Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

дифференциальные

Глагольная сочетаемость

решать дифференциальные уравнения => решение

Полезные сервисы

дифференциальные признаки

Переводоведческий словарь

дифференциальные признаки - дистинктивные, различительные признаки.

Полезные сервисы

дифференциальные признаки бессоюзных сложных предложений неоднородного состава

Лингвистические термины

1) закрытость структуры;

2) разнотипность частей в семантическом плане;

3) возможность различного грамматического оформления предикативных частей;

4) использование различных типов интонационного оформления конструкций.

Синтаксис

1) закрытость структуры;

2) разнотипность частей в семантическом плане;

3) возможность различного грамматического оформления предикативных частей;

4) использование различных типов интонационного оформления конструкций.

Полезные сервисы

дифференциальные признаки несобственно-прямой речи

Лингвистические термины

1) характер соотношения чужой и авторской речи:

а) с точки зрения героя и автора совмещаются;

б) типична буквальная передача содержания чужой речи;

2) лингвистические признаки способов передачи несобственно-прямой речи:

а) позволяет сохранить все особенности передаваемой речи;

б) наличие вводящих слов автора типично, но не обязательно;

в) интонация независимая;

г) грамматические признаки: связь частей конструкции бессоюзная; формы лица употребляются с точки зрения автора (зависимое употребление);

д) кавычками и тире не выделяется (в остальных случаях пунктуационное оформление, как у прямой речи).

Синтаксис

1) характер соотношения чужой и авторской речи: а) с точки зрения героя и автора совмещаются; б) типична буквальная передача содержания чужой речи;

2) лингвистические признаки способов передачи несобствен-нопрямой речи: а) позволяет сохранить все особенности передаваемой речи; б) наличие вводящих слов автора типично, но не обязательно; в) интонация независимая; г) грамматические признаки: связь частей конструкции бессоюзная; формы лица употребляются с точки зрения автора (зависимое употребление); д) кавычками и тире не выделяется (в остальных случаях пунктуационное оформление, как у прямой речи).

Полезные сервисы

дифференциальные признаки параллельной связи

Лингвистические термины

1) основной способ действия механизмов связи - повтор;

2) ведущие средства связи: лексические повторы, слова одной тематической или лексико-семантической группы;

3) последовательность с константной темой или с производными темами.

Синтаксис

1) основной способ действия механизмов связи - повтор;

2) ведущие средства связи: лексические повторы, слова одной тематической или лексико-семантической группы;

3) последовательность с константной темой или с производными темами.

Полезные сервисы

дифференциальные признаки прямой речи

Лингвистические термины

1) характер соотношения чужой и авторской речи:

а) чужая речь передается с точки зрения говорящего (героя);

б) типична буквальная передача содержания чужой речи;

2) лингвистические признаки прямой речи:

а) позволяет сохранить все лексико-фразеологические и синтаксические особенности передаваемой речи;

б) наличие слов автора типично, но их может не быть;

в) интонация независимая;

г) грамматические признаки: связь прямой речи и слов автора бессоюзная; употребление форм лица независимое;

д) прямая речь выделяется кавычками или тире с абзаца.

Синтаксис

1) характер соотношения чужой и авторской речи: а) чужая речь передается с точки зрения говорящего (героя); б) типична буквальная передача содержания чужой речи;

2) лингвистические признаки прямой речи: а) позволяет сохранить все лексико-фразеологические и синтаксические особенности передаваемой речи; б) наличие слов автора типично, но их может не быть; в) интонация независимая; г) грамматические признаки: связь прямой речи и слов автора бессоюзная; употребление форм лица независимое; д) прямая речь выделяется кавычками или тире с абзаца.

Полезные сервисы

дифференциальные признаки сложноподчиненного предложения

Лингвистические термины

1) зависимость придаточной предикативной части от главной;

2) наличие подчинительного союза или союзного слова, вводящего придаточную часть в СПП;

3) ступенчатость (многоярусность) коммуникативной структуры.

Синтаксис

1) зависимость придаточной предикативной части от главной;

2) наличие подчинительного союза или союзного слова, вводящего придаточную часть в СПП;

3) ступенчатость (многоярусность) коммуникативной структуры.

Полезные сервисы

дифференциальные признаки сложноподчиненных предложений с неоднородным

Синтаксис

дифференциальные признаки сложноподчиненных предложений с неоднородным (параллельным) соподчинением:

1) придаточные части относятся к разным словам в главной части (разночленное соподчинение) или являются присловными, присоставными;

2) между придаточными частями не возникает сочинительной связи;

3) разнофункциональность и разнотипность придаточных определяют различие средств связи.

Полезные сервисы

дифференциальные признаки сложноподчиненных предложений с неоднородным (параллельным) соподчинением

Лингвистические термины

1) придаточные части относятся к разным словам в главной части (разночленное соподчинение) или являются присловными, присоставными;

2) между придаточными частями не возникает сочинительной связи;

3) разнофункциональность и разнотипность придаточных определяют различие средств связи.

Полезные сервисы

дифференциальные признаки сложноподчиненных предложений с однородным соподчинением

Лингвистические термины

1) придаточные части распространяют одно слово главной части или весь ее состав;

2) придаточные части могут быть связаны сочинительной связью;

3) придаточные части присоединяются к главной части одинаковыми союзами или союзными словами.

Синтаксис

1) придаточные части распространяют одно слово главной части или весь ее состав;

2) придаточные части могут быть связаны сочинительной связью;

3) придаточные части присоединяются к главной части одинаковыми союзами или союзными словами.

Полезные сервисы

дифференциальные признаки сложносочиненных предложений неоднородного состава

Лингвистические термины

1) закрытость структуры: количество предикативных частей не может быть увеличено;

2) неравноправие предикативных частей в смысловом отношении;

3) более широкий круг союзных средств связи и употребление союзов, подчеркивающих неравноправие частей;

4) различная оформленность предикативных частей;

5) использование различных интонационных типов: разделительной, противительной, пояснительной интонации, интонации, характерной для присоединения.

Формальные показатели неоднородности состава ССП:

1) невозможность общего члена, одновременно относящегося к двум предикативным частям;

2) наличие во второй предикативной части анафорических местоимений и местоименных наречий - показателей синсемантичности (неполноценности) той части, в которой они находятся;

3) употребление во второй предикативной части наречий и частиц со значением следствия, уступки, ограничения, возмещения - конкретизаторов частного синтаксического значения, подчеркивающих неравноправие одной из частей сложносочиненного предложения.

Синтаксис

1) закрытость структуры: количество предикативных частей не может быть увеличено;

2) неравноправие предикативных частей в смысловом отношении;

3) более широкий круг союзных средств связи и употребление союзов, подчеркивающих неравноправие частей;

4) различная оформленность предикативных частей;

5) использование различных интонационных типов: разделительной, противительной, пояснительной интонации, интонации, характерной для присоединения.

Формальные показатели неоднородности состава ССП:

1) невозможность общего члена, одновременно относящегося к двум предикативным частям;

2) наличие во второй предикативной части анафорических местоимений и местоименных наречий - показателей синсемантичности (неполноценности) той части, в которой они находятся;

3) употребление во второй предикативной части наречий и частиц со значением следствия, уступки, ограничения, возмещения - конкретизаторов частного синтаксического значения, подчеркивающих неравноправие одной из частей сложносочиненного предложения.

Полезные сервисы

дифференциальные признаки сложносочиненных предложений однородного состава

Лингвистические термины

1) открытость структуры: ряд, состоящий из двух частей, может быть продолжен до трех и более;

2) смысловое и граматическое равноправие частей;

3) использование в качестве основных средств связи соединительных, разделительных союзов, противительного союза а (в редких случаях);

4) одинаковая оформленность каждой предикативной части: общий модальный план, единство функциональных типов;

5) перечислительная интонация, характеризующаяся однообразием ритмико-мелодического рисунка

Об однородности состава ССП свидетельствуют следующие показатели

1) наличие или возможность общего второстепенного члена или общей предикативной части;

2) наличие общего для обеих предикативных частей предложения в предшествующем или последующем контексте, с которым они одинаково соотносятся;

3) наличие общей оценки или общей картины, определяющей тематическое сходство частей или их ассоциативное сближение.

Синтаксис

1) открытость структуры: ряд, состоящий из двух частей, может быть продолжен до трех и более;

2) смысловое и граматическое равноправие частей;

3) использование в качестве основных средств связи соединительных, разделительных союзов, противительного союза а (в редких случаях);

4) одинаковая оформленность каждой предикативной части: общий модальный план, единство функциональных типов;

5) перечислительная интонация, характеризующаяся однообразием ритмикомелодического рисунка.

Об однородности состава ССП свидетельствуют следующие показатели:

1) наличие или возможность общего второстепенного члена или общей предикативной части;

2) наличие общего для обеих предикативных частей предложения в предшествующем или последующем контексте, с которым они одинаково соотносятся;

3) наличие общей оценки или общей картины, определяющей тематическое сходство частей или их ассоциативное сближение.

Полезные сервисы

дифференциальные признаки способов передачи косвенной речи

Лингвистические термины

1) характер соотношения чужой и авторской речи:

а) чужая речь передается с точки зрения автора;

б) типична передача основного содержания чужой речи;

2) лингвистические признаки чужой речи:

а) не позволяет сохранить всех особенностей передаваемой речи;

б) наличие вводящих слов автора обязательно;

в) интонация предложений косвенной речи зависимая;

г) грамматические признаки: связь с помощью союзов или союзных слов, т.к. косвенная речь передается придаточным предложением; формы лица употребляются с точки зрения автора (зависимое употребление);

д) косвенная речь кавычками не выделяется.

Синтаксис

1) характер соотношения чужой и авторской речи: а) чужая речь передается с точки зрения автора; б) типична передача основного содержания чужой речи;

2) лингвистические признаки чужой речи: а) не позволяет сохранить всех особенностей передаваемой речи; б) наличие вводящих слов автора обязательно; в) интонация предложений косвенной речи зависимая; г) грамматические признаки: связь с помощью союзов или союзных слов, т.к. косвенная речь передается придаточным предложением; формы лица употребляются с точки зрения автора (зависимое употребление); д) косвенная речь кавычками не выделяется.

Полезные сервисы

дифференциальные признаки фонем

Лингвистические термины

дифференциальные признаки фонем (от лат. differens - различающий). Признаки, которыми данная фонема противопоставляется другим фонемам языка, ее смыслоразличительные признаки (например, вокальность - невокальность, консонатность - неконсонантность; глухость - звонкость, взрывность -фрикативность, огубление - неогубление и т. д.).

Полезные сервисы

дифференциальные признаки цепной связи

Лингвистические термины

1) основной способ действия механизмов связи - зацепление;

2) средства связи:

а) анафорические замены (местоименные слова);

б) синсемантические элементы (союзы, наречия, слова широкой семантики, отсылающие к предшествующим предложениям);

3) простая линейная тематическая последовательность, когда рема предшествующего предложения становится темой последующего, или комбинации, основанные на такой последовательности.

Синтаксис

1) основной способ действия механизмов связи - зацепление;

2) средства связи: а) анафорические замены (местоименные слова); б) синсемантические элементы (союзы, наречия, слова широкой семантики, отсылающие к предшествующим предложениям);

3) простая линейная тематическая последовательность, когда рема предшествующего предложения становится темой последующего, или комбинации, основанные на такой последовательности.

Полезные сервисы

дифференциальные семы в синонимической парадигме

Лингвистические термины

1) семы содержательного характера;

2) семы, характеризующие стилевую принадлежность синонима;

3) стилистические коннотативные семы.

Понятия лингвистики

1) семы содержательного характера;

2) семы, характеризующие стилевую принадлежность синонима;

3) стилистические коннотативные семы.

Полезные сервисы

дифференциальные уравнения

Энциклопедия Кольера

Многие физические законы, которым подчиняются те или иные явления, записываются в виде математического уравнения, выражающего определенную зависимость между какими-то величинами. Часто речь идет о соотношении между величинами, изменяющимися с течением времени, например экономичность двигателя, измеряемая расстоянием, которое автомашина может проехать на одном литре горючего, зависит от скорости движения автомашины. Соответствующее уравнение содержит одну или несколько функций и их производных и называется дифференциальным уравнением. (Темп изменения расстояния со временем определяется скоростью; следовательно, скорость - производная от расстояния; аналогично, ускорение - производная от скорости, так как ускорение задает темп изменения скорости со временем.) Большое значение, которое имеют дифференциальные уравнения для математики и особенно для ее приложений, объясняются тем, что к решению таких уравнений сводится исследование многих физических и технических задач. Дифференциальные уравнения играют существенную роль и в других науках, таких, как биология, экономика и электротехника; в действительности, они возникают везде, где есть необходимость количественного (числового) описания явлений (коль скоро окружающий мир изменяется во времени, а условия изменяются от одного места к другому).

См. также МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Примеры. Следующие примеры позволяют лучше понять, как различные задачи формулируются на языке дифференциальных уравнений. 1) Закон распада некоторых радиоактивных веществ состоит в том, что скорость распада пропорциональна наличному количеству этого вещества. Если x - количество вещества в некоторый момент времени t, то этот закон можно записать так:

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где dx/dt - скорость распада, а k - некоторая положительная постоянная, характеризующая данное вещество. (Знак "минус" в правой части указывает на то, что x убывает со временем; знак "плюс", подразумеваемый всегда, когда знак явно не указан, означал бы, что x возрастает со временем.) 2) Емкость первоначально содержит 10 кг соли, растворенной в 100 м3 воды. Если чистая вода вливается в емкость со скоростью 1 м3 в минуту и равномерно перемешивается с раствором, а образовавшийся раствор вытекает из емкости с такой же скоростью, то сколько соли окажется в емкости в любой последующий момент времени? Если x - количество соли (в кг) в емкости в момент времени t, то в любой момент времени t в 1 м3 раствора в емкости содержится x/100 кг соли; поэтому количество соли убывает со скоростью x/100 кг/мин, или

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

3) Пусть на тело массы m, подвешенное к концу пружины, действует возвращающая сила, пропорциональная величине растяжения пружины. Пусть x - величина отклонения тела от положения равновесия. Тогда по второму закону Ньютона, который утверждает, что ускорение (вторая производная от x по времени, обозначаемая d 2x/dt 2) пропорционально силе:

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Правая часть стоит со знаком минус потому, что возвращающая сила уменьшает растяжение пружины. 4) Закон охлаждения тел утверждает, что количество тепла в теле убывает пропорционально разности температур тела и окружающей среды. Если чашка кофе, разогретого до температуры 90° С находится в помещении, температура в котором равна 20° С, то

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где T - температура кофе в момент времени t. 5) Министр иностранных дел государства Блефуску утверждает, что принятая Лиллипутией программа вооружений вынуждает его страну увеличить военные расходы на сколько это только возможно. С аналогичными заявлениями выступает и министр иностранных дел Лиллипутии. Возникающую в результате ситуацию (в простейшей интерпретации) можно точно описать двумя дифференциальными уравнениями. Пусть x и y - расходы на вооружение Лиллипутии и Блефуску. Предполагая, что Лиллипутия увеличивает свои расходы на вооружение со скоростью, пропорциональной скорости увеличения расходов на вооружение Блефуску, и наоборот, получаем:

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где члены -ax и -by описывают военные расходы каждой из стран, k и l - положительные постоянные. (Эту задачу впервые таким образом сформулировал в 1939 Л.Ричардсон.) После того, как задача записана на языке дифференциальных уравнений, следует попытаться их решить, т.е. найти величины, скорости изменения которых входят в уравнения. Иногда решения находятся в виде явных формул, но чаще их удается представить лишь в приближенном виде или же получить о них качественную информацию. Часто бывает трудно установить, существует ли решение вообще, не говоря уже о том, чтобы найти его. Важный раздел теории дифференциальных уравнений составляют так называемые "теоремы существования", в которых доказывается наличие решения у того или иного типа дифференциальных уравнений. Первоначальная математическая формулировка физической задачи обычно содержит упрощающие предположения; критерием их разумности может служить степень согласованности математического решения с имеющимися наблюдениями.

Решения дифференциальных уравнений. Дифференциальному уравнению, например dy/dx = x/y, удовлетворяет не число, а функция, в данном конкретном случае такая, что ее график в любой точке, например в точке с координатами (2,3), имеет касательную с угловым коэффициентом, равным отношению координат (в нашем примере 2/3). В этом нетрудно убедиться, если построить большое число точек и от каждой отложить короткий отрезок с соответствующим наклоном. Решением будет функция, график которой касается каждой своей точкой соответствующего отрезка. Если точек и отрезков достаточно много, то мы можем приближенно наметить ход кривых-решений (три такие кривые показаны на рис. 1). Существует ровно одна кривая-решение, проходящая через каждую точку с y № 0. Каждое отдельное решение называется частным решением дифференциального уравнения; если удается найти формулу, содержащую все частные решения (за исключением, быть может, нескольких особых), то говорят, что получено общее решение. Частное решение представляет собой одну функцию, в то время как общее - целое их семейство. Решить дифференциальное уравнение - это значит найти либо его частное, либо общее решение. В рассматриваемом нами примере общее решение имеет вид y2 - x2 = c, где c - любое число; частное решение, проходящее через точку (1,1), имеет вид y = x и получается при c = 0; частное решение, проходящее через точку (2,1), имеет вид y2 - x2 = 3. Условие, требующее, чтобы кривая-решение проходила, например, через точку (2,1), называется начальным условием (так как задает начальную точку на кривой-решении).

Рис. 1.

Рис. 1.

Можно показать, что в примере (1) общее решение имеет вид x = ce-kt, где c - постоянная, которую можно определить, например, указав количество вещества при t = 0. Уравнение из примера (2) - частный случай уравнения из примера (1), соответствующий k = 1/100. Начальное условие x = 10 при t = 0 дает частное решение x = 10e-t/100. Уравнение из примера (4) имеет общее решение T = 70 + ce-kt и частное решение 70 + 130-kt; чтобы определить значение k, необходимы дополнительные данные. Дифференциальное уравнение dy/dx = x/y называется уравнением первого порядка, так как содержит первую производную (порядком дифференциального уравнения принято считать порядок входящей в него самой старшей производной). У большинства (хотя и не у всех) возникающих на практике дифференциальных уравнений первого рода через каждую точку проходит только одна кривая-решение. Существует несколько важных типов дифференциальных уравнений первого порядка, допускающих решения в виде формул, содержащих только элементарные функции - степени, экспоненты, логарифмы, синусы и косинусы и т.д. К числу таких уравнений относятся следующие. Уравнения с разделяющимися переменными. Уравнения вида dy/dx = f(x)/g(y) можно решить, записав его в дифференциалах g(y)dy = f(x)dx и проинтегрировав обе части. В худшем случае решение представимо в виде интегралов от известных функций. Например, в случае уравнения dy/dx = x/y имеем f(x) = x, g(y) = y. Записав его в виде ydy = xdx и проинтегрировав, получим y2 = x2 + c. К уравнениям с разделяющимися переменными относятся уравнения из примеров (1), (2), (4) (их можно решить описанным выше способом).

Уравнения в полных дифференциалах. Если дифференциальное уравнение имеет вид dy/dx = M(x,y)/N(x,y), где M и N - две заданные функции, то его можно представить как M(x,y)dx - N(x,y)dy = 0. Если левая часть является дифференциалом некоторой функции F(x,y), то дифференциальное уравнение можно записать в виде dF(x,y) = 0, что эквивалентно уравнению F(x,y) = const. Таким образом, кривые-решения уравнения - это "линии постоянных уровней" функции, или геометрические места точек, удовлетворяющих уравнениям F(x,y) = c. Уравнение ydy = xdx (рис. 1) - с разделяющимися переменными, и оно же - в полных дифференциалах: чтобы убедиться в последнем, запишем его в виде ydy - xdx = 0, т.е. d(y2 - x2) = 0. Функция F(x,y) в этом случае равна (1/2)(y2 - x2); некоторые из ее линий постоянного уровня представлены на рис. 1.

Линейные уравнения. Линейные уравнения - это уравнения "первой степени" - неизвестная функция и ее производные входят в такие уравнения только в первой степени. Таким образом, линейное дифференциальное уравнение первого порядка имеет вид dy/dx + p(x) = q(x), где p(x) и q(x) - функции, зависящие только от x. Его решение всегда можно записать с помощью интегралов от известных функций. Многие другие типы дифференциальных уравнений первого порядка решаются с помощью специальных приемов.

Уравнения старших порядков. Многие дифференциальные уравнения, с которыми сталкиваются физики, это уравнения второго порядка (т.е. уравнения, содержащие вторые производные) Таково, например, уравнение простого гармонического движения из примера (3), md 2x/dt 2 = -kx. Вообще говоря, можно ожидать, что уравнение второго порядка имеет частные решения, удовлетворяющие двум условиям; например, можно потребовать, чтобы кривая-решение проходила через данную точку в данном направлении. В случаях, когда дифференциальное уравнение содержит некоторый параметр (число, величина которого зависит от обстоятельств), решения требуемого типа существуют только при определенных значениях этого параметра. Например, рассмотрим уравнение md 2x/dt 2 = -kx и потребуем, чтобы y(0) = y(1) = 0. Функция y є 0 заведомо является решением, но если - целое кратное числа p, т.е. k = m2n2p2, где n - целое число, а в действительности только в этом случае, существуют другие решения, а именно: y = sin npx. Значения параметра, при которых уравнение имеет особые решения, называются характеристическими или собственными значениями; они играют важную роль во многих задачах. Уравнение простого гармонического движения служит примером важного класса уравнений, а именно: линейных дифференциальных уравнений с постоянными коэффициентами. Более общий пример (также второго порядка) - уравнение

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где a и b - заданные постоянные, f(x) - заданная функция. Такие уравнения можно решать различными способами, например, с помощью интегрального преобразования Лапласа. То же можно сказать и о линейных уравнениях более высоких порядков с постоянными коэффициентами. Не малую роль играют также и линейные уравнения с переменными коэффициентами.

Нелинейные дифференциальные уравнения. Уравнения, содержащие неизвестные функции и их производные в степени выше первой или каким-либо более сложным образом, называются нелинейными. В последние годы они привлекают все большее внимание. Дело в том, что физические уравнения обычно линейны лишь в первом приближении; дальнейшее и более точное исследование, как правило, требует использования нелинейных уравнений. Кроме того, многие задачи нелинейны по своей сути. Так как решения нелинейных уравнений зачастую очень сложны и их трудно представить простыми формулами, значительная часть современной теории посвящена качественному анализу их поведения, т.е. разработке методов, позволяющих, не решая уравнения, сказать нечто существенное о характере решений в целом: например, что все они ограниченны, или имеют периодический характер, или определенным образом зависят от коэффициентов. Приближенные решения дифференциальных уравнений могут быть найдены в численном виде, но для этого требуется много времени. С появлением быстродействующих компьютеров это время сильно сократилось, что открыло новые возможности численного решения многих, ранее не поддававшихся такому решению, задач.

Теоремы существования. Теоремой существования называется теорема, утверждающая, что при определенных условиях данное дифференциальное уравнение имеет решение. Встречаются дифференциальные уравнения, не имеющие решений или имеющие их больше, чем ожидается. Назначение теоремы существования - убедить нас в том, что у данного уравнения действительно есть решение, а чаще всего заверить, что оно имеет ровно одно решение требуемого типа. Например, уже встречавшееся нам уравнение dy/dx = -2y имеет ровно одно решение, проходящее через каждую точку плоскости (x,y), а так как одно такое решение мы уже нашли, то тем самым полностью решили это уравнение. С другой стороны, уравнение (dy/dx)2 = 1 - y2 имеет много решений. Среди них прямые y = 1, y = -1 и кривые y = sin(x + c). Решение может состоять из нескольких отрезков этих прямых и кривых, переходящих друг в друга в точках касания (рис. 2).

Рис. 2.

Рис. 2.

Дифференциальные уравнения в частных производных. Обыкновенное дифференциальное уравнение - это некоторое утверждение о производной неизвестной функции одной переменной. Дифференциальное уравнение в частных производных содержит функцию двух или более переменных и производные от этой функции по крайней мере по двум различных переменным. В физике примерами таких уравнений являются уравнение Лапласа

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где, согласно одной из возможных интерпретаций, u - температура в плоской области, точки которой задаются координатами x и y; уравнение теплопроводности

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где t - время, x - расстояние от одного из концов однородного стержня, по которому распространяется тепловой поток; и волновое уравнение

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

где t - снова время, x и y - координаты точки колеблющейся струны. Решая дифференциальные уравнения в частных производных, обычно не стремятся найти общее решение, поскольку оно скорее всего окажется слишком общим, чтобы быть полезным. Если решение обыкновенного дифференциального уравнения определяется заданием условий в одной или нескольких точках; то решение дифференциального уравнения в частных производных обычно определяется заданием условий на одной или нескольких кривых. Например, решение уравнения Лапласа может быть найдено в точке (x, y) внутри круга, если значения u заданы в каждой точке ограничивающей окружности. Поскольку проблемы с более чем одной переменной в физике являются скорее правилом, чем исключением, легко представить, сколь обширен предмет теории дифференциальных уравнений в частных производных.

ЛИТЕРАТУРА

Тихонов А.Н., Самарский А.А. Уравнения математической физики. М., 1977 Понтрягин Л.С. Обыкновенные дифференциальные уравнения. М., 1982 Петровский И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М., 1984 Эрроусмит Д., Плейс К. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями. М., 1986

Полезные сервисы