Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли "кристальными". Еще и сегодня стекло особой прозрачности называется хрустальным, "магический" шар гадалок - хрустальным шаром. Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку. Заметной вехой в истории кристаллографии явилась книга, написанная в 1784 французским аббатом Р. Гаюи. Он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал "молекулярными блоками". Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие "кирпичики". Различия в форме разных веществ он объяснил разницей как в форме "кирпичиков", так и в способе их укладки. Со времен Гаюи было принято как гипотеза, что в правильной форме кристалла находит отражение упорядоченное внутреннее расположение частиц, но это было подтверждено лишь в 1912, когда М.фон Лауэ в Мюнхене установил, что рентгеновские лучи дифрагируют на атомных плоскостях внутри кристалла. Падая на фотографическую пластинку, дифрагированные лучи создают на ней геометрический узор из темных пятен. По положению и интенсивности таких пятен можно рассчитать размеры структурной единицы и определить расположение атомов в ней.
Имея в виду возможность прямого исследования внутренней структуры, многие занимающиеся кристаллографией стали употреблять термин "кристалл" в применении ко всем твердым веществам с упорядоченной внутренней структурой. Нужны лишь благоприятные условия, полагали они, чтобы внутренняя упорядоченность проявилась в виде правильной наружной огранки. Некоторые ученые предпочитают называть твердые вещества с внешне не проявляющейся внутренней упорядоченностью "кристаллическими", а под "кристаллами" понимать, как это было когда-то, твердые вещества с природной огранкой.
КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ
Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности. В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. Но атомы и молекулы жидкости все-таки могут скользить относительно друг друга. При охлаждении некоторых жидкостей, например воды, достигается температура, при которой молекулы застывают в относительной неподвижности кристаллического состояния. Эта температура, разная для всех жидкостей, называется температурой замерзания. (Вода замерзает при 0° С; при этом молекулы воды упорядоченно соединяются друг с другом, образуя правильную геометрическую фигуру.) У каждой частицы вещества (атома или молекулы), находящегося в кристаллическом состоянии, окружение точно такое же, как и у любой другой частицы того же типа во всем кристалле. Другими словами, ее окружают вполне определенные частицы, находящиеся на вполне определенных расстояниях от нее. Именно это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.
ОБРАЗОВАНИЕ КРИСТАЛЛОВ
Вообще говоря, кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды, так как вода, в сущности, не что иное, как расплавленный лед. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры или вытесняемая в виде лавы на ее поверхность, содержит многие элементы в разупорядоченном состоянии. При охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. В таких условиях возникает много зародышей кристаллов. Увеличиваясь в размере, они мешают друг другу расти, а поэтому гладкие наружные грани у них образуются редко.
КРИСТАЛЛЫ ЛАЗУРИТА
Кристаллы в природе образуются также из растворов, примером чему могут служить сотни миллионов тонн соли, выпавшей из морской воды. Такой процесс можно продемонстрировать в лаборатории с водным раствором хлорида натрия. Если дать воде возможность медленно испаряться, то в конце концов раствор станет насыщенным и дальнейшее испарение приведет к выделению соли. Положительно заряженные ионы натрия притягивают отрицательно заряженные ионы хлора, в результате чего образуется зародыш кристалла хлорида натрия, который выделяется из раствора. При дальнейшем испарении другие ионы пристраиваются к образовавшемуся ранее зародышу, и постепенно растет кристалл с характерной внутренней упорядоченностью и гладкими наружными гранями.
КРИСТАЛЛЫ ВИТЕРИТА
Кристаллы образуются также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.
СТРУКТУРА КРИСТАЛЛА
Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла - это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О.Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14 (рис. 1-1, 1-2).
Рис. 1-1. 7 РАЗНЫХ СПОСОБОВ упорядоченного расположения в пространстве одинаковых точек (пространственные решетки).
Рис. 1-2. 7 РАЗНЫХ СПОСОБОВ упорядоченного расположения в пространстве одинаковых точек (пространственные решетки).
Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико. Три кристаллические структуры, представленные на рис. 2, неодинаковы, хотя и относятся к одной и той же пространственной группе.
Рис. 2. СТРУКТУРА КРИСТАЛЛОВ. а - галит NaCl; б - алмаз; в - флюорит CaF2. Составленные из разных атомов, по-разному расположенных, все они образуют куб, т.е. относятся к одной и той же пространственной группе.
Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки которых показаны на рис. 1. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична "кирпичику" Гаюи, т.е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10-9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой. Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т.е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.
МОРФОЛОГИЯ КРИСТАЛЛОВ
Кристаллы имеют некую внутреннюю симметрию, которая не обнаруживается в бесформенной крупинке. Симметрия кристаллов получает наружное выражение только тогда, когда они имеют возможность свободно расти без каких-либо помех. Но даже хорошо организованные кристаллы редко имеют совершенную форму, и нет двух кристаллов, которые были бы совершенно одинаковы. Форма кристалла зависит от многих факторов, один из которых - форма элементарной ячейки. Если такой "кирпичик" повторить одинаковое число раз параллельно каждой из его сторон, то получится кристалл, форма и относительные размеры которого точно такие же, как у элементарной ячейки. Близкая к этому картина характерна для многих кристаллических веществ. Но на форму оказывают влияние и такие факторы, как температура, давление, чистота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм. Различие форм связано с тем, как именно укладываются одинаковые "кирпичики". Аналогия между элементарными ячейками и кирпичами очень полезна (рис. 3). Укладывая кирпичи так, чтобы их соответствующие стороны были параллельны, можно построить стену (рис. 3,а), длина, высота и толщина которой будут зависеть только от числа кирпичей, уложенных в данном направлении. Если же в определенном порядке удалять кирпичи, то можно получить миниатюрные лестничные марши (рис. 3,б,в) с наклоном, зависящим от соотношения чисел кирпичей в подступенке и наступи ступеньки лестницы. Если на такую лестницу наложить линейку, то она образует угол, определяемый размерами кирпича и способом укладки. Углы наклона x и y симметричны независимо от относительных длин s и f (рис. 3,г).
Рис. 3. УКЛАДКА КИРПИЧЕЙ, дающая разные формы и углы наклона лестницы. а - стена из одинаковых кирпичей; б и в - лестницы разной длины (s и f) и разного наклона (x и y), получающиеся при последовательном удалении целых рядов кирпичей; г - комбинация вариантов б и в, при которой углы остаются постоянными, хотя длины изменяются.
Точно так же и кристалл может принимать ту или иную форму, если в строго определенном порядке пропускаются некоторые ряды или группы элементарных ячеек (рис. 4). Косые грани кристалла подобны лестницам, сложенным из кирпичей, но "кирпичики" здесь столь малы, что грани кристалла выглядят, как гладкие поверхности. Углы между соответствующими гранями кристалла постоянны, независимо от его размера. Это установил в 1669 датчанин Н.Стено на примере кристаллов кварца. Тем самым он показал, что форма является характеристикой кристаллического вещества. Ныне известно, что форма кристалла зависит от размеров и формы элементарной ячейки, и положение Стено приняло обобщенную форму закона, согласно которому углы между соответствующими гранями кристаллов одного и того же вещества постоянны.
Рис. 4. РАЗНЫЕ ФОРМЫ С РАЗНЫМИ ГРАНЯМИ может давать одна и та же структура, как у этих кристаллов хризоберилла.
Размеры и форма граней изменяются от кристалла к кристаллу. Тем не менее, имеется некая внешняя симметрия, присущая всем хорошо ограненным кристаллам. Она обнаруживается в повторении углов и похожести граней, одинаковых в смысле внешнего вида, дефектов травления и особенностей роста. Если кристалл имеет почти совершенную форму, то его симметричные грани тоже подобны по размерам и форме. До появления рентгеновской кристаллографии самым важным делом занимавшихся кристаллографией было измерение углов между гранями кристаллов. Вычерчивая на основе таких угловых измерений грани кристалла в стереографической или гномонической проекции, можно выявить симметричное расположение граней независимо от размера и формы. По такой проекции можно вычислить отношения осей, а затем выполнить чертеж кристалла.
Элементы симметрии. Задолго до того, как 32 типа симметричных расположений точечных групп были определены рентгеновскими методами, они были выявлены путем исследования морфологии, т.е. формы и структуры кристаллов. На основании вида и расположения граней, а также углов между ними кристаллы приписывались одному из 32 кристаллографических классов. Поэтому пространственные группы и кристаллографические классы - это как бы синонимы, и существуют три основных элемента симметрии: плоскость, ось и центр (рис. 5).
Рис. 5. СИММЕТРИЯ КРИСТАЛЛОВ. а - плоскость симметрии с осью симметрии 2-го порядка; б - центр симметрии; в-д - оси симметрии 3-го, 4-го и 6-го порядков соответственно.
Плоскость симметрии. Многие хорошо известные нам предметы обладают симметрией относительно плоскости. Например, стул или стол можно представить себе разделенными на две одинаковые части. Точно так же плоскость симметрии делит кристалл на две части, каждая из которых является зеркальным отображением другой. (Плоскость симметрии иногда называют плоскостью зеркального отображения.)
Ось симметрии. Ось симметрии - это воображаемая прямая, поворотом вокруг которой на часть полного оборота можно привести объект к совпадению с самим собой. В кристаллах возможны только пять видов осевой симметрии: 1-го порядка (эквивалентная отсутствию вращения), 2-го порядка (повторение через 180°), 3-го порядка (повторение через 120°), 4-го порядка (повторение через 90°) и 6-го порядка (повторение через 60°).
Центр симметрии. Кристалл имеет центр симметрии, если любая прямая, мысленно проведенная через него, на противоположных сторонах поверхности кристалла проходит через одинаковые точки. Таким образом, на противоположных сторонах кристалла находятся одинаковые грани, ребра и углы. Имеются 32 возможные комбинации плоскостей, осей и центров симметрии в кристаллах; каждой такой комбинацией определяется кристаллографический класс. Один класс не имеет симметрии; говорят, что он имеет одну ось вращения 1-го порядка.
Кристаллографические системы. На рис. 1 представлены семь базисных ячеек решеток разной формы. Ромбоэдрическая и гексагональная решетки определяются одними и теми же осями. Таким образом, при наличии 32 симметрий точечных групп имеются только шесть основных форм элементарных ячеек. Соответственно форме основной "строительной" единицы 32 кристаллографических класса разделяются на шесть кристаллографических систем. Каждая кристаллографическая система имеет собственную систему координат, которыми определяются элементарная ячейка, а следовательно, и грани кристалла. На рис. 1 это стороны a, b и c элементарной ячейки. Принято через c обозначать вертикальную сторону, через b - горизонтальную в плоскости чертежа и через a - горизонтальную сторону, перпендикулярную плоскости чертежа. Прямые, на которых лежат эти стороны, служат линиями отсчета и называются кристаллографическими осями. Угол между b и c обозначается a, между a и c - b, а между a и b - g. Названия кристаллографических систем, относительные длины и угловые соотношения между соответствующими кристаллографическими осями таковы: Триклинная: a не равно b не равно c, a не равно b не равно g. Моноклинная: a не равно b не равно c, a = g = 90°, b > 90°. Орторомбическая: a не равно b не равно c, a = b = g = 90°. Тетрагональная: a = b не равно c, a = b = g = 90°. Поскольку a и b в этой системе равны и равноценны, их обычно обозначают через a1, a2. Сторона c может быть больше либо меньше a. Гексагональная: a = b не равно c, a = b = 90°, g = 120°. Элементарная ячейка гексагональных кристаллов обычно рассматривается как тройная и определяется тремя горизонтальными осями a1, a2, a3, составляющими угол 120° друг с другом и 90° с условно вертикальной осью c. Кубическая (изометрическая): a = b = c, a = b = g = 90°. На рис. 6 показаны разнообразные формы, которые могут иметь кристаллы, относящиеся к разным кристаллографическим системам.
Рис. 6. ФОРМЫ КРИСТАЛЛОВ РАЗНЫХ МИНЕРАЛОВ, относящихся к разным кристаллографическим системам.
Формы кристаллов. Хотя с первого взгляда все грани, определяющие форму кристалла, могут показаться одинаковыми, при тщательном исследовании обнаруживаются небольшие различия. Это могут быть различия в блеске, нерегулярностях роста, дефектах травления или полосчатости. Тем не менее, некоторые грани оказываются совершенно одинаковыми. Такие грани состоят из одинаковых и одинаково расположенных атомов и соответствуют определенной форме кристаллов. Распределение граней разных форм выявляет симметрию, так как все грани одной формы имеют одинаковое отношение к элементу симметрии. Некоторые кристаллы имеют грани только одной формы, а другие - грани многих форм. На рис. 7,а,б,в показаны три различные формы кубической системы, а на рис. 7,г - комбинация этих трех форм.
Рис. 7. ФОРМЫ КРИСТАЛЛОВ КУБИЧЕСКОЙ СИСТЕМЫ. а - куб; б - октаэдр; в - додекаэдр; г - комбинация куба, октаэдра и додекаэдра.
ОПТИЧЕСКАЯ КРИСТАЛЛОГРАФИЯ
Важное значение в описании и идентификации кристаллов имеют их оптические свойства. Когда свет падает на прозрачный кристалл, он частично отражается, а частично проходит внутрь кристалла. Свет, отражающийся от кристалла, придает ему блеск и цвет, а свет, проходящий внутрь кристалла, создает эффекты, которые определяются его оптическими свойствами.
Показатель преломления. При переходе наклонного луча света из воздуха в кристалл его скорость распространения уменьшается; падающий луч отклоняется, или преломляется. Чем больше плотность кристалла и чем больше угол падения луча (i), тем больше угол преломления (r). Отношение sin i к sin r есть величина постоянная. Это обычно записывают в виде равенства sin i/sin r = n; константа n называется показателем преломления. Это самая важная из оптических характеристик кристалла, и ее можно очень точно измерить. См. также ОПТИКА. С позиций оптики все прозрачные вещества можно разделить на две группы: изотропные и анизотропные. К изотропным относятся кристаллы кубической системы и некристаллические вещества, например стекло. В изотропных веществах свет распространяется во всех направлениях с одинаковой скоростью, и поэтому такие вещества характеризуются одним показателем преломления. Группу анизотропных веществ составляют кристаллы всех других кристаллографических систем. В веществах этой группы скорость света, а следовательно, и показатель преломления непрерывно изменяются при переходе от одного кристаллографического направления к другому. Когда свет входит в анизотропный кристалл, он разделяется на два луча, колеблющихся под прямым углом друг к другу и распространяющихся с разными скоростями. Такое явление называется двойным лучепреломлением; всякий анизотропный кристалл характеризуется двумя показателями преломления. Для гексагональных и тетрагональных кристаллов указывают максимальный и минимальный, т.е. "главные" показатели преломления. Один из этих главных показателей преломления соответствует лучу света, колеблющемуся параллельно оси c, а с другой - лучу света, колеблющемуся под прямым углом к этой оси. В орторомбических, моноклинных и триклинных кристаллах имеются три главных показателя преломления: максимальный, минимальный и промежуточный, определяемые лучами света, колеблющимися в трех взаимно перпендикулярных направлениях. Поскольку показатели преломления зависят от химического состава и строения материала, они являются характеристическими величинами для каждого кристаллического твердого вещества, и их измерение служит эффективным методом его идентификации. Пользуясь простым рефрактометром, ювелир или специалист по драгоценным камням может измерить показатель преломления драгоценного камня, не вынимая его из оправы. С помощью поляризационного микроскопа минералог без особого труда определяет тип минерала, измеряя его показатели преломления и другие оптические характеристики на мелких крупинках.
См. также ДРАГОЦЕННЫЕ КАМНИ.
Плеохроизм. В анизотропных кристаллах свет, колеблющийся в разных кристаллографических направлениях, может поглощаться по-разному. Одно из возможных следствий такого явления, называемого плеохроизмом, - изменение цвета кристалла при изменении направления колебаний. В других кристаллах свет, колеблющийся в одном кристаллографическом направлении, может распространяться почти без потерь интенсивности, а под прямым углом к нему почти полностью поглощаться. На различиях в поглощении света тонкими ориентированными кристаллами основано действие таких поляризационных светофильтров, как поляроид.
ПРИМЕНЕНИЕ КРИСТАЛЛОВ
Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах "на счастье" и "своих камнях", соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи. Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.
См. также
ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ;
ТРАНЗИСТОР. Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.
См. также
ЛАЗЕР;
КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ.
Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма "Дженерал электрик" и Физический институт АН СССР сообщили об изготовлении искусственных алмазов. Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе - из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350-450° C и давлении КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия, расплавляемого при температуре 2050° C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.
См также АБРАЗИВЫ; ФИЗИКА ТВЕРДОГО ТЕЛА.
ЛИТЕРАТУРА
Современная кристаллография. М., 1979-1981