Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

олово

Энциклопедия Кольера

Sn (от лат. stannum, что первоначально относилось к сплаву свинца и серебра, а позднее к другому, имитирующему его сплаву, содержащему около 67% Sn; к 4 в. этим словом стали называть олово),

химический элемент IVB подгруппы (включающей C, Si, Ge, Sn и Pb) периодической системы элементов. Олово - относительно мягкий металл, используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова - в белой жести (луженое железо) для изготовления тары, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Олово образует различные соединения, многие из которых находят промышленное применение. Наиболее экономически важный оловосодержащий минерал - касситерит (оксид олова). Мировые месторождения касситерита разрабатывают в Юго-Восточной Азии, в основном в Индонезии, Малайзии и Таиланде. Другие важные месторождения касситерита находятся в Южной Америке (Бразилия и Боливия), Китае и Австралии.

См. также ОЛОВА ПРОИЗВОДСТВО.

Историческая справка. Олово начали применять, вероятно, еще во времена Гомера и Моисея. Открытие его было связано, скорее всего, со случайным восстановлением наносного касситерита (оловянного камня); наносные отложения встречаются на поверхности или близко к ней, и оловянные руды намного легче восстанавливаются, чем руды других металлов. Древние бритты были хорошо знакомы с оловом: в Корнуолле на юго-западе Англии были обнаружены древние горны со шлаком. Металл был, очевидно, малодоступен и дорог, т.к. оловянные предметы редко встречаются среди римских и греческих древностей, хотя об олове говорится в Библии в Четвертой книге Моисеевой (Числа), а слово касситерит, которое и сегодня используется для обозначения оксидной оловянной руды, - греческого происхождения. Малакка и Восточная Индия упоминаются как источники олова в арабской литературе 8-9 вв. и различными авторами в 16 в. в связи с Великими географическими открытиями. История оловянных разработок в Саксонии и Богемии относится еще к 12 в., но в 17 в. 30-летняя война (1618-1648) разрушила эту промышленность. Производство впоследствии возобновили, но вскоре оно пришло в упадок из-за открытия богатых месторождений в Америке.

Бронза. Задолго до того как научились добывать олово в чистом виде, был известен сплав олова с медью - бронза, который получали, видимо, уже в 2500-2000 до н.э. Олово в рудах часто встречается вместе с медью, так что при плавке меди в Британии, Богемии, Китае и на юге Испании образовывалась не чистая медь, а ее сплав с некоторым количеством олова. Ранние медные плотничные инструменты (долото, тесло и др.) из Ирландии содержали до 1% Sn. В Египте медная утварь 12-й династии (2000 до н.э.) содержала до 2% Sn, по-видимому, как случайную примесь. Первобытная практика выплавки меди основывалась на использовании смеси медных и оловянных руд, в результате чего и получалась бронза, содержащая до 22% Sn. СВОЙСТВА b -ОЛОВА Атомный номер 50 Атомная масса 118,710 Изотопы

стабильные 112, 114-120, 122, 124

нестабильные 108-111, 113, 121, 123, 125-127

Температура плавления, ° С 231,9 Температура кипения, ° С 2625 Плотность, г/см3 7,29 Твердость (по Бринеллю) 3,9 Содержание в земной коре, % (масс.) 0,0004 Степени окисления +2, +4

Физические свойства. Олово - мягкий серебристо-белый пластичный металл (может быть прокатан в очень тонкую фольгу - станиоль) с невысокой температурой плавления (легко выплавляется из руд), но высокой температурой кипения. Олово имеет две аллотропные модификации: a-Sn (серое олово) с гранецентрированной кубической кристаллической решеткой и b-Sn (обычное белое олово) с объемноцентрированной тетрагональной кристаллической решеткой. Фазовый переход b -> a ускоряется при низких температурах (-30° С) и в присутствии зародышей кристаллов серого олова; известны случаи, когда оловянные изделия на морозе рассыпались в серый порошок ("оловянная чума"), но это превращение даже при очень низких температурах резко тормозится наличием мельчайших примесей и поэтому редко встречается, представляя скорее научный, чем практический интерес. См. также

АЛЛОТРОПИЯ;

ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ;

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ. Чистое олово обладает низкой механической прочностью при комнатной температуре (можно согнуть оловянную палочку, при этом слышится характерный треск, обусловленный трением отдельных кристаллов друг о друга) и поэтому редко используется. Однако оно легко образует сплавы с большинством других черных и цветных металлов. Оловосодержащие сплавы обладают прекрасными антифрикционными свойствами в присутствии смазки, поэтому широко используются как материал подшипников.

Химические свойства. При комнатной температуре олово химически инертно к кислороду и воде. На воздухе олово постепенно покрывается защитной оксидной пленкой, которая повышает его коррозионную стойкость. С химической инертностью олова и его оксидной пленки в обычных условиях связано использование его в покрытии жестяной тары для продуктов питания, прежде всего - консервных банок. Олово легко наносится на сталь и продукты его коррозии безвредны. В соединениях олово проявляет две степени окисления: +2 и +4, причем соединения олова(II) в большинстве своем относительно нестабильны в разбавленных водных растворах и окисляются до соединений олова(IV) (их используют иногда как восстановители, например SnCl2). Разбавленные соляная и серная кислоты действуют на олово очень медленно, а концентрированные, особенно при нагревании, растворяют его, причем в соляной кислоте получается хлорид олова(II), а в серной - сульфат олова(IV). С азотной кислотой олово реагирует тем интенсивнее, чем выше концентрация и температура: в разбавленной HNO3 образуется растворимый нитрат олова(II), а в концентрированной HNO3 - нерастворимая b-оловянная кислота H2SnO3. Концентрированные щелочи растворяют олово с образованием станнитов - солей оловянистой кислоты H2SnO2; в растворах станниты существуют в гидроксоформе, например Na2[[Sn(OH)4]]. Наибольшее промышленное значение соединения олова(II) имеют в производстве гальванических покрытий. Соединения олова(IV) находят обширное промышленное применение. Оксиды олова амфотерны, проявляют и кислотные, и основные свойства. Оксид олова(IV) встречается в природе в виде минерала касситерита, а чистый SnO2 получают из чистого металла; диоксид олова SnO2 применяется для приготовления белых глазурей и эмалей. Из SnO2 при взаимодействии со щелочами получают станнаты - соли оловянной кислоты, наиболее важные из которых - станнаты калия и натрия; растворы станнатов находят широкое применение как электролиты для осаждения олова и его сплавов. SnCl4 - тетрахлорид олова, исходное соединение для многих синтезов других соединений олова, включая и оловоорганические.

Применение. В современном мире более трети добываемого олова расходуется на изготовление пищевой жести и емкостей для напитков. Жесть в основном состоит из стали, но имеет покрытие из олова обычно толщиной менее 0,4 мкм.

Сплавы. Одна треть олова идет на изготовление припоев. Припои - это сплавы олова в основном со свинцом в разных пропорциях в зависимости от назначения. Сплав, содержащий 62% Sn и 38% Pb, называется эвтектическим и имеет самую низкую температуру плавления среди сплавов системы Sn - Pb. Он входит в составы, используемые в электронике и электротехнике. Другие свинцово-оловянные сплавы, например 30% Sn + 70% Pb, имеющие широкую область затвердевания, используются для пайки трубопроводов и как присадочный материал. Применяются и оловянные припои без свинца. Сплавы олова с сурьмой и медью используются как антифрикционные сплавы (баббиты, бронзы) в технологии подшипников для различных механизмов. Современные оловянно-свинцовые сплавы содержат 90-97% Sn и небольшие добавки меди и сурьмы для увеличения твердости и прочности. В отличие от ранних и средневековых свинецсодержащих сплавов, современная посуда из cплавов олова безопасна для использования.

Покрытия из олова и его сплавов. Олово легко образует сплавы со многими металлами. Оловянные покрытия имеют хорошее сцепление с основой, обеспечивают хорошую коррозионную защиту и красивый внешний вид. Оловянные и оловянно-свинцовые покрытия можно наносить, погружая специально приготовленный предмет в ванну с расплавом, однако большинство оловянных покрытий и сплавов олова со свинцом, медью, никелем, цинком и кобальтом осаждают электролитически из водных растворов. Наличие большого диапазона составов для покрытий из олова и его сплавов позволяет решать многообразные задачи промышленного и декоративного характера.

Соединения. Олово образует различные химические соединения, многие из которых находят важное промышленное применение. Кроме многочисленных неорганических соединений, атом олова способен к образованию химической связи с углеродом, что позволяет получать металлоорганические соединения, известные как оловоорганические

(см. также МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ).

Водные растворы хлоридов, сульфатов и фтороборатов олова служат электролитами для осаждения олова и его сплавов. Оксид олова применяют в составе глазури для керамики; он придает глазури непрозрачность и служит красящим пигментом. Оксид олова можно также осаждать из растворов в виде тонкой пленки на различных изделиях, что придает прочность стеклянным изделиям (или уменьшает вес сосудов, сохраняя их прочность). Введение станната цинка и других производных олова в пластические и синтетические материалы уменьшает их возгораемость и препятствует образованию токсичного дыма, и эта область применения становится важнейшей для соединений олова. Огромное количество оловоорганических соединений расходуется в качестве стабилизаторов поливинилхлорида - вещества, используемого для изготовления тары, трубопроводов, прозрачного кровельного материала, оконных рам, водостоков и др. Другие оловоорганические соединения используются как сельскохозяйственные химикаты, для изготовления красок и консервации древесины.

ЛИТЕРАТУРА

Спиваковский В.Б. Аналитическая химия олова. М., 1975 Большаков К.А., Федоров П.И. Химия и технология малых металлов. М., 1984

Полезные сервисы

зонная теория

Энциклопедический словарь

Зо́нная тео́рия - квантовая теория, объясняющая поведение электронов в твердых телах. Основной результат зонной теории: разрешённые значения энергии электронов в твердом теле образуют определенные интервалы - разрешённые зоны, которые могут быть отделены друг от друга запрещёнными зонами.

* * *

ЗОННАЯ ТЕОРИЯ - ЗО́ННАЯ ТЕО́РИЯ, квантовая теория энергетического спектра электронов в кристалле, согласно которой этот спектр состоит из чередующихся зон (полос) разрешенных и запрещенных энергий. Основы созданы Ф. Блохом (см. БЛОХ Феликс), Л. Бриллюэном (см. БРИЛЛЮЭН Леон) и Р. Пайерлсом (см. ПАЙЕРЛС Рудольф Эрнст) в 1928-1931 гг. Зонная теория является основой современных представлений о механизмах различных физических явлений, происходящих в твердом кристаллическом веществе при воздействии на него электромагнитного поля. Это теория электронов, движущихся в периодическом потенциальном поле кристаллической решетки.

В изолированном атоме энергетический спектр электронов имеет дискретный характер, т. е. электроны могут занимать лишь вполне определенные уровни энергии (см. УРОВНИ ЭНЕРГИИ). Часть этих уровней заполнена при нормальном, невозбужденном состоянии атома, на других уровнях электроны могут находиться только тогда, когда атом подвергнется внешнему энергетическому воздействию, т. е. когда он возбужден. Стремясь к устойчивому состоянию, атом излучает избыток энергии в момент перехода электронов с возбужденных состояний на уровни, на которых его энергия минимальна. Переходы с одного энергетического уровня на другой всегда связаны с поглощением или выделением энергии.

В изолированном атоме существует сила притяжения ядром атома всех своих электронов и сила отталкивания между электронами. Если имеется система из N одинаковых атомов, достаточно удаленных друг от друга (например, газообразное вещество), то взаимодействие между атомами практически отсутствует, и энергетические уровни электронов остаются без изменения. При конденсации газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у атомов данного типа электронные уровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие действия соседних атомов друг на друга. В кристалле из-за близкого расстояния между атомами существуют силы взаимодействия между электронами, принадлежащими разным атомам, и между всеми ядрами и всеми электронами. Под влиянием этих дополнительных сил энергетические уровни электронов в каждом из атомов кристалла изменяются: энергия одних уровней уменьшается, других - возрастает. При этом внешние электронные оболочки атомов могут не только соприкасаться друг с другом, но и перекрываться. В частности притяжение электронов одного атома ядром соседнего снижает высоту потенциального барьера, разделяющего электроны уединенных атомов. Т. е. при сближении атомов происходит перекрытие электронных оболочек, а это в свою очередь, существенно изменяет характер движения электронов. В результате, электрон с одного уровня в каком-либо из атомов может перейти на уровень в соседнем атоме без затраты энергии, и таким образом свободно перемещаться от одного атома к другому. Этот процесс называют обобществлением электронов - каждый электрон принадлежит всем атомам кристаллической решетки. Полное обобществление происходит с электронами внешних электронных оболочек. Благодаря перекрытию оболочек электроны могут без изменения энергии посредством обмена переходить от одного атома к другому, т. е. перемещаться по кристаллу. Обменное взаимодействие (см. ОБМЕННОЕ ВЗАИМОДЕЙСТВИЕ) имеет чисто квантовую природу и является следствием неразличимости электронов.

В результате сближения атомов на энергетической шкале вместо отдельных уровней появляются энергетические зоны, т. е. области таких значений энергии, которыми может обладать электрон, находясь в пределах твердого тела. Ширина зоны должна зависеть от степени связи электрона с ядром. Чем больше эта связь, тем меньше расщепление уровня, тем уже зона. В изолированном атоме имеются запрещенные значения энергий, которыми не может обладать электрон, в твердом теле могут быть запрещенные зоны. Энергетический спектр электронов в кристалле имеет зонную структуру. Разрешенные энергетические зоны разделены запрещенными интервалами энергии. Ширина разрешенных энергетических зон не зависит от размера кристалла, а определяется лишь природой атомов, образующих твердое тело, и симметрией кристаллической решетки. Если ЭА - энергия обменного взаимодействия между двумя соседними атомами, тогда для кристаллов с простой кубической решеткой, где каждый атом имеет 6 ближайших соседей (координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) = 6) , расщепление уровней в зоны составит 12ЭА, для гранецентрированной решетки (К.ч. = 12) ширина энергетической разрешенной зоны составит 24 ЭА, а в объемноцентрированной (К.ч. = 8) - 16 ЭА.

Поскольку обменная энергия ЭА зависит от степени перекрытия электронных оболочек, то уровни энергии внутренних оболочек, которые сильнее локализованы вблизи ядра, расщепляются меньше, чем уровни валентных электронов. Расщеплению в зону подвержены не только нормальные (стационарные), но и возбужденные энергетические уровни. Ширина разрешенных зон при перемещении вверх по энергетической шкале возрастает, а величина запрещенных энергетических зазоров соответственно уменьшается.

Каждая зона состоит из множества энергетических уровней. Их количество определяется числом атомов, составляющих твердое тело, т. о. в кристалле конечных размеров расстояние между уровнями обратно пропорционально числу атомов. В соответствии с принципом Паули на каждом энергетическом уровне может находиться не более двух электронов, причем с противоположными спинами (см. СПИН). Поэтому число электронных состояний в зоне оказывается конечным и равным числу соответствующих атомных состояний. Конечным оказывается и число электронов, заполняющих данную энергетическую зону. При сближении N атомов в каждой зоне появляется N подуровней. В кристалле объемом 1 см3 содержится 1022-1023 атомов. Экспериментальные данные показывают, что энергетическая протяженность зоны валентных электронов не превышает единиц электронвольт (см. ЭЛЕКТРОНВОЛЬТ). Отсюда следует, что уровни в зоне отстоят друг от друга по энергии на 10-22 - 10-23 эВ, т. е. уровни располагаются настолько близко, что даже при низкой температуре эту зону можно считать зоной непрерывных разрешенных энергий, такая энергетическая зона характеризуется квазинепрерывным спектром. Достаточно ничтожно малого энергетического воздействия, чтобы вызвать переход электронов с одного уровня на другой, если там имеются свободные состояния. Т. е. в силу малого различия в энергии двух соседних подуровней орбитали валентных электронов в кристалле воспринимаются как непрерывная зона, а не как набор дискретных уровней энергии.

Более строго можно говорить лишь о вероятности пребывания электрона в той или иной точке пространства. Эта вероятность описывается с помощью волновых функций х, которые получают при решении волнового уравнения Шредингера (см. ШРЕДИНГЕРА УРАВНЕНИЕ). При взаимодействии атомов и возникновении химических связей изменяются и волновые функции валентных электронов.

Получение энергетического спектра электронов в кристалле, исходя из уровней энергии в изолированных атомах, называется приближением сильной связи. Оно более справедливо для электронов, находящихся на глубоких уровнях и менее подверженных внешним воздействиям. В сложных атомах энергия электронов определяется главным квантовым числом n и орбитальным квантовым числом l. Учет взаимодействий в кристалле (приближение слабой связи) показывает, что при образовании кристалла происходит расщепление уровней атомов на N(2l+1) подуровней, на которых может быть расположено 2N(2l+1) электронов.

Подобно энергетическим уровням в изолированных атомах, энергетические зоны могут быть полностью заполненными, частично заполненными и свободными. Внутренние оболочки в изолированных атомах заполнены, поэтому соответствующие им зоны также оказываются заполненными. Самую верхнюю из заполненных зон называют валентной зоной (см. ВАЛЕНТНАЯ ЗОНА). Эта зона соответствует энергетическим уровням электронов внешней оболочки в изолированных атомах. Ближайшую к ней свободную, незаполненную зону называют зоной проводимости (см. ПРОВОДИМОСТИ ЗОНА). Между ними расположена запрещенная зона (см. ЗАПРЕЩЕННАЯ ЗОНА). Заполнение зоны проводимости начинается, когда электроны в валентной зоне получают дополнительную энергию, достаточную для преодоления энергетического барьера, равного ширине запрещенной зоны.

Отсутствие каких-либо уровней энергии в запрещенной зоне характерно только для совершенных кристаллов. Любые нарушения идеальности периодического поля в кристалле влекут за собой нарушения идеальности зонной структуры. В реальном кристалле всегда имеются дефекты (см. ДЕФЕКТЫ) кристаллической решетки. Если количество дефектов в кристалле невелико, то они будут находиться на значительных расстояниях друг от друга, локализованы. Поэтому изменяться будет энергетическое состояние только тех электронов, которые находятся в области дефекта, что приведет к образованию локальных энергетических состояний, накладывающихся на идеальную зонную структуру. Число таких состояний либо равно числу дефектов, либо превышает его, если с дефектом связано несколько таких состояний. Расположение локальных состояний ограничено областью вблизи дефекта. Электроны, находящиеся на этих энергетических уровнях, оказываются связанными с дефектами и поэтому не могут участвовать в электропроводности. Т. е. уровни дефектов, на которых они расположены, располагаются в запрещенной зоне кристалла.

С ростом температуры возрастает амплитуда тепловых колебаний атомов, увеличивается степень их взаимодействия и степень расщепления энергетических уровней. Поэтому разрешенные зоны становятся шире, а запрещенные, соответственно, уже. При изменении межатомных расстояний в зависимости от характера расщепления уровней ширина запрещенной зоны может как увеличиваться, так и уменьшаться. Это происходит, например, под действием давления на кристалл.

Зонная теория позволяет сформулировать критерий, который дает возможность разделить твердые вещества на два класса - металлы и полупроводники (диэлектрики (см. ДИЭЛЕКТРИКИ)). Зонная теория первоначально была разработана для кристаллических твердых тел, однако в последние годы ее представления стали распространяться и на аморфные вещества.

Полезные сервисы