука и теплоты. В отличие от импульса, энергия принимает разные формы, но при переходе из одной формы в другую полное количество энергии не меняется. Это - так называемый закон сохранения энергии. В качестве примера применения двух законов сохранения рассмотрим соударение двух шаровых маятников (рис. 3,а). Предположим, что шары маятников имеют одинаковую массу и изготовлены из абсолютно упругого материала. Это означает, что кинетическая энергия при ударе не рассеивается. Пусть V1 - скорость первого маятника в момент, предшествующий соударению, и нам надо найти v1 и v2 - скорости сразу после удара.

РИС. 3

РИС. 3

При соударении энергия и импульс сохраняются, и мы имеем

МЕХАНИКА

Производя сокращения и возводя обе части второго равенства в квадрат, получаем

МЕХАНИКА

Эти соотношения могут выполняться одновременно только при v1v2 = 0. Таким образом, либо v1 = 0, либо v2 = 0, но не то и другое. Поскольку второй шар служит препятствием для первого, в нуль обратится v1, и в силу закона сохранения импульса системы имеем v2 = V1. Первый шар останавливается, а второй движется со скоростью V1, как показано на рис. 3,б. Предположим теперь, что на второй шар нанесена мастика, так что при соударении шары прилипают друг к другу и дальше движутся вместе (рис. 3,в). В этом случае v2 = v1 и импульс по-прежнему сохраняется, так что mV1 = 2mv1,

откуда v1 = 1/2V1, т.е. шары будут двигаться со скоростью, которая в два раза меньше начальной скорости первого шара. Начальное значение кинетической энергии равнялось T1 = 1/2mV12, а конечное значение 2*1/2m(1/2V1)2 = 1/2T1. Таким образом, кинетическая энергия, равная 1/2T1, рассеивается, причем основная часть этой потери идет на деформацию и нагрев мастики и шаров. Динамика и статика в трех измерениях. Чтобы обобщить предыдущие результаты на случай трех измерений, потребуется ввести лишь еще один принцип, который заключается в том, что законы Ньютона справедливы для движения вдоль каждой оси координат независимо от движения по другим осям. Так, если пренебречь сопротивлением воздуха, снаряд вдоль оси z движется с замедлением (рис. 4), а вдоль горизонтальной оси - без внешних сил и без ускорения. Обозначим через t время полета. Половину этого времени снаряд поднимается, а остальное время опускается. Таким образом, его скорость по вертикали изменяется на v0z за время 1/2t, так что

РИС. 4

РИС. 4

v0z = 1/2gt, t = 2v0z/g, и все это время горизонтальное движение происходит со скоростью v0x и без ускорения. Таким образом, дальность полета равна: R = v0xt = 2v0xv0z/g. Если v0 - начальная скорость, а q - угол возвышения, то легко понять, что v0x = v0cosq и v0x = v0sinq , так что

МЕХАНИКА

и максимальное значение этой величины, равное v02/g, достигается при q = 45°. В приведенном примере начальная скорость v0 характеризовалась и величиной, и направлением. Такие величины называются векторами, а величины v0x и v0z - соcтавляющими или компонентами вектора. (Обычно векторы обозначают полужирными буквами.) Предположим теперь, что в трехмерном пространстве к покоящейся материальной точке приложено несколько сил, под действием которых она остается в покое. О подобной системе сил говорят, что они уравновешены, и законы динамики позволяют определить, каким должно быть соотношение между ними. Если материальная точка покоится и сохраняет это состояние, ее ускорения вдоль осей x, y или z равны нулю, а поскольку ускорения вдоль этих осей не зависят друг от друга, полные силы в каждом из этих трех направлений тоже должны быть равны нулю. (Полная сила, действующая на материальную точку вдоль оси х и стремящаяся привести ее в движение вдоль этой оси, равна сумме x-компонент всех действующих сил; то же самое справедливо и для двух других осей.) Предположим, что имеются только две силы с компонентами F1x, F1y, F2x и F2y (для упрощения рисунка ограничимся двумя измерениями). В случае равновесия имеем F1x + F2x = 0 и F1y + F2y = 0, или F1x = -F2x и F1y = -F2y . Так как F1x и F1y - компоненты вектора силы F1, и аналогично F2x и F2y - компоненты вектора F2, то возникает ситуация, показанная на рис. 5, где векторы двух уравновешивающих друг друга сил изображены равными по величине и направленными в противоположные стороны.

РИС. 5

РИС. 5

Предположим, теперь, что имеются три вектора, причем F3 уравновешивает F1 и F2. В этом случае F1x + F2x + F3x = 0, F1y + F2y + F3y = 0. Эти соотношения можно переписать в виде F1x + F2x = -F3x, F1y + F2y = -F3y. Сравнение с аналогичными соотношениями в случае двух сил показывает, что если мы введем новый вектор R с компонентами Rx = F1x + F2x, Ry = F1y + F2y, который называется равнодействующей сил F1 и F2, то R будет в точности уравновешивать F3. Таким образом, сила R воспроизводит суммарное действие сил F1 и F2 в том смысле, что если удалить силы F1 и F2, заменив их силой R, то материальная точка по-прежнему останется бы в равновесии. Все сказанное представлено графически на рис. 6,а, где показано сложение компонент. На рис. 6,б вспомогательные линии убраны и оставлены только векторы. Последний рисунок называется параллелограммом сил. Он иллюстрирует один из фундаментальных принципов статики, который, как мы видели, является следствием динамической теории. Этот принцип был установлен С.Стевином (1548-1620), который показал, что если бы это было не так, то имелась бы возможность создать машину, которая производила бы работу, даже если бы к ней не подводилась энергия. Сегодня мы рассматривали бы такую машину как пример нарушения закона сохранения энергии; для Стевина это просто противоречило здравому смыслу, но при этом положения статики тоже обосновывались динамическими соображениями.

РИС. 6

РИС. 6

Механика твердого тела. Твердое тело, которое может принимать различные ориентации в пространстве, можно считать состоящим из материальных точек. (Это просто математический прием, позволяющий расширить применимость законов движения материальных точек, но не имеющий ничего общего с гипотезой атомного строения вещества.) Поскольку материальные точки такого тела будут двигаться в разных направлениях с разными скоростями, приходится прибегать к процедуре суммирования. Рассмотрим систему, изображенную на рис. 7. Сила F, приложенная к тросу, заставляет массу, имеющую форму цилиндра, изменять свою скорость вращения. Будем характеризовать ориентацию цилиндра углом q между радиусом, проведенным из центра цилиндра в некоторую точку на нем, и произвольно выбранным направлением отсчета. Угол q измеряется в радианах; один радиан (примерно 57°) есть центральный угол, стягивающий дугу длиной r на окружности радиуса r. Таким образом, произвольный угол q стягивает дугу s, равную rq, а вся окружность сoответствует углу 2p радиан. Скорость любой точки на окружности равна

РИС. 7

РИС. 7

МЕХАНИКА

где под q /t понимается скорость, с которой изменяется угол q при вращении. Обозначив эту угловую скорость через w, мы наряду с равенством s = rq

получим v = rw. Нетрудно вычислить кинетическую энергию цилиндра, вращающегося вокруг неподвижной оси с угловой скоростью w. Обозначим через m одну из материальных точек цилиндра, расположенную на расстоянии rm от оси. Ее кинетическая энергия равна 1/2m(rmw)2, а полная кинетическая энергия всех материальных точек может быть представлена в виде суммы

МЕХАНИКА

или T = 1/2Iw2, где

. Величина I, называемая моментом инерции, зависит от распределения массы в цилиндре и является его характеристикой. Момент инерции можно вычислить путем интегрирования, и для однородного цилиндра он равен 1/2Ma2, где M - масса цилиндра, а a - его радиус. Если цилиндр вращается свободно и нет сил, которые совершали бы над ним работу, то из закона сохранения энергии следует, что его кинетическая энергия остается постоянной. В таком случае постоянна и величина w, и мы имеем вращательный аналог первого закона Ньютона. Предположим теперь, что к тросу, намотанному на цилиндр, на короткое время от t0 до t прилагается сила F и за это время точка, отмеченная на тросе, проходит расстояние от x0 до х, а цилиндр поворачивается на угол от q0 до q, причем x - x0 = a(q -q0).

. Величина I, называемая моментом инерции, зависит от распределения массы в цилиндре и является его характеристикой. Момент инерции можно вычислить путем интегрирования, и для однородного цилиндра он равен 1/2Ma2, где M - масса цилиндра, а a - его радиус. Если цилиндр вращается свободно и нет сил, которые совершали бы над ним работу, то из закона сохранения энергии следует, что его кинетическая энергия остается постоянной. В таком случае постоянна и величина w, и мы имеем вращательный аналог первого закона Ньютона. Предположим теперь, что к тросу, намотанному на цилиндр, на короткое время от t0 до t прилагается сила F и за это время точка, отмеченная на тросе, проходит расстояние от x0 до х, а цилиндр поворачивается на угол от q0 до q, причем x - x0 = a(q -q0).

Работа, совершенная при этом силой, равна:

U = F(x - x0) = Fa(q - q0),

и точно так же, как при выводе выражения U = 1/2mv2 - 1/2mv02, мы можем выразить угловое перемещение через среднюю угловую скорость на этом интервале:

q - q0 = 1/2(w +w0)(t - t0),

так что U = 1/2Fa(w +w0)(t - t0).

За счет этой работы кинетическая энергия цилиндра изменяется от T0 до T, так что U = 1/2 I(w2 - w02).

Приравнивая два последних выражения и производя упрощения, получаем выражение

МЕХАНИКА

напоминающее формулу для ускорения частицы. Поэтому мы можем ввести угловое ускорение

МЕХАНИКА

и тогда для малого интервала от t0 до t получим L = Ia, т.е. вращательный аналог второго закона Ньютона, в котором величина Fa, вызывающая вращение, обозначена через L. Она называется вращающим моментом. Изложенное можно обобщить на случай, когда отсутствуют неподвижные оси и тело свободно вращается в пространстве. В этом случае имеются три момента инерции, относящиеся к "главным осям". Мы не будем углубляться в рассмотрение этих вопросов. Однако можно вывести второй основной принцип статики для случая твердых тел. Пусть силы F1 и F2, приложенные к пластине, которая может вращаться, таковы, что вращения нет (рис. 8). Равновесие означает отсутствие углового ускорения, и поэтому полный вращающий момент равен нулю. Моменты сил F1 и F2 компенсируют друг друга при условии:

РИС. 8

РИС. 8

F1a1 = F2a2,

т.е. получается закон рычага, известный со времен Архимеда. Удалим ось и заменим ее действие третьей силой, как показано на рис. 9, предполагая, что весом пластины можно пренебречь. Для равновесия всех этих сил нужно, во-первых, чтобы пластина не перемещалась и, следовательно, компоненты сил удовлетворяли условию векторного равновесия и, во-вторых, чтобы не было вращения, т.е. выполнялось выведенное только что соотношение. Оба эти принципа составляют основу теории строительной механики и важны при проектировании мостов и зданий.

РИС. 9

РИС. 9

Проводившиеся выше рассуждения упрощаются, если пользоваться обозначениями математического анализа, в которых подразумевается предельный переход (t (r) t0), так что нет необходимости все время говорить о нем. Ньютон первым применил методы дифференциального и интегрального исчисления при решении физических задач, а последующее развитие механики как науки было делом таких математиков, как Л. Эйлер, Ж. Лагранж, П. Лаплас и К. Якоби, каждый из которых находил в ньютоновской механике источник вдохновения для своих математических изысканий.

ЛИТЕРАТУРА

Фейнман Р., Лейтон Р. Фейнмановские лекции по физике, т. 1. Современная наука о природе. Законы механики. М., 1965 Бухгольц Н.Н. Основной курс теоретической механики. М., 1972 Веселовский И.Н. Очерки по истории теоретической механики. М., 1974 Григорьев В.И., Мякишев Г.Я. Силы в природе. М., 1988

Полезные сервисы

уравнения

Энциклопедия Кольера

Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида (x - 1)2 = (x - 1)(x - 1) выполняется при всех значениях переменной x. Для обозначения тождества часто вместо обычного знака равенства = пишут знак є, который читается "тождественно равно". Тождества используются в алгебре при записи разложения многочленов на множители (как в приведенном выше примере). Встречаются они и в тригонометрии в таких соотношениях, как sin2x + cos2x = 1, а в общем случае выражают формальное отношение между двумя на первый взгляд различными математическими выражениями. Если уравнение, содержащее переменную x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17. Уравнения служат мощным средством решения практических задач. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x, можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется теорией уравнений.

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения. Уравнения вида fn = 0, где fn - многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида fn = a0 xiyj... vk + a1 xlym... vn + ј + asxpyq... vr, где x, y, ..., v - переменные, а i, j, ..., r - показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так: f(x) = a0xn + a1xn - 1 + ... + an - 1x + an или, в частном случае, 3x4 - x3 + 2x2 + 4x - 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f(x) = 0. Если a0 № 0, то n называется степенью уравнения. Например, 2x + 3 = 0 - уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени - кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

УРАВНЕНИЯ

где lg - логарифм по основанию 10.

Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s) = тK (s, t) f (t) dt, где f (s) и K(s,t) заданы, а f (t) требуется найти.

Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x - 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n, y = 4 + 3n.

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом. 1. Если равные величины увеличить на одно и то же число, то результаты будут равны. 2. Если из равных величин вычесть одно и то же число, то результаты будут равны. 3. Если равные величины умножить на одно и то же число, то результаты будут равны. 4. Если равные величины разделить на одно и то же число, то результаты будут равны. Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения. Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы

УРАВНЕНИЯ

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители. Например, уравнение x3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x2 - x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = -1,

, т.е. всего 3 корня. Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n-й степени имеет ровно n корней.

, т.е. всего 3 корня. Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n-й степени имеет ровно n корней.

Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде

УРАВНЕНИЯ

Решение такой системы находится с помощью определителей

УРАВНЕНИЯ

Оно имеет смысл, если

Энциклопедия Кольера УРАВНЕНИЯ

Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей

Энциклопедия Кольера УРАВНЕНИЯ и Энциклопедия Кольера УРАВНЕНИЯ

отличен от нуля. В этом случае решения уравнений не существует;

уравнения несовместны. Численный пример такой ситуации - система

Энциклопедия Кольера УРАВНЕНИЯ

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное

число решений. Общая теория рассматривает m линейных уравнений с n переменными:

УРАВНЕНИЯ

Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера:

УРАВНЕНИЯ

где Aji - алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы.

Пусть r - ранг матрицы (aij), s - ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца

из чисел bi. Тогда: (1) если r = s, то существует n - r линейно независимых решений; (2) если r < s, то уравнения

несовместны и решений не существует.

См. также АЛГЕБРА.

Полезные сервисы