Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

химотрипсин

Энциклопедический словарь

Химотрипси́н - пищеварительный фермент сока поджелудочной железы; участвует в расщеплении белков в кишечнике. Вырабатывается в виде неактивного химотрипсиногена.

* * *

ХИМОТРИПСИН - ХИМОТРИПСИ́Н, пищеварительный фермент сока поджелудочной железы; участвует в расщеплении белков в кишечнике. Вырабатывается в виде неактивного химотрипсиногена.

Полезные сервисы

поджелудочная железа

Энциклопедический словарь

Поджелу́дочная железа́ - железа внешней и внутренней секреции, выделяющая поджелудочный (панкреатический) сок и гормоны инсулин и глюкагон, поступающие непосредственно в кровь и регулирующие углеводный и жировой обмен.

Поджелудочная железа (топография).

* * *

ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА - ПОДЖЕЛУ́ДОЧНАЯ ЖЕЛЕЗА́ (лат. pancreas), вторая по величине железа пищеварительного тракта, ее масса 60-100 г, длина 15-20 см. Эта железа серовато-красноватого цвета, дольчатая, расположена забрюшинно, простирается в поперечном направлении от двенадцатиперстной кишки (см. ДВЕНАДЦАТИПЕРСТНАЯ КИШКА) до селезенки (см. СЕЛЕЗЕНКА). Ее широкая головка располагается внутри подковы двенадцатиперстной кишки и переходит в тело, пересекающее I поясничный позвонок и заканчивающееся суженным хвостом у ворот селезенки. Железа покрыта тонкой соединительной капсулой.

Поджелудочная железа, по существу, состоит из двух желез. Одна из них экзокринная, вырабатывает у человека в течение суток 500-700 мл панкреатического сока, который содержит протеолитические (трипсин, химотрипсин), амилолитические (амилазу, гликозидазу и галактозидазу) ферменты и липолитическую субстанцию (липазу (см. ЛИПАЗЫ)) и др., участвующие в переваривании белков, углеводов и жиров. Другая часть поджелудочной железы - эндокринная, продуцирует гормоны, регулирующие углеводный и жировой обмены (инсулин (см. ИНСУЛИН), глюкагон (см. ГЛЮКАГОН), соматостатин и др.).

Поджелудочная железа обладает смешанной секрецией: выделяет богатый ферментами пищеварительный сок, который через протоки поступает в кишечник, и, помимо него, - гормоны. Таким образом, она участвует и в пищеварении (а в первые месяцы жизни играет главную роль) и в регуляции обмена.

Пищеварительная функция поджелудочной железы

Экзокринная часть поджелудочной железы представляет собой сложную альвеолярно-трубчатую железу, разделенную на дольки очень тонкими перегородками, отходящими от капсулы. В дольках плотно лежат начальные отделы экзокринных желез - ацинусы, образованные одним слоем ацинозных клеток пирамидальной формы, тесно соприкасающихся между собой и лежащих на базальной мембране. Клетки содержат большое количество гранул секрета, в апикальной части очень богаты элементами зернистой эндоплазматический сети с высоким содержанием рибосомальной РНК (см. РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ). Секрет поступает в просвет ацинуса через апикальную поверхность клетки. В центре ацинуса располагаются центроацинозные клетки, они образуют стенку выводящего секрет вставочного протока. Из вставочных протоков секрет поступает во внутридольковые протоки, которые в свою очередь впадают в междольковые, а последние - в проток поджелудочной железы, который проходит вдоль железы от хвоста к головке и открывается на вершине большого сосочка двенадцатиперстной кишки после слияния с общим желчным протоком. Непосредственно над местом слияния мышечный слой в стенке протока утолщается, образуя сфинктер протока поджелудочной железы.

Железистые клетки поджелудочной железы секретируют поджелудочный, или панкреатический сок - бесцветную слабощелочную жидкость, содержащую ферменты, которые катализируют расщепление молекул органических веществ на мономеры. Ферменты трипсин, химотрипсин, карбокси- и аминопептидазы расщепляют остатки белков, липаза - жиры, амилаза, мальтаза и лактаза - крупные молекулы углеводов, а нуклеаза - нуклеиновые кислоты. На месте разрыва химических связей присоединяется вода, поэтому класс ферментов, осуществляющих такие реакции, называется гидролазы. Трипсин и химотрипсин выделяются в неактивной форме в виде трипсиногена и химотрипсиногена. Трипсиноген активируется ферментами кишечного сока и, в свою очередь, стимулирует образование активного химотрипсина. Карбокси- и аминопептидазы гидролизуют полипептиды, последовательно «отрубая» аминокислоты, соответственно с кислотного и основного концов цепочки.

Панкреатический сок содержит также микроэлементы и выводимые из организма мочевину и мочевую кислоту. У человека за сутки его выделяется 0,5-0,8 л. Наименьшее количество сока секретируется при молочном питании, наибольшее - при потреблении углеводной пищи; мясные блюда вызывают умеренную секрецию, а жирные - угнетают ее. Выделение панкреатического сока начинается через 2-3 мин. после приема пищи и продолжается 6-10 час. Секреция его регулируется рефлекторно в ответ на безусловные и условные раздражители: вид и запах, мысли о пище. Парасимпатические нервные волокна стимулируют ее, а симпатические - тормозят. Тканевой гормон секретин, вырабатываемый в слизистой оболочке кишечника, влияет через кровь на секреторные элементы.

Эндокринная функция поджелудочной железы

Эндокринная часть поджелудочной железы образована группами округлых или неправильной формы клеток, получивших название панкреатических островков, или островков Лангерганса. Они хорошо заметны под микроскопом. Это довольно редкие светлые образования, названные по фамилии описавшего их в 1869 г. немецкого гистолога и анатома П. Лангерганса. Диаметров островков 0,1-0,3 мм, расположены они в толще железистых экзокринных долек. Количество островков у взрослого человека колеблется от 200 тыс. до 1800 тыс. Клетки островков выделяют в кровь два основных гормона белковой природы, противоположно влияющие на уровень глюкозы в крови. Периферические a-клетки вырабатывают глюкагон (от греч. glykys - сладкий и gone - порождать) - одноцепочечный полипептид из 29 аминокислот. Он инициирует распад депонированного в печени и скелетных мышцах полисахарида гликогена до глюкозы и тем самым увеличивает концентрацию сахара в крови. Выделение его возрастает при снижении уровня глюкозы в крови. Физиологическим антагонистом глюкагона является инсулин (лат. insula - остров), вырабатываемый внутренними b-клетками островков и стимулирующий поглощение глюкозы тканями и превращение ее избытка в гликоген, откладываемый в запас и расходуемый по мере энергетической потребности. Инсулин - универсальный анаболический гормон. Он не только понижает содержание сахара в крови, но, задерживая распад гликогена, увеличивает использование глюкозы клетками. Молекула инсулина состоит из двух полипептидных цепочек, соединенных дисульфидными мостиками и включает 51 аминокислотный остаток.

Таким образом, гормоны поджелудочной железы контролируют снабжение клеток и тканей глюкозой, поддерживают ее постоянный гомеостатический уровень в крови. Они регулируют также жировой обмен, так как углеводы и липиды могут превращаться друг в друга.

Эндокринная секреция поджелудочной железы зависит от активности гипоталамо-гипофизарной системы и коры надпочечников. Нейроны-рецепторы гипоталамуса чутко реагируют на изменения уровня глюкозы в крови и влияют на нейросекреторные клетки вырабатывающие нейрогормоны. Воздействуя через кровь на гипофиз, нейрогормоны изменяют секрецию соматотропина (гормона роста), определяющего активность островковых клеток. Нейроэндокринный комплекс, включающий связанные общим кровотоком и нервными волокнами гипоталамус и гипофиз - гипоталамо-гипофизарная система, представляет главный механизм поддержания гомеостаза. Некоторые гормоны коры надпочечников (кортизон (см. КОРТИЗОН)) действуют также как глюкагон. Инсулин в этой системе регуляции оказывается единственным, стимулирующим усвоение глюкозы и понижающим его концентрацию в крови. При уменьшении его секреции развивается сахарный диабет (см. ДИАБЕТ САХАРНЫЙ).

Полезные сервисы

ферменты

Энциклопедический словарь

ФЕРМЕ́НТЫ -ов; мн. (ед. ферме́нт, -а; м.). [от лат. fermentum - закваска] Биол., хим. Специфические белковые катализаторы, присутствующие во всех живых клетках, регулирующие обмен веществ и поэтому играющие важную роль во всех процессах жизнедеятельности; энзимы. Бродильный фермент. Ф. гниения. Ф. окисления. Активность ферментов зависит от поступления в организм витаминов. Изучение свойств отдельных ферментов.

Ферме́нтный, -ая, -ое. Биол., хим. Ф-ая реакция. Ф-ые яды. Ферментати́вный, -ая, -ое. Ф-ые вещества. Изучение ферментативных процессов.

* * *

ферме́нты (от лат. fermentum - закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе - белки. Ферменты обладают оптимальной активностью при определённых значениях рН, нередко наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определённых веществ (субстратов), иногда лишь единственного вещества. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и лёгкой промышленности. Изучает ферменты энзимология.

* * *

ФЕРМЕНТЫ - ФЕРМЕ́НТЫ (от лат. «fermentum» - брожение, закваска), энзимы, специфические белки, увеличивающие скорость протекания химических реакций в клетках всех живых организмов. По химической природе - белки, обладающие оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов и отсутствии ингибиторов. Ферменты называют также биокатализаторами по аналогии с катализаторами (см. КАТАЛИЗАТОРЫ) в химии. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы (см. ГИДРОЛАЗЫ), лиазы (см. ЛИАЗЫ), изомеразы (см. ИЗОМЕРАЗЫ)и лигазы (см. ЛИГАЗЫ). Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926).

Роль ферментов в организме

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков (см. БЕЛКИ (органические соединения)), нуклеиновых кислот (см. НУКЛЕИНОВЫЕ КИСЛОТЫ), жиров (см. ЖИРЫ), углеводов (см. УГЛЕВОДЫ) и других соединений в клетках и тканях всех организмов - все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. - обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значителной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.

Каталитические свойства ферментов

Ферменты - самые активные среди всех известных катализаторов. Большинство реакций в клетке протекает в миллионы и миллиарды раз быстрее, чем если бы они протекали в отсутствие ферментов. Так, одна молекула фермента каталазы (см. КАТАЛАЗА) способна за секунду превратить в воду и кислород до 10 тыс. молекул токсичной для клеток перекиси водорода, образующейся при окислении различных соединений. Каталитические свойства ферментов обусловлены их способностью существенно уменьшать энергию активации вступающих в реакцию соединений, то есть в присутствии ферментов требуется меньше энергии для «запуска» данной реакции.

История открытия ферментов

Процессы, протекающие при участии ферментов, известны человеку с глубокой древности, ведь в основе приготовления хлеба, сыра, вина и уксуса лежат ферментативные процессы. Но только в 1833 году впервые из прорастающих зерен ячменя было выделено активное вещество, осуществляющее превращение крахмала в сахар и получившее название диастазы (ныне этот фермент называется амилазой (см. АМИЛАЗЫ)). В конце 19 в. было доказано, что сок, получаемый при растирании дрожжевых клеток, содержит сложную смесь ферментов, обеспечивающих процесс спиртового брожения. С этого времени началось интенсивное изучение ферментов - их строения и механизма действия. Так как роль биокатализа была выявлена при изучении брожения, то именно с этим процессом были связаны два установившихся еще с 19 в. названия - «энзим» (в переводе с греч. «из дрожжей») и «фермент». Правда, последний синоним применяется только в русскоязычной литературе, хотя научное направление, занятое изучением ферментов и процессов с их участием, традиционно называется энзимологией. В первой половине 20 в. было установлено, что по химической природе ферменты yвляются белками, а во второй половине века для многих сотен ферментов уже была определена последовательность аминокислотных остатков, установлена пространственная структура. В 1969 впервые был осуществлен химический синтез фермента рибонуклеазы. Огромные успехи были достигнуты в понимании механизма действия ферментов.

Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию - синтез ДНК (см. ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ)(ДНК-полимеразы), за ее транскрипцию - образование РНК (см. РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ) (РНК-полимеразы). В митохондриях присутствуютферменты, ответственные за накопление энергии, в лизосомах - большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.

Условия действия ферментов

Все реакции с участием ферментов протекают, в основном, в нейтральной, слабощелочной или слабокислой среде. Однако максимальная активность каждого отдельного фермента проявляется при строго определенных значениях pH. Для действия большинства ферментов теплокровных животных наиболее благоприятной температурой является 37-40oС. У растений при температуре ниже 0o С действие ферментов полностью не прекращается, хотя жизнедеятельность растений при этом резко снижается. Ферментативные процессы, как правило, не могут протекать при температуре выше 70o С, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры).

Размеры ферментов и их строение

Молекулярная масса ферментов, как и всех остальных белков, лежит в пределах 10 тыс. - 1 млн. (но может быть и больше). Они могут состоять из одной или нескольких полипептидных цепей и могут быть представлены сложными белками. В состав последних наряду с белковым компонентом (апоферментом) входят низкомолекулярные соединения - коферменты (кофакторы, коэнзимы), в том числе ионы металлов, нуклеотиды, витамины и их производные. Некоторые ферменты образуются в форме неактивных предшественников (проферментов) и становятся активными после тех или иных изменений в структуре молекулы, например, после отщепления от нее небольшого фрагмента. К их числу относятся пищеварительные ферменты трипсин (см. ТРИПСИН)и химотрипсин (см. ХИМОТРИПСИН), которые синтезируются клетками поджелудочной железы в форме неактивных предшественников (трипсиногена и химотрипсиногена) и обретают активность в тонком кишечнике в составе поджелудочного сока. Многие ферменты образуют так называемые ферментные комплексы. Такие комплексы, например, встроены в мембраны клеток или клеточных органелл и участвуют в транспорте веществ.

Подвергающееся превращению вещество (субстрат) связывается с определенным участком фермента, aго активным центром, который формируется боковыми цепями аминокислот, находящимися часто в значительно удаленных друг от друга участках полипептидной цепи. Например, активный центр молекулы химотрипсина образуют остатки гистидина (см. ГИСТИДИН), находящегося в полипептидной цепи в положении 57, серина (см. СЕРИН) в положении 195 и аспарагиновой кислоты в положении 102 (всего в молекуле химотрипсина 245 аминокислот). Таким образом, сложная укладка полипептидной цепи в молекуле белка - ферменте обеспечивает возможность нескольким боковым цепям аминокислот оказаться в строго определенном месте и на определенном расстоянии друг от друга. Коферменты также входят в состав активного центра (белковая часть и небелковый компонент в отдельности ферментативной активностью не обладают и приобретают свойства фермента, лишь соединившись вместе).

Протекание процессов с участием ферментов

Большинство ферментов отличается высокой специфичностью (избирательностью) действия, когда превращение каждого реагирующего вещества (субстрата) в продукт реакции осуществляется специальным ферментом. При этом действие фермента может быть строго ограничено одним субстратом. Например, фермент уреаза (см. УРЕАЗА), участвующий в распаде мочевины до аммиака и углекислого газа, не реагирует на сходную по строению метилмочевину. Многие ферменты aействуют на несколько родственных по структуре соединений или на один тип химической связи (например, расщепляющие фосфодиэфирную связь фермент фосфатазы (см. ФОСФАТАЗЫ)).

Фермент осуществляет свое действие через образование фермент-субстративного комплекса, который затем распадается с образованием продуктов ферментативной реакции и освобождением фермента. A результате образования фермент-субстратного комплекса субстрат изменяет свою конфигурацию; при этом преобразуемая фермент-химическая связь ослабляется и реакция протекает с меньшей начальной затратой энергии и, следовательно, с намного большей скоростью. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Многие ферментативные реакции в зависимости от концентрации в среде субстрата и продукта реакции могут протекать как в прямом, так и в обратном направлении (избыток субстрата сдвигает реакцию в сторону образования продукта, в то время как при чрезмерном накоплении последнего будет происходить синтез субстрата). Это означает, что ферментативные реакции могут быть обратимыми. Например, карбоангидраза (см. КАРБОАНГИДРАЗА)крови превращает поступающий из тканей углекислый газ в угольную кислоту (H2CO3), а в легких, напротив, катализирует превращение угольной кислоты в воду и углекислый газ, который удаляется при выдохе. Однако следует помнить, что ферменты, как и другие катализаторы, не могут сдвигать термодинамическое равновесие химической реакции, а лишь значительно ускоряют достижение этого равновесия.

Номенклатура названий ферментов

При наименовании фермента cа основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы - ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты- пепсин (см. ПЕПСИН), химотрипсин (см. ХИМОТРИПСИН)и трипсин (см. ТРИПСИН).

В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Aля того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. A соответствии с этой системой все ферменты a зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую yтот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.

Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей - галактоземия (приводит к умственной отсталости) - развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы (см. ГАЛАКТОЗА)в легко усваиваемую глюкозу (см. ГЛЮКОЗА). Причиной другого наследственного заболевания - фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина (см. ФЕНИЛАЛАНИН)в тирозин (см. ТИРОЗИН). Определение активности многих ферментов a крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Использование ферментов человеком

Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи (см. ПАПАЙЯ)) - в пивоварении, для мягчения мяса; пепсин - при производстве «готовых» каш и как лекарственный препарат; трипсин - при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) - в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы - для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генетической инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.

Обнаружена способность некоторых форм рибонуклеиновых кислот (рибозимов) катализировать отдельные реакции, то есть выступать в качестве ферментов. Возможно, в ходе эволюции органического мира рибозимы служили биокатализаторами до того, как ферментативная функция перешла к белкам, более приспособленным к выполнению этой задачи.

Полезные сервисы