Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

алюминия семейство

Энциклопедия Кольера

ПОДГРУППА IIIA. СЕМЕЙСТВО АЛЮМИНИЯ

БОР, АЛЮМИНИЙ, ГАЛЛИЙ, ИНДИЙ, ТАЛЛИЙ

Внешняя электронная конфигурация у всех элементов подгруппы s2p1, но наличие внутренней электронной структуры типа электронной конфигурации благородного газа у B и Al и отсутствие ее у Ga, In и Tl, имеющих по 18 электронов, приводит к различию свойств и делению семейства на две группы. У более легких B и Al отличие в поведении валентных s- и p-электронов незначительно, и они проявляют одну стабильную степень окисления III. С ростом атомного номера и соответственно размеров и массы увеличивается возможность проявления меньшей степени окисления (I и II) без использования в химической связи третьего электрона. Наиболее полно эта тенденция проявляется в химии последнего элемента подгруппы таллия, соединения которого со степенью окисления I более устойчивы, чем со степенью окисления III. Отличительной особенностью подгруппы IIIA является практически полное отсутствие металлических свойств у бора и типичные металлические свойства у таллия. Элементы, стоящие между ними в подгруппе, проявляют промежуточные свойства, демонстрируя постепенный переход от неметаллических свойств к металлическим.

Извлечение и применение. Наиболее распространенным и важным в промышленном отношении элементом подгруппы является алюминий. Алюминий проявляет характерные свойства металла, такие, как отражательная способность, проводимость, прочность, деформируемость. Al образует ион в степени окисления III, размер и зарядовая плотность которого обусловливают прочную связь с кислородом гидроксид-иона OHили воды H2O; в последнем случае отщепляется протон H+. Степень диссоциации образующегося Al(OH)3 небольшая, гидроксид проявляет свойства кислоты и основания. Это явление называется амфотерностью и выражается следующим равновесием:

АЛЮМИНИЯ СЕМЕЙСТВО

Al(OH)3, как и B(OH)3, растворяется в избытке гидроксида натрия. B(OH)3, или H3BO3, проявляет кислотные свойства настолько, что не растворяется в кислотах, а Al(OH)3 легко растворяется в кислотах. Металлический алюминий получают из природного минерала боксита (основной состав Al2O3), который подвергают обогащению или очистке. Полученный чистый оксид добавляют к расплаву криолита Na3AlF6 в электролизной ванне (катод), сделанной из стали, футерованной графитом. Анодом служат стержни из углерода. В расплаве происходит восстановление оксида до Al, который плавится. По этой технологии (процесс Холла Эру) получают алюминий чистотой 98%. Дальнейшую очистку алюминия проводят повторным электролизом по методу Хупса.

См. также АЛЮМИНИЕВАЯ ПРОМЫШЛЕННОСТЬ.

Бор в виде аморфного коричневатого порошка получают восстановлением B2O3 активным металлом (щелочным или магнием). При этом бор загрязняется примесями боридов, например Mg3B2. Наиболее чистый бор получают восстановлением из BBr3 на раскаленной нити в атмосфере водорода. Другие элементы этой подгруппы получают восстановлением их оксидов водородом или углеродом. Из всех элементов подгруппы только алюминий получают в больших количествах для разнообразного применения в авиационной и ракетно-космической технике, строительном деле, мосто- и судостроении. Электрохимическое полирование металла позволяет использовать его в производстве больших и малых зеркал. Анодирование алюминия в присутствии органических красителей расширяет возможности его применения в столовой утвари. В большом количестве производят оксид и сульфат алюминия. Оксид природный и синтетический используют как абразив (алунд, корунд, наждак смесь с оксидами железа). Сочетание природного оксида алюминия со следами некоторых металлических примесей придает неповторимую окраску таким драгоценным и полудрагоценным камням, как сапфир, рубин, топаз, аметист и изумруд. Эти драгоценные камни успешно синтезируют в лабораториях для изготовления украшений, а также в промышленных целях. При окислении алюминия кислородом выделяется много тепла и происходит сильный разогрев, поэтому алюминий является хорошим восстановителем для получения металлического железа из оксида путем прокаливания смеси Al с оксидом железа. При этом получается расплав железа, который используют в сварке (термитный сварочный процесс). Сульфат алюминия Al2(SO4)3 в виде простой или двойной соли (квасцы) применяют в дублении. (Квасцы смешанные сульфаты одновалентного и трехвалентного металлов, MI2SO4*MIII2(SO4)3*24H2O, где MIII любой металл из подгруппы IIIA, кроме бора.)

Из данных табл. 4 видно, что наиболее необычными свойствами обладает галлий. Металл плавится при почти комнатной температуре и сохраняет жидкое состояние до АЛЮМИНИЯ СЕМЕЙСТВО2000° С. Этот интервал жидкого состояния является максимальным среди всех известных металлов.

Химические свойства. Все элементы подгруппы IIIA образуют оксиды и гидроксиды со степенью окисления III, но свойства в ряду элементов заметно различаются с изменением атомного номера. Так, B(OH)3 больше кислота, чем основание, а Al(OH)3 проявляет cвойства кислоты и основания в равной степени, остальные три элемента проявляют основные свойства, а таллий даже образует растворимое в воде сильное основание TlOH со степенью окисления I. Галогениды всех элементов этой подгруппы имеют состав MX3, а таллий кроме того образует и TlX, например TlCl, во многом сходный с AgCl. Галогениды алюминия в жидком и даже в газообразном состоянии сильно димеризованы. Например, хлорид алюминия является димером Al2Cl6, в котором два тетраэдра соединены атомами хлора:

АЛЮМИНИЯ СЕМЕЙСТВО

Некоторые данные свидетельствуют от образовании AlCl в газовой фазе при высокой температуре из смеси Al + AlCl3. Однако образующийся монохлорид алюминия неустойчив и легко разлагается на исходные вещества. Галогениды бора BX3 как более тяжелые соединения не имеют такой тенденции к образованию димеров. В галогенидах бора нет полностью завершенного октета электронов (как у галогенидов алюминия), они являются сильными акцепторами электронов, т.е. кислотами Льюиса. Типичный пример трифторид бора BF3. Ионы и молекулы доноры электронов предоставляют электронную пару трифториду бора, образуя с ним прочный комплексный ион, при этом в другой части частицы-донора связи ослабевают. Например,

АЛЮМИНИЯ СЕМЕЙСТВО

Галогениды металлов подгруппы IIIA используются как катализаторы в нефтехимической и других отраслях промышленности, а также в лабораторных исследованиях для связывания электронной пары.

Соединения бора. Водородные соединения бора (бороводороды, или бораны) рассматриваются отдельно (см. ВОДОРОД). Аммиачный комплекс бороводорода превращается при нагревании в боразин B3H6N3, который называют также неорганическим бензолом или боразолом из-за его сходства с бензолом. Представляет интерес нитрид бора BN (боразон): при высоких давлениях и температуре гексагональная модификация BN превращается в алмазоподобную тетраэдрическую, отличающуюся высокой твердостью, близкой к твердости алмаза.

Полезные сервисы

бериллий

Энциклопедический словарь

БЕРИ́ЛЛИЙ -я; м. Химический элемент (Be), лёгкий твёрдый металл серебристого цвета.

Бери́ллиевый, -ая, -ое. Б. минерал. Б-ые сплавы.

* * *

бери́ллий (лат. Beryllium), химический элемент II группы периодической системы. Назван по минералу берилл. Светло-серый металл, лёгкий и твёрдый; плотность 1,816 г/см3, tпл 1287°C. Выше 800°C окисляется до ВеО. Бериллий и его сплавы применяют в электротехнике, самолёто- и ракетостроении, для бериллизации. В ядерных реакторах - замедлитель и отражатель нейтронов. В смеси с Ra, Ро, Ас - источник нейтронов. Соединения бериллия ядовиты.

Бериллий.

* * *

БЕРИЛЛИЙ - БЕРИ́ЛЛИЙ (лат. Вeryllium), Ве, химический элемент с атомным номером 4 и атомной массой 9,01218. Химический символ элемента Be читается «бериллий». В природе встречается только один стабильный нуклид (см. НУКЛИД) 9Be. В периодической системе элементов Д. И. Менделеева бериллий расположен в группе IIА во втором периоде. Электронная конфигурация атома бериллия 1s22s2. Атомный радиус 0,113 нм, радиус иона Ве2+ 0,034 нм. В соединениях проявляет только степень окисления +2 (валентность II). Энергии последовательной ионизации атома Ве 9,3227 и 18,211 эВ. Значение электроотрицательности по Полингу 1,57. В свободном виде - серебристо-серый легкий металл.

История открытия

Бериллий был открыт в 1798 Л. Вокленом (см. ВОКЛЕН Луи Никола) в виде берилловой земли (оксида ВеО), когда этот французский химик выяснял общие особенности химического состава драгоценных камней берилла (от греческого beryllos - берилл) и изумруда. Металлический бериллий был получен в 1828 Ф. Велером (см. ВЕЛЕР Фридрих) в Германии и независимо от него А. Бюсси во Франции. Однако из-за примесей его не удавалось сплавить. Лишь в 1898 французский химик П. Лебо, подвергнув электролизу двойной фторид калия и бериллия, получил достаточно чистые металлические кристаллы бериллия. Интересно, что из-за сладкого вкуса растворимых в воде соединений бериллия элемент вначале называли «глюциний» (от греческого glykys - сладкий).

Нахождение в природе

Бериллий относится к редким элементам, его содержание в земной коре 2,6·10-4 % по массе. В морской воде содержится до 6·10-7 мг/л бериллия. Основные природные минералы, содержащие бериллий: берилл (см. БЕРИЛЛ) Be3Al2(SiO3)6, фенакит (см. ФЕНАКИТ) Be2SiO4, бертрандит (см. БЕРТРАНДИТ) Be4Si2O8·H2O и гельвин (см. ГЕЛЬВИН) (Mn,Fe,Zn)4[BeSiO4]3S. Окрашенные примесями катионов других металлов прозрачные разновидности берилла - драгоценные камни, например, зеленый изумруд, голубой аквамарин, гелиодер, воробьевит. Их научились синтезировать искусственно.

Получение соединений бериллия и металлического бериллия

Извлечение бериллия из его природных минералов (в основном берилла) включает в себя несколько стадий, при этом особенно важно отделить бериллий от сходного по свойствам и сопутствующего бериллию в минералах алюминия. Можно, например, сплавить берилл с гексафторосиликатом натрия Na2SiF6:

Be3Al2(SiO3)6 + 12Na2SiF6 = 6Na2SiO3 + 2Na3AlF6 + 3Na2[BeF4] + 12SiF4.

В результате сплавления образуются криолит Na3AlF6 - плохо растворимое в воде соединение, а также растворимый в воде фторобериллат натрия Na2[BeF4]. Его далее выщелачивают водой. Для более глубокой очистки бериллия от алюминия применяют обработку полученного раствора карбонатом аммония (NH4)2CO3. При этом алюминий оседает в виде гидроксида Al(OH)3, а бериллий остается в растворе в виде растворимого комплекса (NH4)2[Be(CO3)2]. Этот комплекс затем разлагают до оксида бериллия ВеО при прокаливании:

(NH4)2[Be(CO3)2] = BeO + 2CO2 + 2NH3 + H2O.

Другой метод очистки бериллия от алюминия основан на том, что оксиацетат бериллия Be4O(CH3COO)6, в отличие от оксиацатата алюминия [Al3O(CH3COO]+CH3COO-, имеет молекулярное строение и легко возгоняется при нагревании. Известен также способ переработки берилла, в котором сначала берилл обрабатывают концентрированной серной кислотой при температуре 300°C, а затем спек выщелачивают водой. Сульфаты алюминия и бериллия при этом переходят в раствор. После добавления к раствору сульфата калия K2SO4 удается осадить алюминий из раствора в виде алюмокалиевых квасцов KAl(SO4)2·12H2O. Дальнейшую очистку бериллия от алюминия проводят так же, как и в предыдущем методе.

Наконец, известен и такой способ переработки берилла. Исходный минерал сначала сплавляют с поташем K2CO3. При этом образуются бериллат K2BeO2 и алюминат калия KAlO2:

Be3Al2(SiO3)6 + 10K2CO3 = 3K2BeO2 + 2KAlO2 + 6K2SiO3 + 10CO2

После выщелачивания водой полученный раствор подкисляют серной кислотой. В результате в осадок выпадает кремниевая кислота. Из фильтрата далее осаждают алюмокалиевые квасцы, после чего в растворе из катионов остаются только ионы Ве2+. Из полученного тем или иным способом оксида бериллия ВеО затем получают фторид, из которого магнийтермическим методом восстанавливают металлический бериллий:

BeF2 + Mg = MgF2 + Be.

Металлический бериллий можно приготовить также электролизом расплава смеси BeCl2 и NaCl при температурах около 300 °C. Раньше бериллий получали электролизом расплава фторобериллата бария Ba[BeF4]:

Ba[BeF4] = BaF2 + Be + F2.

Физические и химические свойства

Металлический бериллий характеризуется высокой хрупкостью. Температура плавления 1278 °C, температура кипения около 2470 °C, плотность 1,816 кг/м3. До температуры 1277 °C устойчив альфа-Ве (гексагональная решетка типа магния, параметры а = 0,22855 нм, с = 0,35833 нм), при температурах, предшествующих плавлению металла (1277-1288 °C) - бета-Ве с кубической решеткой.

Химические свойства бериллия во многом похожи на свойства магния (см. МАГНИЙ) и, особенно, алюминия (см. АЛЮМИНИЙ). Близость свойств бериллия и алюминия объясняется почти одинаковым отношением заряда катиона к его радиусу для ионов Be2+ и Al3+. На воздухе бериллий, как и алюминий, покрыт оксидной пленкой, придающей бериллию матовый цвет. Наличие оксидной пленки предохраняет металл от дальнейшего разрушения и обусловливает его невысокую химическую активность при комнатной температуре. При нагревании бериллий сгорает на воздухе с образованием оксида BeO, реагирует с серой и азотом. С галогенами (см. ГАЛОГЕНЫ) бериллий реагирует при обычной температуре или при слабом нагревании, например:

Be + Cl2 = ВеСl2

Все эти реакции сопровождаются выделением большого количества теплоты, так как прочность кристаллических решеток возникающих соединений (BeO, BeS, Be3N2, ВеСl2) довольно велика. Благодаря образованию на поверхности прочной пленки оксида бериллий не реагирует с водой, хотя находится в ряду стандартных потенциалов значительно левее водорода. Как и алюминий, бериллий реагирует с кислотами и растворами щелочей:

Be + 2HCl = BeCl2 + H2,

Be + 2NaOH + 2H2O = Na2[Be(OH)4] + H2.

Гидроксид бериллия Be(OH)2- полимерное соединение, нерастворимое в воде. Оно проявляет амфотерные (см. АМФОТЕРНОСТЬ) свойства:

Be(OH)2 + 2КOH =К2[Be(OH)4],

Be(OH)2 + 2HСl = BeСl2 + 2H2O.

В большинстве соединений бериллий проявляет координационное число 4. Например, в структуре твердого BeCl2 имеются цепочки с мостиковыми атомами хлора. За счет образования прочных тетраэдрических анионов многие соединения бериллия вступают в реакции с солями других металлов:

BeF2 + 2KF = K2[BeF4]

С водородом бериллий непосредственно не взаимодействует. Гидрид бериллия BeH2 - полимерное вещество, его получают реакцией

BeCl2 + 2LiH = BeH2 + 2LiCl,

проводимой в эфирном растворе. Действием на гидроксид бериллия Be(OH)2 растворами карбоновых кислот или при упаривании растворов их бериллиевых солей получают оксисоли бериллия, например, оксиацетат Be4O(CH3COO)6. Эти соединения содержат тетраэдрическую группировку Be4O, по шести ребрам этого тетраэдра располагаются ацетатные группы. Такие соединения играют большую роль в процессах очистки бериллия, так как они не растворяются в воде, но хорошо растворяются в органических растворителях и легко возгоняются в вакууме.

Применение

Бериллий в основном используют как легирующую добавку к различным сплавам. Добавка бериллия значительно повышает твердость и прочность сплавов, коррозионную устойчивость поверхностей изготовленных из этих сплавов изделий. Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубок (через которые излучение выходит наружу). В атомных реакторах из бериллия изготовляют отражатели нейтронов, его используют как замедлитель нейтронов. В смесях с некоторыми a-радиоактивными нуклидами бериллий используют в ампульных нейтронных источниках, так как при взаимодействии ядер бериллия-9 и a-частиц возникают нейтроны: 9Ве(a, n)12C.

Физиологическое действие

В живых организмах бериллий, по-видимому, не несет никакой биологической функции. Его содержание в организме среднего человека (масса тела 70 кг) составляет 0,036 мг, ежедневное поступление с пищей - около 0,01 мг. Летучие и растворимые соединения бериллия, а также пыль, содержащая бериллий и его соединения, очень токсичны. Бериллий замещает в ферментах магний и обладает ярко выраженным аллергическим и канцерогенным действием. Его присутствие в атмосферном воздухе приводит к тяжелому заболеванию органов дыхания - бериллиозу. Следует отметить, что эти заболевания могут возникнуть через 10-15 лет после прекращения контакта с бериллием. Для воздуха ПДК в пересчете на бериллий составляет 0,001 мг/м3.

Полезные сервисы

полупроводниковые материалы

Энциклопедический словарь

Полупроводнико́вые материа́лы - полупроводники, применяемые для изготовления электронных приборов и устройств. Используют главным образом кристаллические полупроводниковые материалы (например, легированные монокристаллы кремния или германия, химические соединения некоторых элементов III и V, II и VI групп периодической системы). Всё большее значение приобретают твердые аморфные полупроводниковые вещества и органические полупроводники.

* * *

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ - ПОЛУПРОВОДНИКО́ВЫЕ МАТЕРИА́ЛЫ, обширный класс материалов, проявляющих полупроводниковые (см. ПОЛУПРОВОДНИКИ) свойства. В него входят сотни самых разнообразных веществ - как элементов, так и химических соединений. По мнению основоположника полупроводникового материаловедения акад. А. Ф. Иоффе (см. ИОФФЕ Абрам Федорович), «полупроводники - это почти весь окружающий нас неорганический мир». Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно качество - способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий. Полупроводниковые свойства проявляют не только неорганические вещества, существует обширный класс органических полупроводников.

По химическому составу полупроводниковые материалы разделяют на простые элементарные полупроводники и сложные полупроводники - полупроводниковые соединения. Широкое применение в полупроводниковой промышленности находят не только монокристаллические, но и поликристаллические полупроводники, а также аморфные и стеклообразные полупроводники.

Простыми полупроводниковыми материалами являются 12 химических элементов, находящихся в средней части Периодической системы Д. И. Менделеева (см. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА). Наиболее широкое применение среди этой группы имеют кремний, германий и селен (см. элементарные полупроводниковые материалы (см. ЭЛЕМЕНТАРНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ)).

Весьма обширна группа полупроводниковых неорганических соединений, которые могут состоять из двух, трех и большего числа элементов.

Известные в 1940-х гг. полупроводники германий (см. ГЕРМАНИЙ) и кремний (см. КРЕМНИЙ) имели тетраэдрическую структуру, в которой на каждый атом приходится 4 химические связи. Предположение о том, что объединение одного атома с четырьмя другими (алмазоподобная структура), благоприятствует возникновению полупроводниковых свойств, подтвердилось. Представление о «средней четырехвалентности» и «алмазоподобных» полупроводниках оказалось плодотворным для поиска новых полупроводниковых материалов. Многие из алмазоподобных полупроводников образуют твердые растворы, которые также являются полупроводниками, например Ge - Si, GaAs (см. ГАЛЛИЯ АРСЕНИД) - GaP и др.

К алмазоподобным полупроводникам принадлежит большинство важнейших неорганических кристаллических материалов. Бинарные и тройные соединения, у которых на один атом приходится четыре электрона, также обладают полупроводниковыми свойствами. К ним относятся бинарные соединения, образованные атомами из групп периодической системы элементов, равноотстоящих от центральной IV группы таблицы Д. И. Менделеева, названные соединениями типа AIBVII, AIIBVI, AIIIBV. Из многочисленных групп тройных соединений полупроводниковые свойства обнаружены у группы AIIBIVCV2 (ZnSnP2, CdGeAs2 и т.п.), также подчиняющейся правилу «четыре электрона на один атом»: (2+4+5*2)/4=4.

Химические соединения получили название сложных полупроводников. Они обозначаются прописными индексами латинского алфавита с верхними и нижними индексами. Верхние индексы применяют для обозначения римскими цифрами номеров групп периодической системы элементов, а нижние - для обозначения арабскими цифрами стехиометрических коэффициентов (числа атомов в соединении). Бинарные соединения называют обычно по наименованию того элемента (компонента соединения), у которого металлические свойства выражены слабее (например, соединение индия с фосфором InP называют фосфидом индия (см. ИНДИЯ ФОСФИД), цинка с серой ZnS - сульфидом цинка и т.д.)

В качестве примеров таких соединений можно привести InSb, Bi2Te3, ZnSiAs2, CuAlS2, CuGe2P3.

Во многих случаях полупроводниковыми свойствами обладают не только простые и сложные полупроводники, но и твердые растворы замещения, образующиеся между ними. Их выражают формулами, в которых нижними индексами x, y и др. обозначают атомную долю элемента в твердом растворе. Например, твердый раствор между кремнием и германием в общем виде выражают формулой SixGe1-x, а между фосфидом индия и арсенидом галлия InxGa1-xAsyP1-y. В твердых растворах путем изменения состава можно плавно и в достаточно широких пределах управлять важнейшими свойствами полупроводников, в частности, шириной запрещенной зоны (см. ЗАПРЕЩЕННАЯ ЗОНА) и подвижностью носителей заряда (см. ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА).

Полупроводниковые материалы характеризуются следующими основными электрофизическими параметрами: удельным сопротивлением, типом проводимости, шириной запрещенной зоны, концентрацией носителей заряда и их подвижностью, эффективной массой и временем жизни. Ряд характеристик полупроводниковых материалов, например, ширина запрещенной зоны и эффективная масса носителей, относительно слабо зависит от концентрации химических примесей и степени совершенства кристаллической решетки (см. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА). Однако, большинство параметров структурно чувствительны, и в полупроводниковых материалах наблюдается резкая зависимость свойств, прежде всего электрофизических, не только от содержания посторонних примесей, но и от степени совершенства кристаллического строения. Точечные дефекты (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ), как собственные, так и легирующие примеси, определяют концентрацию, тип проводимости, величину удельного сопротивления. Легирование (см. ЛЕГИРОВАНИЕ) полупроводниковых материалов осуществляется с целью получения кристаллов с необходимыми свойствами. Задаваемые свойства варьируются в очень широких пределах и при этом, как правило, необходимо выращивать кристаллы с определенным сочетанием различных свойств (например, оптических и электрофизических), с учетом высокой однородности распределения последних в объеме.

Характер распределения дислокаций (см. ДИСЛОКАЦИИ) и их плотность лимитируются в связи с негативным влиянием дислокаций на многие характеристики полупроводниковых приборов. Точечные дефекты, дислокации, дефекты упаковки и другие нарушения структуры управляют процессами диффузии в материале. Дефекты структуры оказывают существенное влияние на характеристики, а также эксплуатационную надежность полупроводниковых приборов. В связи с этим к совершенству структуры полупроводников предъявляются исключительно высокие требования. В большинстве случаев при выращивании кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ) ставится задача получения кристаллов с высокой степенью структурного совершенства.

Требования, предъявляемые к конкретному материалу, определяются его приборным применением. Для создания сверхбольших интегральных схем необходимы кристаллы большого диаметра. Качество создаваемых микроэлектронных устройств в значительной степени зависит от совершенства исходных монокристаллов -кремния (см. КРЕМНИЙ), арсенида галлия (см. ГАЛЛИЯ АРСЕНИД), фосфида индия (см. ИНДИЯ ФОСФИД). Помимо необходимых электрофизических параметров (концентрация носителей заряда, тип проводимости, удельное сопротивление), монокристаллы должны иметь низкую плотность дислокаций (в случае кремния - бездислокационные), и быть однородными по составу.

Полупроводниковые материалы больших диаметров выращивают из расплавов (см. Методы выращивания кристаллов (см. МЕТОДЫ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ)). Основных методом их получения является метод Чохральского. В технологии кремния также используется метод бестигельной зонной плавки (см. ЗОННАЯ ПЛАВКА), а в технологии полупроводниковых соединений - метод направленной кристаллизации. Основными структурными дефектами в монокристаллах полупроводников являются дислокации, примесные неоднородности, микродефекты (см. МИКРОДЕФЕКТЫ), собственные точечные дефекты (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ) структуры и их скопления.

Развитие полупроводниковой опто- и микроэлектроники привело к широкому использованию полупроводниковых соединений. Взаимодействие различных соединений друг с другом приводит к образованию твердых растворов, что дает возможность путем изменения состава раствора получать материалы с заранее заданными свойствами. Основным методом получения таких структур является эпитаксия (см. ЭПИТАКСИЯ). Различные методы эпитаксии позволяют получать тонкие и сверхтонкие однослойные и многослойные полупроводниковые структуры разнообразной геометрии с широкой вариацией состава и электрофизических свойств по толщине и поверхности наращиваемого слоя. Применение в микроэлектронике и оптоэлектронных устройствах гетероэпитаксиальных структур позволяет создавать сложнейшие многослойные эпитаксиальные композиции с заданными параметрами.

Создание приборов на основе поликристаллических и аморфных материалов было обусловлено необходимостью снижения стоимости полупроводниковых преобразователей солнечной энергии (солнечных батарей) наземного применения. Однако исследования электронных процессов на границах отдельных кристаллитов и возможностей активного управления ими показали возможности применения таких материалов (см. Поликристаллические полупроводники (см. ПОЛИКРИСТАЛЛИЧЕСКИЕ ПОЛУПРОВОДНИКИ), Аморфные и стеклообразные полупроводники (см. АМОРФНЫЕ И СТЕКЛООБРАЗНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ)).

Материалы проявляют полупроводниковые свойства не только в твердом состоянии. Вещества, обладающие в жидком состоянии свойствами полупроводников, были открыты А. Ф. Иоффе (см. ИОФФЕ Абрам Федорович) и А. Р. Регелем. В отличие от электролитов жидкие полупроводники имеют электронный тип проводимости и как и жидкие металлы являются электронными расплавами. Жидкие полупроводники являются неупорядоченными системами, в них отсутствует дальний порядок (см. ДАЛЬНИЙ ПОРЯДОК И БЛИЖНИЙ ПОРЯДОК). Жидкие полупроводники образуются при плавлении кристаллических ковалентных полупроводников, если сохраняются ковалентные межатомные связи (Se, AIIBIV).

Полезные сервисы