Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

космический зонд

Энциклопедия Кольера

КОСМИЧЕСКИЙ ЗОНД - автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников.

См. также

АСТРОНОМИЯ И АСТРОФИЗИКА;

РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ;

РАДИОАСТРОНОМИЯ;

ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ. Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования. В этой статье рассказано о развитии техники космического зондирования, а научные результаты описаны в статьях:

СОЛНЕЧНАЯ СИСТЕМА;

АСТЕРОИД;

КОМЕТА.

ПРЕДЫСТОРИЯ КОСМИЧЕСКИХ ПОЛЕТОВ

Начиная с Луциана Самосатского (ок. 120-180) (Икаро-Мениппус и Правдивая история) люди мечтали добраться до Луны и узнать ее тайну. Что же касается планет, то сама мысль об экспедиции к ним могла возникнуть лишь после того, как стало ясно, что это не божества и не просто движущиеся огоньки на ночном небе, а тела, подобно Земле обращающиеся вокруг Солнца. Окончательно это выяснилось в эпоху И.Ньютона (1643-1727), объяснившего характер движения планет в Солнечной системе и указавшего принципиальную возможность путешествия от одной планеты к другой. Однако до середины 20 в. не было технической возможности овладеть гигантской энергией, необходимой для преодоления земного тяготения.

После произведений И.Кеплера "Сон, или Посмертное сочинение об астрономии Луны" (1634), Ф. Годвина "Человек на Луне" (1638) и С. де "Бержерака Иной свет, или Государства и империи Луны" (1657), экспедиции к Луне и планетам стали популярной литературной темой. К середине 20 в. тема космических путешествий прочно заняла место в беллетристике, на радио и в кино, вызывая у публики большой интерес. Однако вплоть до этого времени все фантазии о космических путешествиях имели одну общую деталь - во всех экспедициях присутствовал человек. Сама идея об автоматических механизмах, способных исследовать Луну и планеты, просто не приходила никому в голову. Толчок воображению мог дать только соответствующий уровень техники, который в те годы еще не позволял мечтать о беспилотных космических аппаратах. К концу Второй мировой войны многие ученые и инженеры поняли, что эра космических полетов приближается. Разработка мощных ракетных двигателей, легких и прочных материалов и конструкций, миниатюрных приборов и особенно развитие электроники сделали возможным практическое осуществление полетов вокруг Земли, к Луне и планетам.

СОЗДАНИЕ КОСМИЧЕСКОЙ ТЕХНИКИ

Удивительно, но для запуска полезной нагрузки на бесконечное расстояние от Земли (т.е. для ее разгона до второй космической скорости) нужно сообщить ей всего лишь вдвое большую энергию, чем для ее вывода на низкую околоземную орбиту. Поэтому первые космические зонды были запущены вскоре после первых искусственных спутников Земли.

См. также ОРБИТА. Все же необходимая для запуска зонда дополнительная энергия требует более мощной ракеты-носителя при той же полезной нагрузке либо меньшей нагрузки при той же ракете. Ограничение веса полезной нагрузки всегда довлеет над разработчиками космических зондов. Обычно для достижения необходимой зонду скорости ракету снабжают дополнительной ступенью. Разработка мощных и надежных многоступенчатых ракет - это долгое и дорогое дело. Носители для космических зондов должны быть особенно надежными, поскольку для запуска обычно отводится небольшое временное окно, когда взаимное положение Земли и намеченной цели таково, что перелет требует минимальных затрат энергии. В другое время затраты энергии возрастают настолько, что экспедиция становится практически невозможной. При полетах на Луну оптимальная ситуация возникает раз в месяц, но при полетах к далеким планетам ее нужно ждать многие месяцы и даже годы. Другой важный фактор - время перелета. Экспедиции к планетам длятся месяцы и годы. Поэтому все приборы зонда должны быть очень надежными, чтобы вблизи цели выполнить сложный комплекс исследований. Это создает нелегкие технические проблемы. Длительный перелет означает, что для питания бортовых систем электричеством нельзя использовать аккумуляторные батареи - необходим генератор, работающий без ограничений по времени. С этой целью при полетах к Луне и внутренним планетам - Меркурию, Венере и Марсу - применяют солнечные элементы. Но за орбитой Марса, вдали от Солнца, его свет слаб. Поэтому при полетах к Юпитеру и дальше используют изотопный генератор, вырабатывающий ток с помощью термоэлектрического преобразователя из тепла, выделяющегося при распаде радиоактивных изотопов, например плутония-238. Слежение за космическими зондами и управление ими значительно сложнее, чем спутниками. Для определения точного положения аппарата и передачи на борт команд управления, а также для приема с его борта данных необходимы мощные передатчики и большие антенны на Земле и на самом зонде. Для этих целей были созданы глобальные системы космического радиосопровождения. Например, Сеть дальней космической связи Национального управления по аэронавтике и исследованию космического пространства (НАСА) США, разработанная в Лаборатории реактивного движения (Пасадена, шт. Калифорния), служит для управления космическими зондами и объединяет станции в Голдстоуне (Калифорния), Тидбинбелла (вблизи Канберры, Австралия) и Робледо де Чевела (вблизи Мадрида, Испания). Для связи с космическими зондами используют также станции в Дармштадте (Германия), Усюде (Япония) и Евпатории (Украина).

<a href='/dict/сеть' class='wordLink' target='_blank'>СЕТЬ</a> <a href='/dict/дальней' class='wordLink' target='_blank'>ДАЛЬНЕЙ</a> <a href='/dict/космической' class='wordLink' target='_blank'>КОСМИЧЕСКОЙ</a> <a href='/dict/связи' class='wordLink' target='_blank'>СВЯЗИ</a> <a href='/dict/наса' class='wordLink' target='_blank'>НАСА</a> <a href='/dict/использует' class='wordLink' target='_blank'>использует</a> <a href='/dict/станции' class='wordLink' target='_blank'>станции</a> в <a href='/dict/различных' class='wordLink' target='_blank'>различных</a> <a href='/dict/точках' class='wordLink' target='_blank'>точках</a> <a href='/dict/земли' class='wordLink' target='_blank'>Земли</a> <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/связи' class='wordLink' target='_blank'>связи</a> с <a href='/dict/космическими' class='wordLink' target='_blank'>космическими</a> <a href='/dict/зондами' class='wordLink' target='_blank'>зондами</a>.

СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.

Ограниченность скорости света приводит к временной задержке при обмене сигналами между центрами управления на Земле и космическими зондами, достигающей нескольких часов при полетах во внешние области Солнечной системы и делающей невозможным управление зондом в реальном времени. Поэтому команды передаются заранее, и при возникновении неожиданной ситуации уже бывает поздно что-либо изменить. На этот случай зонд должен быть снабжен мощным бортовым компьютером, сравнивающим реальную ситуацию с ожидаемой и вносящим коррективы в команды. В то же время в процессе перелета зонды находятся в более мягких условиях, чем спутники Земли, которые регулярно переходят с освещенной Солнцем на теневую сторону орбиты, испытывая при этом сильные колебания температуры и тепловые деформации, снижающие надежность работы аппаратуры.

ПОЛЕТЫ К ЛУНЕ

"Пионер". Разработка первых пяти космических зондов США для пролета мимо Луны и для выхода на окололунную орбиту велась в Управлении перспективных исследований Министерства обороны, а затем была передана в только что образованное НАСА. Скромные возможности носителей того времени (баллистические ракеты среднего радиуса действия "Тор" и "Юпитер") ограничивали полезный груз для полетов к Луне массой от 6 до 40 кг. Постоянная ориентация продольной оси зондов в пространстве относительно звезд поддерживалась их вращением вокруг этой оси. Первая попытка ("Пионер-0", запущен 17 августа 1958) закончилась взрывом носителя на 77-й секунде полета. Первым зондом США, достигшим второй космической скорости, был "Пионер-4", запущенный 3 марта 1959 и прошедший мимо Луны на расстоянии 60 тыс. км - слишком далеко для получения хороших фотографий. Однако он помог уточнить протяженность открытых незадолго до этого радиационных поясов Ван Аллена, окружающих Землю.

"Луна". Советский Союз тоже стремился направить зонд к Луне. После четырех неудачных попыток в 1958 2 января 1959 состоялся запуск "Луны-1", впервые достигшей второй космической скорости и прошедшей мимо Луны всего в 6000 км. 13 сентября 1959 "Луна-2" попала в Луну, ознаменовав первый прямой контакт человечества с иным небесным телом. Запущенный 4 октября 1959 зонд "Луна-3" передал по радио первые фотографии обратной стороны Луны, которая никогда не видна с Земли. В процессе фотографирования "Луна-3" очень точно сориентировалась по звездам. Как и "Пионеры", первые зонды "Луна" питались электричеством от аккумуляторных батарей, что ограничивало срок их активной жизни. Но одним качеством они существенно отличались от "Пионеров". Мощные советские носители, выводящие на орбиту значительно больший вес, позволили советским инженерам разместить приборы зонда в герметичной оболочке, заполненной нормальным атмосферным воздухом. При этом, правда, небольшая утечка воздуха могла стать гибельной для аппарата. Оборудование на борту "Пионеров" функционировало в условиях вакуума. Чтобы добиться этого, пришлось решить сложные инженерные проблемы, но зато был сэкономлен вес и созданы приборы для работы в открытом космосе.

"Рейнджер". Американские исследования Луны автоматическими станциями активизировались, когда президент Дж.Кеннеди объявил, что высадка человека на Луну состоится до 1970. Для изучения поверхности, на которую должен был опуститься корабль "Аполлон", НАСА предприняло трехэтапную программу. Первыми представителями нового поколения американских лунных зондов стали аппараты "Рейнджер". Два первых "Рейнджера" были выведены для испытания на высокую околоземную орбиту. Следующие три зонда предназначались для доставки на лунную поверхность сейсмографов; при этом с помощью твердотопливных тормозных двигателей скорость сближения зонда с поверхностью должна была уменьшиться до нескольких сотен км/ч. Последние зонды предназначались для получения детальных изображений поверхности перед тем, как они врежутся в нее на большой скорости. Таким образом, зонды "Рейнджер" имели различную конструкцию, но все они питались от солнечных батарей, были стабилизированы по трем осям и способны осуществлять тонкую коррекцию ориентации и траектории полета. Способность зонда выполнять необходимые операции, кроме прочего, зависит от возможности поддерживать заданную ориентацию. У спутников на околоземной орбите для этого датчики могут фиксировать земной горизонт и определять по нему вертикальное и горизонтальное направления. Но зонд в открытом космосе для ориентации может использовать только небесные светила, как минимум - два, причем желательно, чтобы угол на небе между ними был ок. 90°. Для "Рейнджеров" и многих последующих американских зондов основным светилом для ориентации было выбрано Солнце, а вторым - Канопус, звезда южного неба, невидимая на наших северных широтах. Ее избрали потому, что это вторая по яркости звезда небосвода, и к тому же расположенная вблизи полюса эклиптики. Для поддержания или изменения ориентации использовались маленькие сопла, выбрасывающие строго контролируемое количество газообразного азота и действующие как миниатюрные ракетные двигатели. Во время маневра, когда датчики Солнца и Канопуса теряли свои светила из виду, специальные гироскопы сохраняли нужную ориентацию и указывали необходимую коррекцию, что значительно упрощало затем поиск двух опорных светил. Поскольку "Рейнджеры" могли сохранять ориентацию, они имели остронаправленную антенну, позволявшую эффективно передавать данные на Землю. Такая способность особенно важна для зондов, исследующих далекие области Солнечной системы. Первые шесть "Рейнджеров" постигла неудача из-за отказов носителя или самого аппарата. Но седьмой, восьмой и девятый сработали нормально, попав в Луну 31 июля 1964, 20 февраля 1965 и 24 марта 1965 и передав на Землю изображения лунной поверхности, в тысячи раз превосходящие то, что прежде было получено с помощью наземных телескопов. На них не обнаружилось ничего такого, что сделало бы невозможным прилунение человека.

"Сервейор". Следующим шагом НАСА по изучению Луны стала программа "Сервейор", первоначально включавшая два типа экспериментов: мягкую посадку зонда на поверхность Луны и ее детальное фотографирование с окололунной орбиты. Для управляемого спуска аппарат "Сервейор", приближаясь к Луне, переходил от ориентации по Солнцу и Канопусу к ориентации по лунной поверхности. Бортовой радар непрерывно измерял высоту и скорость спуска, чтобы перед самым касанием включить мощный твердотопливный двигатель, который почти полностью гасил скорость. В заключение небольшие регулируемые жидкостные двигатели обеспечивали мягкую посадку на грунт. "Сервейор-1" мягко опустился в Океане Бурь 2 июня 1966 и передал фотографии и результаты измерений на Землю. Четыре (3, 5, 6-й и 7-й) из шести следующих "Сервейоров" также успешно опустились (20 апреля, 11 сентября, 10 ноября 1967 и 10 января 1968) и окончательно доказали, что для посадок на Луну экспедиций "Аполлонов" путь открыт.

<a href='/dict/сервейор' class='wordLink' target='_blank'>СЕРВЕЙОР</a> - <a href='/dict/марс-' class='wordLink' target='_blank'>МАРС-</a>98

"СЕРВЕЙОР - МАРС-98"

"Лунар орбитер". Для выбора мест посадки кораблей "Аполлон" НАСА срочно нуждалось в качественных изображениях больших областей лунной поверхности. Когда орбитальная программа "Сервейор" по разным причинам остановилась, НАСА начало программу с прозаическим названием "Лунар орбитер", зонды которой должны были фотографировать поверхность Луны на пленку и проявляли ее на борту. Затем негативы сканировались лучом света, и по радио изображение передавалось на Землю. Все пять аппаратов "Лунар орбитер" (запущены 10 августа и 6 ноября 1966, 5 февраля, 4 мая и 1 августа 1967) сработали нормально, дав первое детальное изображение почти всей поверхности Луны.

Другие полеты к Луне. После нескольких неудачных попыток Советский Союз посадил на Луну 3 февраля 1966 "Луну-9" и передал (за четыре месяца до "Сервейора-1") несколько панорам ее поверхности. Однако "Луна-9" представляла собой жестко садящийся аппарат с малым ресурсом и меньшими возможностями, чем "Сервейор". "Луна-10" 3 апреля 1966 стала первым спутником Луны. Затем еще множество посадочных и орбитальных аппаратов было направлено к Луне в период с 1966 по 1976. Для подготовки пилотируемых полетов на Луну Советский Союз запустил серию беспилотных кораблей ("Зонд-5, -6, -7 и -8", запущены 14 сентября и 10 ноября 1968, 8 августа 1969 и 20 октября 1970), облетевших Луну и благополучно вернувшихся на Землю. Затем были доставлены на Луну автоматические движущиеся аппараты ("Луноход-1 и -2", сели 17 ноября 1970 и 15 января 1973) и станции ("Луна-16, -20 и -24", сели 20 сентября 1970, 21 февраля 1972 и 18 августа 1976) для доставки образцов лунного грунта на Землю. Однако эти достижения померкли перед пилотируемыми полетами на Луну "Аполлонов" (1969-1972).

См. также КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ.

"Клементина". В совместном проекте "Клементина" НАСА и Организация стратегической оборонной инициативы (СОИ) использовали оставшуюся со времен холодной войны ракету "Титан" и не находившее применения оборудование. Запущенный 25 января 1994 аппарат несколько месяцев работал на орбите вокруг Луны, получая с помощью четырех фотокамер изображения ее поверхности в различных диапазонах спектра, от ультрафиолетового до инфракрасного.

"Лунар проспектор". Для исследования состава поверхности Луны, а также ее магнитного и гравитационного полей 7 января 1998 США вывели на окололунную орбиту легкий спутник "Лунар проспектор", который в середине 1999 упал на Луну.

МЕРКУРИЙ

Единственным зондом, исследовавшим ближайшую к Солнцу планету Меркурий, был "Маринер-10", совершивший три полета (29 марта 1974, 21 сентября 1974 и 16 марта 1975) к этой планете. Вначале зонд прошел мимо Венеры, впервые совершив гравитационный маневр, т.е. использовал ее притяжение, чтобы изменить свою орбиту и достичь Меркурия. Меркурий оказался безвоздушным, покрытым кратерами телом, очень похожим на Луну. Исследование ближайшей к Солнцу планеты было технически сложным: тепловой поток там в 6 раз больше, чем у Земли, поэтому температура на Меркурии достаточна для плавления олова, свинца и цинка. Зонд был прикрыт от Солнца экраном, а панели солнечных батарей были наклонены под косым углом к солнечным лучам. Меркурий делает три оборота вокруг оси в течение двух орбитальных периодов, а каждый его оборот вокруг Солнца длится 88 сут. Поэтому одни солнечные сутки на нем продолжаются два меркурианских года, или 176 земных суток. К сожалению, "Маринер-10" совершал подлеты к Меркурию точно через такие же интервалы времени и каждый раз мог фотографировать лишь одно и то же освещенное Солнцем полушарие планеты. Недавние исследования поверхности Меркурия с помощью наземных радаров показали, что в его полярных областях на дне глубоких кратеров, куда никогда не попадает солнечный свет, могут быть залежи льда, точь-в-точь как на Луне. Это еще одна причина, требующая новых экспедиций к Меркурию.

ВЕНЕРА

Венера, ближайшая от Земли планета по направлению к Солнцу, была очевидной целью для первых космических зондов. Привлекали сравнительно небольшое расстояние и время перелета всего в несколько месяцев. К тому же покрытая облаками планета хранила от астрономов множество секретов.

Пролеты. Из-за трудностей с разработкой последней ступени носителя первые планетные зонды НАСА были простыми и легкими, основанными на лунном зонде "Рейнджер"; их выводила ракета "Атлас-Аджена". Зонд "Маринер-2" 14 декабря 1962 впервые прошел мимо Венеры и с помощью бортовой радиоаппаратуры подтвердил высокую температуру поверхности планеты, на что ранее указывали наземные радионаблюдения. "Маринер-5" прошел мимо Венеры 19 октября 1967, а "Маринер-10" - 5 февраля 1974.

Вход в атмосферу и посадка. Мягкая посадка на Венеру проходит в несколько этапов. Обычно влетающий в атмосферу планеты аппарат защищен тепловым экраном. Когда от торможения в атмосфере его скорость снижается до нескольких сотен километров в час, экран сбрасывается как лишний груз и раскрывается парашют. Вблизи поверхности парашют также сбрасывается, поскольку в очень плотных нижних слоях атмосферы для торможения уже достаточно небольшого аэродинамического щитка. Сохранить работоспособность аппарата на поверхности Венеры даже в течение одного часа не так-то просто, поскольку температура там ок. 500° С, а давление почти в 100 раз выше, чем у поверхности Земли. Поэтому приборы должны быть защищены прочной теплоизоляционной оболочкой. Советский зонд "Венера-3", осуществив первый в мире перелет на другую планету, попал на Венеру 1 марта 1966, но радиоконтакт с ним был потерян незадолго до встречи с планетой. "Венера-4" достигла планеты 18 октября 1967 и была раздавлена ее атмосферой еще до касания поверхности, подтвердив измерениями высокие температуру и давление у поверхности. "Венера-7" достигла поверхности Венеры 15 декабря 1970 и еще 23 мин посылала данные на Землю, пока не наступил перегрев. Зонды "Венера-9 и -10" состояли из посадочного и орбитального аппаратов. Их посадочные аппараты опустились на поверхность 22 и 25 октября 1975 и передали изображения пустынного и каменистого окружающего ландшафта. Следующие "Венеры" также передавали панорамы мест посадки, а "Венера-13 и -14" впервые произвели анализ образцов грунта. Американский зонд "Пионер - Венера-2" достиг планеты 9 декабря 1978, опустив в разных ее местах 4 посадочных аппарата, один из которых передавал данные с поверхности более часа. Затем были советские зонды "Вега-1 и -2", в первую очередь предназначенные для исследования кометы Галлея, приблизиться к которой они смогли после гравитационного маневра в окрестности Венеры. При прохождении мимо планеты (11 и 15 июня 1985) они сбросили на Венеру спускаемые аппараты, севшие на поверхность и проанализировавшие пробы грунта. К тому же каждый из аппаратов выпустил в атмосферу Венеры французский аэростатный зонд с баллоном, наполненным гелием; плавая в воздушных течениях Венеры несколько дней, они передавали на Землю данные об облаках, скорости ветра и параметрах атмосферы.

Радиолокационные исследования с орбиты. Поскольку Венера полностью закрыта облаками, наблюдения в оптический телескоп не дают возможности изучать ее поверхность. Однако с начала 1960-х годов наземные радарные исследования указывали, что поверхность Венеры весьма разнообразна. Поскольку спускаемые аппараты передают изображение лишь небольшого участка вокруг места посадки, возникла идея радиолокационного исследовании всей планеты с низкой орбиты. Их начал американский зонд "Пионер - Венера-1", вышедший на орбиту вокруг Венеры 4 декабря 1978 и с помощью бортового радара получивший карту части поверхности с разрешением (размер мельчайших деталей) ок. 80 км. Затем советские орбитальные зонды "Венера-15 и -16" начали 10 и 14 октября 1983 радарное изучение больших областей Венеры; на полученных ими с разрешением 1,5 км картах видны сложные структуры поверхности, многие из которых не известны на Земле. Зонд США "Магеллан", выйдя на орбиту вокруг Венеры 10 августа 1990, получил радарные карты почти всей ее поверхности с разрешением, доходящим до 100 м.

МАРС

Полет к Марсу более сложен, чем к Венере: перелет длится дольше, большее расстояние усложняет связь, а удаленность от Солнца требует большей площади солнечных батарей.

Пролеты. Как и в случае с Венерой, из-за трудностей с созданием носителей НАСА вынуждено было начать изучение Марса легкими зондами. "Маринер-4" впервые пролетел вблизи Марса 15 июля 1965, передав изображения, на которых покрытая кратерами поверхность Марса больше напоминала Луну, чем Землю. Похожие изображения передали "Маринер-6 и -7", пролетевшие вблизи Марса 31 июля и 5 августа 1969.

Исследования с орбиты и посадки. "Маринер-9", имевший мощную видеосистему, прибыл к Марсу 14 ноября 1971 и впервые стал спутником другой планеты. Почти за год наблюдений он кардинально изменил наши знания о Марсе, обнаружив на нем гигантские каньоны, огромные потухшие вулканы и следы эрозии от водяных потоков, существовавших там в далеком прошлом. Еще до открытий "Маринера-9" НАСА взялось за подготовку более сложных зондов "Викинг", способных не только выйти на орбиту вокруг Марса, но и доставить на его поверхность приборы для поиска жизни. Поскольку атмосфера Марса весьма разрежена, мягкая посадка на поверхность требует иных решений, чем на Луне или Венере. Тепловой экран и парашют использовать можно, но этого недостаточно, чтобы полностью погасить скорость. Необходим еще реактивный двигатель, управляемый компьютером, который получает от радара данные о расстоянии до поверхности и о скорости спуска. Этот последний этап посадки напоминает работу "Сервейора", однако из-за большой временной задержки все операции должны быть закончены, пока сигналы достигнут Земли. Два "Викинга" прибыли к Марсу в июле и августе 1976. Орбитальные блоки с помощью научных приборов обследовали возможные места посадки, а после отделения спускаемых аппаратов ретранслировали их сигналы на Землю. Спускаемые аппараты, снабженные радиоизотопными термоэлектрическими установками, имели по три сложных прибора для поиска жизни, но, увы, не обнаружили ее признаков. Советский Союз также в 1960-х и начале 1970-х годов предпринял исследование Марса с помощью пролетных, орбитальных и посадочных зондов. Однако многие полеты оказались не вполне удачными, вероятно, из-за трудностей в создании легких и надежных компонентов и систем, рассчитанных на длительную автономную работу.

Неудачные полеты. После экспедиций "Викингов" интерес к Марсу резко снизился. В СССР 12 и 17 июля 1988 запустили "Фобос-1 и -2" для изучения спутника Марса, но радиоконтакт с зондами был потерян перед их подлетом к Фобосу. В США 25 сентября 1992 запустили "Марс обсервер", но его радиосигналы пропали перед самым подлетом к Марсу. В результате неудачного старта 16 ноября 1996 не вышел на орбиту и погиб российский зонд "Марс-96", оснащенный аппаратурой нескольких стран для исследований Марса с орбиты и на поверхности. Исследования Марса продолжаются. Запущенный 7 ноября 1996 зонд "Марс глобал сервейор" (США) вышел 12 сентября 1997 на околомарсианскую орбиту и передает подробные изображения поверхности планеты. После серии неудач с космическими зондами НАСА перешло к программе по созданию недорогих аппаратов для выполнения конкретных задач. Первым стал зонд NEAR стоимостью 150 млн. долл., предназначенный для исследования астероидов (см. ниже). Вторым был запущенный 4 декабря 1996 зонд "Марс пасфайндер", совершивший 4 июля 1997 мягкую посадку на Марс и доставивший первый автоматический самоходный аппарат "Соджорнер", который несколько месяцев исследовал состав поверхности планеты. Для исследования атмосферы и водных ресурсов Марса 11 декабря 1998 к нему отправлен небольшой аппарат "Марс клаймит орбитер" (США - ЕКА - Россия), который должен выйти на околомарсианскую орбиту в сентябре 1999. В конце 1999 планировалась посадка в район южного полюса Марса аппарата "Марс полдар лэндер" (США), запущенного 3 января 1999.

ВНЕШНИЕ ОБЛАСТИ СОЛНЕЧНОЙ СИСТЕМЫ

За орбитой Марса масштабы расстояний в Солнечной системе значительно возрастают, поэтому посылка зонда к внешним планетам представляет трудную задачу, требующую мощных носителей и надежных приборов, способных работать годы и даже десятилетия. Планирование подобных полетов затруднено тем, что зонд неизбежно должен пройти сквозь пояс астероидов между орбитами Марса и Юпитера. Возможность столкновения зонда с известными астероидами не очень беспокоит, ибо крупных астероидов размером более километра всего несколько десятков тысяч, а рассеяны они по такому гигантскому объему пространства, что вероятность столкновения с ними ничтожно мала. Однако быстро летящему зонду может причинить вред даже столкновение с песчинкой, которых в поясе астероидов должно быть бесчисленное множество. Пролететь же над или под поясом астероидов (который, подобно планетам, располагается вблизи плоскости эклиптики) невозможно, т.к. для этого требуются огромные затраты энергии.

"Пионер-10 и -11". Единственный способ узнать, можно ли преодолеть пояс астероидов, заключался в том, чтобы попробовать это сделать. Первыми зондами НАСА к внешним планетам стали два стабилизированных вращением "Пионера" с радиоизотопными генераторами. "Пионер-10" был выведен 3 марта 1972 со скоростью 51 670 км/ч, став самым быстрым объектом, созданным руками человека, и через 11 ч после запуска пересек орбиту Луны. Он пересек пояс астероидов без повреждений и 3 декабря 1973 прошел в 130 тыс. км над облачным слоем Юпитера, передав множество данных, включая посредственные изображения, которые все же оказались значительно более детальными, чем до этого получали с Земли. Разведывательный полет "Пионера-10" продемонстрировал также, что зонд может безопасно преодолеть радиационные пояса Юпитера, которые намного интенсивнее земных. Пройдя мимо Юпитера, "Пионер-10" был выброшен его притяжением на траекторию, уводящую за пределы Солнечной системы; он стал первым рукотворным объектом, вырвавшимся из притяжения Солнца. Связь с "Пионером-10" поддерживалась до марта 1997. Теперь путь был свободен для "Пионера-11", запущенного 6 апреля 1973 и имевшего более сложную программу. Его траекторию выбрали так, чтобы после пролета 2 декабря 1974 в 43 тыс. км над облаками Юпитера он развернулся для встречи с Сатурном. Пролетев 1 сентября 1979 в 21 тыс. км над облаками Сатурна, "Пионер-11", как и его предшественник, отправилсязвездам".

"Вояджер". Следующий этап исследования внешних планет начался, когда выяснилось, что в конце 1970-х и начале 1980-х годов взаимное положение планет-гигантов Юпитера, Сатурна, Урана и Нептуна будет таким, что один зонд с помощью гравитационных маневров сможет посетить их все по очереди. Чтобы использовать эту редкую возможность, которая случается только раз в 179 лет, НАСА предложило грандиозную программу "Большого тура" к внешним планетам. Для этого предполагалось создать очень сложный зонд, способный работать не менее 12 лет, необходимых для полного облета планет. Но проект оказался непомерно дорогим. Тогда инженеры НАСА обратились к идее модернизированной версии "Маринера", ограничив задачу пролетом мимо Юпитера и Сатурна, но не оставляя надежду на визит к более далеким планетам.

<a href='/dict/вояджер-' class='wordLink' target='_blank'>ВОЯДЖЕР-</a>1 И <a href='/dict/вояджер-' class='wordLink' target='_blank'>ВОЯДЖЕР-</a>2 <a href='/dict/использовали' class='wordLink' target='_blank'>использовали</a> <a href='/dict/принцип' class='wordLink' target='_blank'>принцип</a> <a href='/dict/гравитационного' class='wordLink' target='_blank'>гравитационного</a> <a href='/dict/маневра' class='wordLink' target='_blank'>маневра</a> <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/пролета' class='wordLink' target='_blank'>пролета</a> <a href='/dict/мимо' class='wordLink' target='_blank'>мимо</a> <a href='/dict/всех' class='wordLink' target='_blank'>всех</a> <a href='/dict/планет-гигантов' class='wordLink' target='_blank'>планет-гигантов</a>. На <a href='/dict/рисунке' class='wordLink' target='_blank'>рисунке</a> <a href='/dict/показаны' class='wordLink' target='_blank'>показаны</a> <a href='/dict/траектории' class='wordLink' target='_blank'>траектории</a> <a href='/dict/зондов' class='wordLink' target='_blank'>зондов</a> и <a href='/dict/даты' class='wordLink' target='_blank'>даты</a> <a href='/dict/пролетов' class='wordLink' target='_blank'>пролетов</a>.

"ВОЯДЖЕР-1" И "ВОЯДЖЕР-2" использовали принцип гравитационного маневра для пролета мимо всех планет-гигантов. На рисунке показаны траектории зондов и даты пролетов.

В отличие от "Пионера-10 и -11", новые зонды "Вояджер-1 и -2" были стабилизированы по всем трем осям, что позволяло приборам и особенно видеосистеме ориентироваться в любом заданном направлении. Как и предшествующие аппараты, они питались от радиоизотопных источников и для связи имели большую радиоантенну, направленную на Землю. Аппараты "Вояджер-1 и -2" были запущены 20 августа и 5 сентября 1977. Двигаясь по более быстрой траектории, "Вояджер-1" должен был преодолеть магнитосферу Юпитера, пролететь как можно ближе к планете, чтобы получить качественные изображения атмосферы и особенно Большого Красного Пятна, пройти на небольшом расстоянии от четырех крупнейших (галилеевых) спутников Юпитера, пролететь за кольцами Сатурна и вблизи нескольких его спутников, включая крупнейший, покрытый облаками Титан, с которым он сблизился на 4000 км. Выполнив эту изумительную программу и встретившись с Юпитером 5 марта 1979 и с Сатурном 12 ноября 1980, зонд отправился в межзвездное пространство. После этого "Вояджеру-2" можно было ставить более сложную задачу. Пролетев Юпитер 9 июля 1979 и Сатурн 25 августа 1981, он встретился затем с Ураном 24 января 1986 и Нептуном 24 августа 1989, также отправившись затем к звездам. "Вояджеры" получили прекрасные изображения планет-гигантов и сделали множество открытий в отношении самих планет, их колец и спутников. Они продемонстрировали высокую надежность зондов и безупречное искусство наземного персонала управления.

"Галилео". Мысль послать к Юпитеру зонд "Галилео" появилась в НАСА в 1970-х годах. Его задачей была доставка спускаемого аппарата в атмосферу Юпитера и выход зонда на орбиту вокруг планеты для детального исследования ее магнитосферы, облачного покрова и спутников. Полагали, что "Галилео" станет первым планетным зондом, который будет выведен на орбиту космической транспортной системой "Шаттл", но запуск пришлось отложить более чем на 7 лет из-за задержки с разработкой разгонной ступени, а потом из-за ее аварии. После запуска "Галилео" 18 октября 1989 "зонтик" его остронаправленной антенны не смог полностью раскрыться, поэтому связь с Землей он поддерживал с помощью всенаправленной антенны, что существенно замедляет передачу изображений. "Галилео" сначала прошел мимо Венеры и два раза мимо Земли, увеличивая с помощью гравитационного маневра свою скорость, затем 29 октября 1991 встретился с астероидом Гаспра, а 28 августа 1993 - с астероидом Ида, 13 июля 1995 отделил от себя атмосферный зонд, и оба они 7 декабря 1995 прибыли к Юпитеру. Зонд вошел в атмосферу планеты, исследовал ее при спуске на парашюте и погиб, а орбитальный аппарат занялся внешним изучением планеты и ее спутников. В 1999 он еще активно действовал.

<a href='/dict/встреча' class='wordLink' target='_blank'>ВСТРЕЧА</a> <a href='/dict/космического' class='wordLink' target='_blank'>КОСМИЧЕСКОГО</a> <a href='/dict/зонда' class='wordLink' target='_blank'>ЗОНДА</a> <a href='/dict/галилео' class='wordLink' target='_blank'>ГАЛИЛЕО</a> с Ио <a href='/dict/при' class='wordLink' target='_blank'>при</a> <a href='/dict/полете' class='wordLink' target='_blank'>полете</a> к <a href='/dict/юпитеру' class='wordLink' target='_blank'>Юпитеру</a> (<a href='/dict/декабрь' class='wordLink' target='_blank'>декабрь</a> 1995).

ВСТРЕЧА КОСМИЧЕСКОГО ЗОНДА "ГАЛИЛЕО" с Ио при полете к Юпитеру (декабрь 1995).

Кроме попутных встреч с астероидами планируются и специальные полеты к ним. NASA 17 февраля 1996 вывело на орбиту аппарат NEAR (Near Earth Asteroid Rendezvous - Рандеву с околоземным астероидом), который 27 июня 1997 с пролетной траектории исследовал астероид Матильда, а 9 января 1999 сблизился с малой планетой Эрос и вышел на орбиту вокруг нее с минимальной высотой 24 км над поверхностью.

КОМЕТЫ

В марте 1986, когда комета Галлея приблизилась к Солнцу, с ней встретилась международная флотилия космических аппаратов: 7 января и 18 августа 1985 японский Институт космических исследований запустил зонды "Сакигаке" и "Суйсей", пролетевшие довольно далеко от ядра кометы и не подвергавшиеся серьезному риску; Советский Союз запустил 15 и 21 декабря 1984 зонды "Вега-1 и -2", а Европейское космическое агентство (ЕКА) запустило 2 июля 1985 зонд "Джотто" - наиболее совершенный из всех, приблизившийся к ядру на 605 км и передавший изображения этой темной, фонтанирующей газопылевой глыбы. Полет международной флотилии выразительно продемонстрировал конец монополии США и СССР в запуске космических зондов, поскольку Япония и Западная Европа создали свои мощные носители. Тем не менее США стали первыми, кто послал зонд к комете. Запущенный в 1978 зонд ISEE-3 изучал взаимодействие солнечного ветра с Землей на орбите, удаленной на 1,5 млн. км от Земли, а затем с помощью гравитационного маневра и оставшегося на борту запаса ракетного топлива изменил орбиту и прошел через хвост кометы Джакобини - Циннера 11 сентября 1985.

СОЛНЕЧНЫЕ ЗОНДЫ

Полет зонда к Солнцу требует решения многих инженерных проблем, связанных с поддержанием в нем температуры, при которой могут работать электронные приборы.

"Гелиос". Два западногерманских зонда "Гелиос" были запущены американскими ракетами "Титан-Центавр" 10 декабря 1974 и 15 января 1976 на орбиту вокруг Солнца для его изучения с относительно близкого расстояния. Это был совместный проект НАСА и ЕКА; каждое из них установило на зондах по 11 приборов для всестороннего изучения Солнца.

"Улисс". Особым солнечным зондом стал "Улисс", также совместно созданный НАСА и ЕКА. Этот аппарат, запущенный 6 октября 1990, предназначен для изучения Солнца и межпланетной среды над и под солнечными полюсами. Для этого его орбита должна существенно выходить из плоскости эклиптики, что требует гораздо больших затрат энергии. Эта дополнительная энергия была получена путем гравитационного маневра при сближении с Юпитером в феврале 1992. При первом облете Солнца "Улисс" прошел в 80,2° к югу и к северу от солнечного экватора, соответственно 13 сентября 1994 и 31 июля 1995, и получил уникальную информацию, поскольку с Земли невозможно исследовать эти области.

SOHO (Solar and Heliospheric Observatory). Запущенный 2 декабря 1995 совместно НАСА и ЕКА на околосолнечную орбиту в точку Лагранжа L1 системы Земля - Солнце, этот зонд получает великолепные изображения Солнца в различных диапазонах спектра, а также изучает солнечную корону, используя внезатменный коронографпомощью которого уже было открыто несколько комет, влетевших в атмосферу Солнца).

В МЕЖПЛАНЕТНОМ ПРОСТРАНСТВЕ

Пространство между большими планетами Солнечной системы почти пусто, но и оно может немало рассказать о метеороидах, солнечном магнитном поле и заряженных частицах - электронах и протонах. Первым зондом для исследования этих областей был американский "Пионер-5", запущенный 11 марта 1960. Он двигался по орбите между Землей и Венерой, передавая данные об условиях в межпланетном пространстве, пока не удалился от Земли на рекордное для тех лет расстояние в 36,2 млн. км. В начале 1960-х годов в НАСА разработали простые и легкие (63 кг), стабилизированные вращением зонды для исследования межпланетного пространства, которые выводились относительно дешевой ракетой "Дельта". На орбиту вокруг Солнца вывели четыре аппарата: "Пионер-6, -7, -8 и -9" (запущены 16 декабря 1965, 17 августа 1966, 13 декабря 1967 и 8 ноября 1968), причем два между орбитами Венеры и Земли и два между Землей и Марсом. Связь с ними была прекращена лишь в марте 1997. Кроме научных исследований, эти зонды решали важную практическую задачу, предупреждая о мощных солнечных вспышках, которые могли быть опасны для астронавтов "Аполлона".

Полезные сервисы

антенна

Энциклопедия Кольера

АНТЕННА - конструкция, используемая для передачи или приема радиоволн (т.е. электромагнитных излучений с длинами волн в пределах от АНТЕННА20 000 м до АНТЕННА1 мм). В качестве примеров использования антенн можно привести радио и телевещание, дальнюю радиосвязь на коротких волнах и микроволнах, отраженных спутниковыми антеннами, радиолокацию - в основе всех этих физических процессов и технических систем лежит передача энергии в форме электромагнитных волн через воздушное и космическое пространство. Функция передающей антенны состоит в том, чтобы преобразовывать электромагнитную энергию, поступающую от передатчика, в излучаемую электромагнитную волну. На стороне приема тоже необходимо иметь антенну, которая принимает часть энергии, излученной передающей антенной, и пересылает ее на более или менее сложные детектирующие и усиливающие схемы, которые и составляют основу приемника.

См. РАДИО И ТЕЛЕВИДЕНИЕ; РАДИОЛОКАЦИЯ.

ТИПЫ АНТЕНН

Тип конструкции антенны зависит от длины волн, на которых она должна работать. Чтобы эффективно излучать энергию, антенна должна иметь размеры, близкие к длине рабочей волны. Поэтому на низких частотах, использовавшихся в свое время для трансатлантической радиотелеграфной и радиотелефонной связи (частоты от 16 до 70 кГц, т.е. волны длиной от 19 до 4,3 км), огромная система антенных проводов общей протяженностью до 2 км представляла собой электрически короткую антенну и оказывалась, следовательно, неэффективным излучателем. Если такая антенна должна была иметь заметную направленность, то ее эффективность получалась очень низкой. Напротив, на сверхвысоких частотах (СВЧ) использование полуволнового симметричного вибратора длиной менее 1 см и отполированного металлического рефлектора диаметром всего лишь несколько сантиметров позволяет весьма эффективно фокусировать излучение такого вибратора в узкий луч.

АНТЕННЫ ДЛЯ РАДИОВЕЩАНИЯ С АМПЛИТУДНОЙ МОДУЛЯЦИЕЙ (540-1600 кГц, 550-190 м)

Четвертьволновая передающая антенная мачта. Основная зона охвата широковещательной станции "обслуживается" поверхностной (земной) волной. Для того чтобы волна распространялась вблизи земной поверхности, она должна иметь вертикальную поляризацию, т.е. вектор электрического поля излучения должен быть вертикальным, и, следовательно, необходима вертикальная антенна. В действительности достаточно иметь антенну лишь половинной высоты; причиной тому является ее зеркальный заряд. Когда электромагнитное поле встречает на своем пути проводящую плоскость, оно зеркально отражается от нее. Поэтому электромагнитное поле, создаваемое над проводящей плоскостью некоторой системой токов и зарядов, оказывается идентичным полю, которое существовало бы, если бы вместо проводящей плоскости имелась зеркально отраженная система токов и зарядов, т.е. просто зеркальное отображение реальной системы в данной плоскости. Таким образом, поле над плоскостью - это поле вертикального полуволнового симметричного вибратора (рис. 1). Такой вибратор наиболее интенсивно излучает в плоскости, перпендикулярной его оси; в рассматриваемом случае это означает, что излучение направлено вдоль поверхности земли. Такая антенна на практике представляет собой стальную мачту высотой около четверти длины волны, установленную на опорных изоляторах (рис. 2). Землю делают хорошим проводником, закапывая в нее систему проводов, расходящихся в радиальных направлениях от основания антенны. Если антенную мачту для устойчивости снабжают проволочными оттяжками, то их надо разделить изоляторами на секции, достаточно короткие, чтобы влияние оттяжек на локальное поле антенны было незначительным.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 1. <a href='/dict/четвертьволновая' class='wordLink' target='_blank'>ЧЕТВЕРТЬВОЛНОВАЯ</a> <a href='/dict/антенна' class='wordLink' target='_blank'>АНТЕННА</a>, <a href='/dict/установленная' class='wordLink' target='_blank'>установленная</a> <a href='/dict/над' class='wordLink' target='_blank'>над</a> <a href='/dict/проводящей' class='wordLink' target='_blank'>проводящей</a> <a href='/dict/плоскостью' class='wordLink' target='_blank'>плоскостью</a>, <a href='/dict/действует' class='wordLink' target='_blank'>действует</a> <a href='/dict/как' class='wordLink' target='_blank'>как</a> <a href='/dict/полуволновый' class='wordLink' target='_blank'>полуволновый</a> <a href='/dict/симметричный' class='wordLink' target='_blank'>симметричный</a> <a href='/dict/вибратор' class='wordLink' target='_blank'>вибратор</a>, <a href='/dict/так' class='wordLink' target='_blank'>так</a> <a href='/dict/как' class='wordLink' target='_blank'>как</a> <a href='/dict/проводящий' class='wordLink' target='_blank'>проводящий</a> <a href='/dict/экран' class='wordLink' target='_blank'>экран</a> <a href='/dict/создает' class='wordLink' target='_blank'>создает</a> <a href='/dict/зеркальное' class='wordLink' target='_blank'>зеркальное</a> <a href='/dict/электрическое' class='wordLink' target='_blank'>электрическое</a> <a href='/dict/изображение' class='wordLink' target='_blank'>изображение</a> (<a href='/dict/показано' class='wordLink' target='_blank'>показано</a> <a href='/dict/штриховыми' class='wordLink' target='_blank'>штриховыми</a> <a href='/dict/линиями' class='wordLink' target='_blank'>линиями</a>), <a href='/dict/эквивалентное' class='wordLink' target='_blank'>эквивалентное</a> <a href='/dict/отсутствующей' class='wordLink' target='_blank'>отсутствующей</a> <a href='/dict/половине' class='wordLink' target='_blank'>половине</a> <a href='/dict/вибратора' class='wordLink' target='_blank'>вибратора</a>.

Рис. 1. ЧЕТВЕРТЬВОЛНОВАЯ АНТЕННА, установленная над проводящей плоскостью, действует как полуволновый симметричный вибратор, так как проводящий экран создает зеркальное "электрическое изображение" (показано штриховыми линиями), эквивалентное отсутствующей половине вибратора.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 2. <a href='/dict/стальная' class='wordLink' target='_blank'>СТАЛЬНАЯ</a> <a href='/dict/мачта' class='wordLink' target='_blank'>МАЧТА</a> на <a href='/dict/опорных' class='wordLink' target='_blank'>опорных</a> <a href='/dict/изоляторах' class='wordLink' target='_blank'>изоляторах</a>, <a href='/dict/действующая' class='wordLink' target='_blank'>действующая</a> <a href='/dict/как' class='wordLink' target='_blank'>как</a> <a href='/dict/четвертьволновая' class='wordLink' target='_blank'>четвертьволновая</a> <a href='/dict/передающая' class='wordLink' target='_blank'>передающая</a> <a href='/dict/антенна' class='wordLink' target='_blank'>антенна</a>.

Рис. 2. СТАЛЬНАЯ МАЧТА на опорных изоляторах, действующая как четвертьволновая передающая антенна.

Направленные антенные решетки из антенных мачт. Существуют две причины, по которым широковещательной станции может требоваться направленная диаграмма излучения. Во-первых, ее "аудитория" может находиться преимущественно с одной стороны от места расположения передающей станции. Так, например, региональная станция, размещенная в приморском городе, должна создавать более сильный сигнал в континентальном направлении, если нежелательно, чтобы половина ее мощности терялась на морских просторах. Во-вторых, может возникнуть необходимость исключения взаимных помех в зоне, обслуживаемой какой-либо удаленной станцией, работающей на той же самой частоте; в этом случае диаграмма направленности данной станции должна иметь нулевое излучение в направлении на удаленную. Направленность излучения часто достигается созданием решетки из двух или большего числа антенных мачт, в которой расстояния между мачтами и фазы возбуждения антенн каждой из мачт выбраны так, чтобы получить желаемую диаграмму направленности. Проиллюстрируем данный подход примером. Пусть имеются две одинаковые антенные мачты, находящиеся друг от друга на расстоянии в половину длины волны и возбуждаемые токами одинаковой величины и фазы. Излучение каждой антенны равнонаправленно в горизонтальной плоскости; таким образом, если смотреть сверху, каждая из антенн выглядит как точечный источник круговых волн, распространяющихся равномерно во всех направлениях. Диаграмма направленности такой двухантенной решетки определяется наложением волн, излучаемых обеими антеннами. Как показано на рис. 3, точки, находящиеся на оси запад - восток (WE), от одной антенной мачты на полдлины волны дальше, чем от другой. Таким образом, в этих точках две излучаемые волны отличаются по фазе на 180° и, следовательно, гасят друг друга; в результате излучение по линии WE в обе стороны отсутствует. Точки же, расположенные на прямой север - юг (NS), напротив, находятся на одинаковом удалении от антенных мачт, так что обе волны в этих точках оказываются в одинаковой фазе и суммируются. Такая система называется антенной решеткой бокового (поперечного) излучения - ее диаграмма направленности представлена на рис. 4,а. Если же антенные мачты излучают в противофазе (разность фаз 180°), то вдоль оси NS будет происходить взаимное гашение волн, а вдоль оси WE - их сложение. Такая система называется антенной решеткой продольного (осевого) излучения. Ее диаграмма направленности похожа на диаграмму направленности решетки поперечного излучения, но повернута на 90° (рис. 4,б). Если две антенные мачты находятся друг от друга на расстоянии в четверть длины волны и возбуждаются токами равной величины, но волна, излучаемая восточной мачтой, опережает по фазе западную на 90°, то диаграмма направленности будет иметь форму кардиоиды (рис. 5, пунктирная линия). Штриховой и сплошной линиями на рисунке представлены диаграммы направленности, получаемые при опережении по фазе восточной мачтой на 45° и 180° соответственно.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 3. <a href='/dict/две' class='wordLink' target='_blank'>ДВЕ</a> <a href='/dict/антенные' class='wordLink' target='_blank'>АНТЕННЫЕ</a> <a href='/dict/мачты' class='wordLink' target='_blank'>МАЧТЫ</a>, <a href='/dict/разнесенные' class='wordLink' target='_blank'>разнесенные</a> на <a href='/dict/полдлины' class='wordLink' target='_blank'>полдлины</a> <a href='/dict/волны' class='wordLink' target='_blank'>волны</a>, <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/получения' class='wordLink' target='_blank'>получения</a> <a href='/dict/диаграмм' class='wordLink' target='_blank'>диаграмм</a> <a href='/dict/направленности' class='wordLink' target='_blank'>направленности</a>, <a href='/dict/показанных' class='wordLink' target='_blank'>показанных</a> на <a href='/dict/рис' class='wordLink' target='_blank'>рис</a>. 4, <a href='/dict/нужно' class='wordLink' target='_blank'>нужно</a> <a href='/dict/возбуждать' class='wordLink' target='_blank'>возбуждать</a> <a href='/dict/по-разному' class='wordLink' target='_blank'>по-разному</a>.

Рис. 3. ДВЕ АНТЕННЫЕ МАЧТЫ, разнесенные на полдлины волны, для получения диаграмм направленности, показанных на рис. 4, нужно возбуждать по-разному.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 4. <a href='/dict/диаграммы' class='wordLink' target='_blank'>ДИАГРАММЫ</a> <a href='/dict/направленности' class='wordLink' target='_blank'>НАПРАВЛЕННОСТИ</a> <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/антенн' class='wordLink' target='_blank'>антенн</a>, <a href='/dict/показанных' class='wordLink' target='_blank'>показанных</a> на <a href='/dict/рис' class='wordLink' target='_blank'>рис</a>. 3: а - <a href='/dict/поперечного' class='wordLink' target='_blank'>поперечного</a> <a href='/dict/излучения' class='wordLink' target='_blank'>излучения</a>; б - <a href='/dict/продольного' class='wordLink' target='_blank'>продольного</a> <a href='/dict/излучения' class='wordLink' target='_blank'>излучения</a>.

Рис. 4. ДИАГРАММЫ НАПРАВЛЕННОСТИ для антенн, показанных на рис. 3: а - поперечного излучения; б - продольного излучения.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 5. <a href='/dict/диаграммы' class='wordLink' target='_blank'>ДИАГРАММЫ</a> <a href='/dict/направленности' class='wordLink' target='_blank'>НАПРАВЛЕННОСТИ</a> <a href='/dict/антенн' class='wordLink' target='_blank'>антенн</a>, <a href='/dict/разнесенных' class='wordLink' target='_blank'>разнесенных</a> на 1/4 <a href='/dict/длины' class='wordLink' target='_blank'>длины</a> <a href='/dict/волны' class='wordLink' target='_blank'>волны</a>.

Рис. 5. ДИАГРАММЫ НАПРАВЛЕННОСТИ антенн, разнесенных на 1/4 длины волны.

Радиовещательные приемные антенны. Радиовещательные приемные антенны с высотой, близкой к половине или даже четверти длины волны, оказываются, как правило, непомерно большими. К счастью, это ограничение часто не играет существенной роли, так как напряженность поля, создаваемого передающей станцией, обычно настолько большая, что даже маленькая антенна обеспечивает более чем достаточный сигнал для современного радиоприемника. Исключая из рассмотрения крайне удаленные пункты, надо сказать, что длинная наружная антенна не улучшает отношение сигнал/шум и часто может лишь ухудшить прием. Большинство вещательных радиоприемников выпускаются со встроенной рамочной или ферритовой антенной. Такое устройство представляет собой электрически небольшой магнитный диполь. Если электрические и магнитные силовые линии, образующие поле антенны, поменять местами, то полученное в результате поле теоретически возможно в том смысле, что оно подчиняется законам электромагнетизма. Трудность состоит в том, что для излучения такого поля требуется магнитный аналог исходной излучающей системы; но магнитный аналог электрических зарядов, движущихся по электрическим проводникам, - это некие магнитные заряды, движущиеся по магнитным проводникам; однако ни магнитного заряда, ни магнитного проводника пока еще не удалось обнаружить. Существует, однако, магнитный аналог очень маленького диполя - катушка индуктивности. Хотя миниатюрный магнитный диполь, или рамочная антенна, как его называют, является весьма малоэффективной передающей антенной, такие качества, как миниатюрность и отличные возможности противостоять местным помехам и шумам, делают его идеальным средством для приема радиовещательных передач. Диаграмма направленности небольшой рамочной антенны представлена на рис. 6. Поворачивая рамку, можно, используя резко выраженные нули диаграммы, совпадающие с осью рамки, исключить прием помехи. Такая рамочная антенна может иметь форму плоской спирально намотанной катушки, размещаемой на задней стенке корпуса приемника, или форму тонкого соленоида с ферритовым сердечником. Благодаря резко выраженным нулям диаграммы направленности такую рамочную антенну используют в радиопеленгационной аппаратуре.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 6. <a href='/dict/диаграмма' class='wordLink' target='_blank'>ДИАГРАММА</a> <a href='/dict/направленности' class='wordLink' target='_blank'>НАПРАВЛЕННОСТИ</a> <a href='/dict/небольшой' class='wordLink' target='_blank'>небольшой</a> <a href='/dict/рамочной' class='wordLink' target='_blank'>рамочной</a> <a href='/dict/приемной' class='wordLink' target='_blank'>приемной</a> <a href='/dict/антенны' class='wordLink' target='_blank'>антенны</a>.

Рис. 6. ДИАГРАММА НАПРАВЛЕННОСТИ небольшой рамочной приемной антенны.

Диапазон ЧМ-радиовещания (от 88 до 108 МГц) заключен между нижним и верхним каналами ОВЧ-диапазона телевидения (от 2-го до 13-го канала); поэтому антенны, применяемые для передачи и приема ЧМ-сигналов, по существу такие же, как и используемые для телевидения, и хотя в последующем описании речь будет идти преимущественно о телевизионных антеннах, последние в большей или меньшей степени пригодны также и для ЧМ-радиовещания. Обычно и ЧМ-радиостанции, и телевизионные передающие станции ведут передачи на волнах с горизонтальной поляризацией.

АНТЕННЫ ДЛЯ ТЕЛЕВИЗИОННОГО И ЧМ-РАДИОВЕЩАНИЯ (54-216 мГц, 5,6 м - 72 см)

Телевизионные передающие антенны. От телевизионной (или ЧМ) передающей антенны обычно требуется, чтобы она давала равномерно распределенное (ненаправленное) излучение в горизонтальной плоскости; однако в вертикальной плоскости выгодно концентрировать излучение в сравнительно узкий луч, направленный к горизонту, ибо именно там находится обслуживаемая "аудитория" зрителей и слушателей. Энергия, направляемая выше или ниже линии горизонта, либо теряется в космосе, либо уходит в землю. Характеристики диаграммы направленности в вертикальной плоскости той или иной телевизионной передающей антенны можно определить сравнением с соответствующей диаграммой горизонтального полуволнового симметричного вибратора в вертикальной плоскости, содержащей этот вибратор. Коэффициент усиления антенны по мощности определяется как отношение входной мощности, подаваемой на выбранный для сравнения симметричный вибратор, к мощности, подаваемой на вход антенны, коэффициент усиления которой надо определить, при условии, что обе антенны дают одинаковую интенсивность излучения в горизонтальной плоскости на расстоянии в одну милю (1,6 км). Эффективная излучаемая мощность определяется как мощность в ваттах, поступающая по соединительной линии (фидеру) от передатчика в антенну, умноженная на коэффициент усиления антенны. Таким образом, эффективная излучаемая мощность в типичном случае получается намного больше фактической мощности передатчика. Одной из проблем конструирования антенны, решение которой особенно важно для телевещания, является исключение отражений от антенны обратно в соединительную линию. Эта отраженная энергия переотражается передатчиком в антенну, куда она попадает с задержкой, равной частному от деления двойной длины фидера на скорость света, и приводит к передаче в антенну задержанного эхо-сигнала. В худшем случае это эхо может проявить себя на принимаемой картинке как вторичное изображение (тускло воспроизводимое изображение, смещенное вправо), но даже при менее неприятных последствиях четкость получаемого изображения ухудшается. Проблема отражений, как и другие проблемы, связанные с конструкцией антенны, при передаче телевизионного сигнала усугубляются требованиями, предъявляемыми к ширине полосы тракта. Видеоинформация телевизионного сигнала занимает полосу около пяти мегагерц, что составляет почти 10% несущей частоты нижних каналов ТВ-диапазона. Это означает, что телевизионная передающая антенна должна иметь конструкцию, соответствующую жестким требованиям не только на одной частоте, но и в широкой полосе частот. Полуволновый проволочный симметричный вибратор был бы совершенно непригодным для передач телевидения, так как если даже согласовать его с фидером и добиться отсутствия отражений на какой-либо одной частоте, то при изменении частоты на 5% диполь будет отражать в фидер четверть подаваемой на его вход энергии. Применяемая на практике телевизионная передающая антенна представляет собой "турникетную" модель, которая состоит из двух скрещенных горизонтальных симметричных вибраторов, сделанных из труб диаметром 5 или 8 см. Каждый вибратор имеет в горизонтальной плоскости диаграмму направленности в форме цифры 8, и при возбуждении двух вибраторов со сдвигом по фазе на 90° суммарная диаграмма в той же плоскости становится почти всенаправленной. Направленность в вертикальной плоскостиследовательно, и коэффициент усиления антенны) можно улучшить путем установки на антенной мачте нескольких ярусов турникетных антенн одну над другой. Турникетная антенна - это прототип одной из самых широко применяемых телевизионных передающих антенн, получившей название "супертурникетной". Вибраторы простой турникетной антенны приобрели в ней форму излучателей с конфигурацией бабочки - такая конфигурация позволяет получить намного большую ширину полосы вещания. Коэффициент усиления по мощности трехъярусной супертурникетной антенны составляет около 4.

Телевизионные приемные антенны. В отличие от волн, используемых для АМ-вещания, волны, на которых ведется телевещание, имеют значительно меньшую длину, так что приемные антенны размером в половину длины волны здесь вполне осуществимы. Так, телевизионный полуволновый симметричный вибратор настолько мал, что его можно сделать из жесткой трубки. Вместе с тем малый размер даже электрически длинной антенны на этих частотах означает, что эффективная площадь приема падающей волны (и, следовательно, возможность антенны захватить ее энергию) ограниченна. Кроме того, из-за большой ширины полосы телевизионного сигнала и шума, равномерно распределенного по каналу, приемник должен получить значительное количество энергии, чтобы обеспечить приемлемое отношение сигнал/шум. В свете вышесказанного становится понятным, что эффективность антенны играет важную роль в приеме телевизионного сигнала. На рабочих частотах телевещания атмосферные помехи не имеют особого значения, но приемная антенна будет улавливать массу индустриальных помех и космический шум. Поэтому важно, чтобы приемная антенна имела четко выраженную направленность, позволяющую не принимать сигналы, приходящие с направлений, не совпадающих с направлением на нужную передающую станцию. Другой тип помех, часто ухудшающих качество телевизионнного приема, - это многолучевое распространение, при котором нужный сигнал приходит на приемную антенну по двум путям разной длины. Так, например, один сигнал может прийти непосредственно от передатчика, а другой - отразившись от какой-либо горы или здания. Многолучевое распространение проявляется на экране в виде многоконтурности изображений, и, чтобы избавиться от него, надо использовать направленную антенну, позволяющую исключить прием по одному из двух лучей. Ширина полосы телевизионной приемной антенны должна быть очень большой, поскольку от нее требуется охватить не один канал, а обычно все тринадцать, размещенные в диапазоне частот 4:1. К счастью, согласование линии передачи с антенной, при котором отражения не возникают, не так существенно на приемной стороне, где рассогласование приводит лишь к потере слабого сигнала, не порождая эхо-сигналов. Важное значение имеет, однако, согласование соединительной линии с приемником, но в этом случае следует уделить внимание конструкции приемника. Отражения, возникающие на неоднородностях соединительной линии, могут вызывать многоконтурность или потерю резкости изображения. Такие отражения часто возникают, если двухпроводной ленточный кабель проходит слишком близко к металлическим конструкциям, например таким, как лотки для проводов или водостоки. Это станет понятным, если вспомнить, что высокочастотная электромагнитная энергия распространяется в поле, возникающем вокруг проводов, которые служат проводниками этого поля. Одна из самых простых антенн, используемых для приема телевизионного сигнала, представляет собой полуволновый петлевой симметричный вибратор (рис. 7), отличающийся от обычного полуволнового симметричного вибратора тем, что его выходной импеданс (300 Ом) согласуется с широко применяемыми типами фидеров, а также тем, что он обладает более широкой полосой; иначе говоря, он эффективно передает принимаемую электромагнитную энергию более широкого диапазона частот в соединительную линию.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 7. <a href='/dict/полуволновый' class='wordLink' target='_blank'>ПОЛУВОЛНОВЫЙ</a> <a href='/dict/петлевой' class='wordLink' target='_blank'>ПЕТЛЕВОЙ</a> <a href='/dict/симметричный' class='wordLink' target='_blank'>СИММЕТРИЧНЫЙ</a> <a href='/dict/вибратор' class='wordLink' target='_blank'>ВИБРАТОР</a>, <a href='/dict/используемый' class='wordLink' target='_blank'>используемый</a> <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/приема' class='wordLink' target='_blank'>приема</a> <a href='/dict/телевидения' class='wordLink' target='_blank'>телевидения</a> и <a href='/dict/чм-радиовещания' class='wordLink' target='_blank'>ЧМ-радиовещания</a>.

Рис. 7. ПОЛУВОЛНОВЫЙ ПЕТЛЕВОЙ СИММЕТРИЧНЫЙ ВИБРАТОР, используемый для приема телевидения и ЧМ-радиовещания.

Чтобы получить нужную диаграмму направленности в горизонтальной и вертикальной плоскостях, базовую антенну обычно используют совместно с одним или несколькими пассивными элементами. Пассивный элемент - это еще одна антенна, размещенная вблизи от основной, но не подсоединенная к фидеру. С основной антеннойследовательно, и с приемником) она связана только локальными полями. Понять, как пассивный элемент влияет на диаграмму направленности антенны, легко, поскольку здесь, по существу, используется тот же принцип, что и в ненаправленной антенной решетке; разница же состоит в том, что в данном случае возбуждается только одна антенна, а другая принимает энергию лишь от ее ближнего поля. Для примера отметим, что стержень полуволновой длины, помещенный (как показано на рис. 8) на расстоянии в четверть длины волны от полуволнового симметричного вибратора, действует как отражатель. Почему это действительно так, можно пояснить следующим образом. Локальное поле возбуждаемой (основной) антенны индуцирует в пассивном элементе заряды и токи противоположного знака, но из-за расстояния в четверть длины волны эти токи и заряды отстают от соответствующих токов и зарядов в основной антенне приблизительно на четверть периода, т.е. ток в пассивном элементе опережает ток в основной антенне приблизительно на 90°. Диаграмма направленности возбуждаемой антенны с пассивным элементом определяется путем наложения обоих излучаемых волновых полей. Эта ситуация очень похожа на рассмотренную для ненаправленнойгоризонтальной плоскости) решетки АМ-вещания; ее диаграмма направленности показана пунктирной линией на рис. 5. Эти две волны имеют тенденцию гасить друг друга в направлении к пассивному элементу и усиливать друг друга в противоположном направлении; следовательно, пассивный элемент действует как отражатель. Пассивный элемент не обязательно должен находиться на расстоянии в четверть волны от возбуждаемой антенны. Если его поместить очень близко к ней, например на расстоянии всего 0,1 длины волны, он тем не менее будет действовать как отражатель, если его длину сделать чуть больше половины длины волны. Увеличение длины пассивного элемента делает его индуктивным, в результате чего текущий по нему ток отстает по фазе от электродвижущей силы, индуцируемой полем основной антенны. Если же близко расположенный пассивный элемент сделать чуть короче половины длины волны, он становится направляющим ("директором") и концентрирует излучение на своей стороне от основной антенны. Все вышесказанное имеет непосредственное отношение и к приемным антеннам. Поскольку диаграммы направленности при передаче и приеме одинаковы, пассивные директоры и отражатели можно использовать в телевизионных приемных антеннах для получения необходимой диаграммы направленности. Типичная высоконаправленная антенная решетка с одним отражателем и тремя директорами показана на рис. 9.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 8. <a href='/dict/отражающий' class='wordLink' target='_blank'>ОТРАЖАЮЩИЙ</a> <a href='/dict/элемент' class='wordLink' target='_blank'>ЭЛЕМЕНТ</a> - <a href='/dict/стержень' class='wordLink' target='_blank'>стержень</a> <a href='/dict/полуволновой' class='wordLink' target='_blank'>полуволновой</a> <a href='/dict/длины' class='wordLink' target='_blank'>длины</a> (<a href='/dict/справа' class='wordLink' target='_blank'>справа</a>) <a href='/dict/расположен' class='wordLink' target='_blank'>расположен</a> на 1/4 <a href='/dict/длины' class='wordLink' target='_blank'>длины</a> <a href='/dict/волны' class='wordLink' target='_blank'>волны</a> <a href='/dict/позади' class='wordLink' target='_blank'>позади</a> <a href='/dict/полуволнового' class='wordLink' target='_blank'>полуволнового</a> <a href='/dict/симметричного' class='wordLink' target='_blank'>симметричного</a> <a href='/dict/вибратора' class='wordLink' target='_blank'>вибратора</a> (<a href='/dict/слева' class='wordLink' target='_blank'>слева</a>).

Рис. 8. ОТРАЖАЮЩИЙ ЭЛЕМЕНТ - стержень полуволновой длины (справа) расположен на 1/4 длины волны позади полуволнового симметричного вибратора (слева).

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 9. <a href='/dict/остронаправленная' class='wordLink' target='_blank'>ОСТРОНАПРАВЛЕННАЯ</a> <a href='/dict/приемная' class='wordLink' target='_blank'>ПРИЕМНАЯ</a> <a href='/dict/антенна' class='wordLink' target='_blank'>АНТЕННА</a> с <a href='/dict/одним' class='wordLink' target='_blank'>одним</a> <a href='/dict/отражателем' class='wordLink' target='_blank'>отражателем</a> (<a href='/dict/сзади' class='wordLink' target='_blank'>сзади</a>) и <a href='/dict/тремя' class='wordLink' target='_blank'>тремя</a> <a href='/dict/директорами' class='wordLink' target='_blank'>директорами</a> (<a href='/dict/спереди' class='wordLink' target='_blank'>спереди</a>) <a href='/dict/петлевого' class='wordLink' target='_blank'>петлевого</a> <a href='/dict/симметричного' class='wordLink' target='_blank'>симметричного</a> <a href='/dict/вибратора' class='wordLink' target='_blank'>вибратора</a>.

Рис. 9. ОСТРОНАПРАВЛЕННАЯ ПРИЕМНАЯ АНТЕННА с одним отражателем (сзади) и тремя директорами (спереди) петлевого симметричного вибратора.

ЛИТЕРАТУРА

Кочержевский Г.Н. Антенно-фидерные устройства. М., 1981 Кинбер Б.Е., Классен В.И. Теория и техника антенн. М., 1985 Сазонов Д.М. Антенны и устройства СВЧ. М., 1988 Драбкин А.Л. и др. Антенны. М., 1995

Полезные сервисы