гидроэнерге́тик, -а
гидроэнергетика
Толковый словарь
Энциклопедический словарь
ГИДРОЭНЕРГЕ́ТИКА [нэ], -и; ж. Отрасль энергетики, связанная с использованием потенциальной энергии водных ресурсов. Развивать гидроэнергетику. Наращивать мощности гидроэнергетики.
Академический словарь
Энциклопедия Кольера
ГИДРОЭНЕРГЕТИКА - использование энергии естественного движения, т.е. течения, водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды. До середины 19 в. для этого применялись водяные колеса, преобразующие энергию движущейся воды в механическую энергию вращающегося вала. Позднее появились более быстроходные и эффективные гидравлические турбины. До конца 19 в. энергия вращающегося вала использовалась непосредственно, например для размола зерна или для приведения в действие кузнечных мехов и молота. В наши дни практически вся механическая энергия, создаваемая гидравлическими турбинами, преобразуется в электроэнергию.
См. также ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ. Почти вся гидравлическая энергия представляет собой одну из форм солнечной энергии и поэтому относится к возобновляемым природным энергоресурсам. Под лучами солнца испаряется вода из озер, рек и морей. Образуются облака, идет дождь, и вода в конце концов возвращается в водные бассейны, т.е. туда, откуда испарилась. С таким круговоротом воды в природе связаны колоссальные количества энергии. Географическая область умеренного климата высотой над уровнем моря около 2500 м и количеством осадков порядка 1000 мм/год теоретически могла бы непрерывно давать более 750 кВт с каждого квадратного километра площади. На самом деле можно использовать лишь малую долю всего количества осадков и лишь ничтожную долю высоты, с которой они стекают. Кроме того, обычно КПД современных гидротурбин и генераторов не превышает 86%. Тем не менее производительность гидроэлектростанций (ГЭС) в США составляет около 75 000 МВт, и по крайней мере еще 50 000 МВт можно получить дополнительно.
См. также ДОЖДЬ.
Гидроэнергетические ресурсы. Уровень развития гидроэнергетики в разных странах и на разных континентах неодинаков. Больше всего гидроэлектроэнергии производят Соединенные Штаты, за ними идут Россия, Украина, Канада, Япония, Бразилия, КНР и Норвегия. Неосвоенные гидроэнергетические ресурсы Африки, Азии и Южной Америки открывают широкие возможности строительства новых ГЭС. На Северную Америку, в распоряжении которой находится всего около 13% мировых ресурсов гидроэнергетики, приходится около 35% полной мощности действующих ГЭС. В то же время Африка (21% мировых гидроэнергетических ресурсов) и Азия (39%) вносят лишь 5 и 18% соответственно в мировую выработку гидроэлектроэнергии. Из остальных континентов Европа (21% ресурсов) дает 31% выработки, а Южная Америка и Австралия, вместе взятые, располагая примерно 15% ресурсов, дают только 11% производимой в мире гидроэлектроэнергии.
ГИДРОЭЛЕКТРОСТАНЦИЯ (схема). Плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.
Плотины. Вода, вращающая гидравлические турбины, обычно берется из искусственных водохранилищ, созданных путем перекрытия реки плотиной. Плотина повышает напор воды, поступающей на турбины, и тем самым увеличивает мощность электростанции. Расход воды из водохранилища через турбины можно регулировать. Водохранилище, кроме того, служит отстойником для песка, ила и мусора, приносимых естественными водотоками. Построив плотину с водохранилищем, можно предотвратить паводковые затопления, а также создать надежный запас воды для водоснабжения населения и промышленности.
См. также ПЛОТИНА.
Гидравлические турбины. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. (Паровые и газовые турбины - со многими венцами лопаток.) К лопастям первого венца относятся профилированные колонны статора и лопатки направляющего аппарата, причем последние обычно позволяют регулировать расход воды через турбину. Второй венец образуют лопасти рабочего колеса турбины. Два последовательных лопастных венца (статора и колеса) составляют ступень турбины. Таким образом, в гидротурбинах имеется только одна ступень.
См. также ТУРБИНА. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. В гидроагрегатах приливной ГЭС, построенной в заливе Фанди (провинция Новая Шотландия, Канада), ротор генератора закреплен на периферии рабочего колеса, охватывая его. Такая конструкция генератора требует меньше железа и меди. Но чаще турбину располагают вертикально и выводят ее вал из пологого S-образного водяного канала через уплотнение к внешнему гидрогенератору. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Расчетный диапазон напора для горизонтальных осевых турбин составляет 3-15 м. Вертикальные осевые турбины используются при напорах от 5 до 30 м. Конструкцию поворотно-лопастных турбин предложил в 1910 австрийский инженер В.Каплан. Лопатки их направляющего аппарата поворачиваются на осях, параллельных валу, и турбина снабжена подводящей камерой, к которой подходит водовод.
РАДИАЛЬНО-ОСЕВАЯ ГИДРОТУРБИНА С ГИДРОГЕНЕРАТОРОМ. Напор воды преобразуется в механическую энергию вращающегося вала, а затем в электроэнергию. 1 - верхняя платформа; 2 - верхняя ферма статора; 3 - статор генератора; 4 - коллектор водяного охлаждения обмоток статора; 5 - ротор; 6 - обод ротора; 7 - полюсы с обмоткой возбуждения; 8 - контактные кольца; 9 - подпятник с направляющим подшипником; 10 - нижняя ферма статора; 11 - домкраты ротора; 12 - тормоза; 13 - воздухоохладители; 14 - вал и муфта; 15 - направляющий подшипник; 16 - корпус подшипника; 17 - исполнительный механизм затвора; 18 - нижняя платформа; 19 - рабочее колесо; 20 - лопатки направляющего аппарата; 21 - колонны статора турбины; 22 - спиральная камера турбины; 23 - отводная камера; 24 - отводная труба.
При повышенных напорах (от 12 до 300 м) более предпочтительны радиально-осевые турбины, в которых вода, входя по радиусу, выходит в осевом направлении. Такие турбины существенно усовершенствовал американский инженер Дж.Френсис, начавший эксперименты с ними в каналах под Лоуэллом (шт. Массачусетс, США) в 1851. Радиально-осевые турбины обычно отличаются лопатками большого диаметра, жестко закрепленными на рабочем колесе, но направляющий аппарат в них такого же вида, как и в поворотно-лопастных турбинах. Турбины для напоров, превышающих 300 м, совершенно иные, нежели описанные выше. В них имеются от одного до шести сопел кругового сечения, создающих водяные струи, которые падают на лопасти рабочего колеса. Расход воды регулируется перекрытием проходного сечения сопел. Рабочее колесо работает не под водой, как в осевой и радиально-осевой турбинах, а в воздухе. Высокоскоростная свободная водяная струя бьет в лопасть рабочего колеса, которая имеет форму двойного ковша. Конструкция ковшовой гидротурбины была предложена в 1878 и запатентована в 1880 американским инженером А.Пелтоном. Ковшовая гидротурбина называется активной (свободноструйной), поскольку в соплах напор падает до нуля и сила, действующая на лопасти, создается ударом струи. Осевая же и радиально-осевая турбины относятся к реактивным (напороструйным), так как поток продолжает ускоряться в проходах между лопастями рабочего колеса и крутящий момент частично создается реакцией, ответственной за ускорение.
Гидрогенераторы. Гидрогенераторы для ГЭС специально проектируются соответственно частоте вращения и мощностью гидротурбин, для которых они предназначаются. Гидрогенераторы на большую единичную мощность обычно устанавливают вертикально на подпятниках с соответствующими направляющими подшипниками. Они, как правило, трехфазные и рассчитаны на стандартную частоту. Система воздушного охлаждения - замкнутая, с теплообменниками воздух - вода. Предусматривается возбудитель.
См. также ЭЛЕКТРОМАШИННЫЕ ГЕНЕРАТОРЫ И ЭЛЕКТРОДВИГАТЕЛИ.
Коэффициент нагрузки. Немногие ГЭС все время работают на полной мощности. Иногда это невозможно из-за нехватки воды, а иногда лишено смысла из-за отсутствия нагрузки. Коэффициент нагрузки электростанции - это отношение средней потребляемой мощности за данный период к пиковой мощности в этот же период. При использовании накопительного водохранилища, в котором вода аккумулируется в часы пониженных нагрузок, ГЭС на водотоке, который годен для выработки лишь 10 МВт, может обслуживать нагрузку в 15-20 МВт, если коэффициент нагрузки лежит в пределах от 0,50 до 0,67. Это относится к отдельной ГЭС, самостоятельно обслуживающей свою нагрузку. Если же она включена в энергетическую систему, в которую входят и другие электростанции, то может быть переведена в режим с пиковой мощностью, значительно превышающей 20 МВт, но при меньшем коэффициенте нагрузки.
ПЛОТИНА ГЭС и водохранилище на р. Тахо (Испания).
В энергетические системы, как правило, входят не только ГЭС. Если в системе имеются и тепловые электростанции (ТЭС), то ГЭС может работать по своему графику нагрузки, отличному от общего. От нее требуется, чтобы она приносила наибольшую пользу всей системе. Для этого ГЭС может, например, работать на максимально возможной мощности при имеющемся запасе воды, чтобы экономилось топливо, или же работать только в часы пиковой нагрузки системы, чтобы снизить требуемую мощность ТЭС и, следовательно, необходимые инвестиции на их сооружение и эксплуатацию.
Гидроаккумулирующие электростанции (ГАЭС). В часы малых нагрузок гидроагрегаты ГАЭС перекачивают воду из низового водоема в верховой, а в часы повышенных - используют запасенную воду для выработки пиковой энергии. Работа в турбинном и насосном режимах обеспечивается обратимыми гидроагрегатами, состоящими из синхронной электрической машины и гидравлической насос-турбины. На перекачку воды в верхний водоем из нижнего затрачивается иногда в полтора раза больше электроэнергии, чем затем из нее вырабатывается. Но это оправдано с точки зрения экономики энергетической системы. Дело в том, что энергию, затрачиваемую на перекачку, вырабатывают ТЭС энергетической системы в часы пониженной нагрузки, когда ее стоимость понижается. Таким образом дешевая "ночная" электроэнергия превращается в ценную "пиковую", что повышает экономическую эффективность системы в целом. Преимущества ГАЭС состоят в том, что у них может быть повышенный напор, для них проще выбрать место сооружения и они требуют меньше воды (поскольку вода циркулирует между верхним и нижним водоемами). Благодаря повышенному напору можно использовать более крупные и эффективные гидрогенераторы. Но существуют и ГЭС смешанного типа (ГЭС - ГАЭС), на которых часть гидроагрегатов работает как в турбинном, так и в насосном режиме, а остальные - только в турбинном (за счет приточности к верхнему водоему). Такие электростанции часто позволяют накапливать больше воды и, следовательно, вырабатывать больше электроэнергии в более длительные периоды пиковой нагрузки, обеспечивая повышенную гибкость в работе.
Приливные электростанции (ПЭС). Для создания экономичной приливной электростанции необходимо сочетание необычайно большого перепада уровней при приливе и отливе (6 м и более) с особенностями береговой линии, позволяющими создать плотину и водный бассейн соответствующих размеров. На Земле не так много мест, где выполняются эти условия: побережья штата Мэн (США) и провинции Нью-Брансуик (Канада), некоторые заливы Желтого моря, Персидский залив, Аляска, некоторые места Аргентины, юг Англии, север Франции, север европейской России и ряд заливов Австралии. Но даже в таких подходящих местах, как залив Пассамакуодди на границе штата Мэн и провинции Нью-Брансуик, ПЭС в настоящее время вряд ли могли бы по стоимости вырабатываемой электроэнергии конкурировать с современными ТЭС. В проектах ПЭС обычно предусматривается создание двух бассейнов - верхового и низового - с водопропускными отверстиями и затворами. Верховой бассейн наполняется во время прилива, а затем опорожняется в низовой, опорожнившийся при отливе.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ.
ЛИТЕРАТУРА
Непорожний П.С., Обрезков В.И. Введение в специальность: гидроэлектроэнергетика. М., 1982 Малинин Н.К. Теоретические основы гидроэнергетики. М., 1985 Аршеневский Н.Н. и др. Гидроэлектрические станции. М., 1987
Слитно. Раздельно. Через дефис
Орфографический словарь
Формы слов для слова гидроэнергетика
ги́дроэнерге́тика, ги́дроэнерге́тики, ги́дроэнерге́тик, ги́дроэнерге́тике, ги́дроэнерге́тикам, ги́дроэнерге́тику, ги́дроэнерге́тикой, ги́дроэнерге́тикою, ги́дроэнерге́тиками, ги́дроэнерге́тиках
Синонимы к слову гидроэнергетика
Морфемно-орфографический словарь
Новый словарь иностранных слов
гидроэнерге́тика
(см. гидро...) раздел энергетики, связанный с использованием энергии воды, гл. обр. для производства электрической энергии на гидроэлектростанциях. современная г. предусматривает комплексное использование водных ресурсов для целей энергетики, ирригации, судоходства, водоснабжения, рыборазведения и др.