Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

оптически

Синонимы к слову оптически

нареч, кол-во синонимов: 1

Полезные сервисы

оптически активные вещества

оптически исследованный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически полезный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически прозрачный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически-активный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически-изотропный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически-иллюзорный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически-неоднородный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптически-однородный

Слитно. Раздельно. Через дефис

Полезные сервисы

оптические гармоники

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптические дальномеры

Энциклопедический словарь

Опти́ческие дальноме́ры - дальномеры с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

* * *

ОПТИЧЕСКИЕ ДАЛЬНОМЕРЫ - ОПТИ́ЧЕСКИЕ ДАЛЬНОМЕ́РЫ, обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (напр., нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (напр., фотографический дальномер) и бинокулярные (стереоскопические дальномеры).

Большой энциклопедический словарь

Полезные сервисы

оптические измерительные приборы

оптические или аплантические стекла

оптические или опланатические стекла

оптические инструменты

оптические приборы

Энциклопедия Кольера

ОПТИЧЕСКИЕ ПРИБОРЫ - устройства, в которых излучение какой-либо области спектра (ультрафиолетовой, видимой, инфракрасной) преобразуется (пропускается, отражается, преломляется, поляризуется). Отдавая дань исторической традиции, оптическими обычно называют приборы, работающие в видимом свете. При первичной оценке качества прибора рассматриваются лишь основные его характеристики: способность концентрировать излучение - светосила; способность различать соседние детали изображения - разрешающая сила; соотношение размеров предмета и его изображения - увеличение. Для многих приборов определяющей характеристикой оказывается поле зрения - угол, под которым из центра прибора видны крайние точки предмета.

Разрешающая сила. Способность прибора различать две близкие точки или линии обусловлена волновой природой света. Численное значение разрешающей силы, например, линзовой системы, зависит от умения конструктора справиться с аберрациями линз и тщательно отцентрировать эти линзы на одной оптической оси. Теоретический предел разрешения двух соседних изображаемых точек определяется как равенство расстояния между их центрами радиусу первого темного кольца их дифракционной картины.

Увеличение. Если предмет длиной H перпендикулярен оптической оси системы, а длина его изображения H', то увеличение m определяется по формуле m = H'/H. Увеличение зависит от фокусных расстояний и взаимного расположения линз; для выражения этой зависимости существуют соответствующие формулы. Важной характеристикой приборов для визуального наблюдения является видимое увеличение М. Оно определяется из отношения размеров изображений предмета, которые образуются на сетчатке глаза при непосредственном наблюдении предмета и рассматривании его через прибор. Обычно видимое увеличение М выражают отношением M = tgb /tga, где a - угол, под которым наблюдатель видит предмет невооруженным глазом, а b - угол, под которым глаз наблюдателя видит предмет через прибор. При желании создать качественный оптический прибор следует оптимизировать набор его основных характеристик - светосилы, разрешающей способности и увеличения. Нельзя сделать хороший, например, телескоп, добиваясь лишь большого видимого увеличения и оставляя малой светосилу (апертуру). У него будет плохое разрешение, так как оно прямо зависит от апертуры. Конструкции оптических приборов весьма разнообразны, и их особенности диктуются назначением конкретных устройств. Но при воплощении любой спроектированной оптической системы в готовый оптико-механический прибор необходимо расположить все оптические элементы в строгом соответствии с принятой схемой, надежно закрепить их, обеспечить точную регулировку положения подвижных деталей, разместить диафрагмы для устранения нежелательного фона рассеянного излучения. Нередко требуется выдерживать заданные значения температуры и влажности внутри прибора, сводить к минимуму вибрации, нормировать распределение веса, обеспечить отвод тепла от ламп и другого вспомогательного электрооборудования. Значение придается внешнему виду прибора и удобству обращения с ним.

Микроскопы. Если рассматривать через положительную (собирающую) линзу предмет, расположенный за линзой не дальше ее фокальной точки, то видно увеличенное мнимое изображение предмета. Такая линза представляет собой простейший микроскоп и называется лупой или увеличительным стеклом. Из схемы рис. 1 можно определить размер увеличенного изображения. Когда глаз настроен на параллельный пучок света (изображение предмета находится на неопределенно большом расстоянии, а это означает, что предмет расположен в фокальной плоскости линзы), видимое увеличение M можно определить из соотношения (рис. 1): M = tgb /tga = (H/f)/(H/v) = v/f, где f - фокусное расстояние линзы, v - расстояние наилучшего зрения, т.е. наименьшее расстояние, на котором глаз хорошо видит при нормальной аккомодации. M увеличивается на единицу, когда глаз настраивается так, что мнимое изображение предмета оказывается на расстоянии наилучшего зрения. Способности к аккомодации у всех людей разные, с возрастом они ухудшаются; принято считать 25 см расстоянием наилучшего зрения нормального глаза. В поле зрения одиночной положительной линзы при удалении от ее оси резкость изображения быстро ухудшается из-за поперечных аберраций. Хотя и бывают лупы с увеличением в 20 крат, типичная их кратность от 5 до 10. Увеличение сложного микроскопа, именуемого обычно просто микроскопом, доходит до 2000 крат.

См. также МИКРОСКОП; ЭЛЕКТРОННЫЙ МИКРОСКОП.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 1. <a href='/dict/лупа' class='wordLink' target='_blank'>ЛУПА</a>; <a href='/dict/схема' class='wordLink' target='_blank'>схема</a> и <a href='/dict/принцип' class='wordLink' target='_blank'>принцип</a> <a href='/dict/действия' class='wordLink' target='_blank'>действия</a>.

Рис. 1. ЛУПА; схема и принцип действия.

Телескопы. Телескоп увеличивает видимые размеры удаленных предметов. В схему простейшего телескопа входят две положительные линзы (рис. 2). Лучи от удаленного предмета, параллельные оси телескопа (лучи a и c на рис. 2), собираются в заднем фокусе первой линзы (объектива). Вторая линза (окуляр) удалена от фокальной плоскости объектива на свое фокусное расстояние, и лучи a и c выходят из нее вновь параллельно оси системы. Некоторый луч b, исходящий не из тех точек предмета, откуда пришли лучи a и c, падает под углом a к оси телескопа, проходит через передний фокус объектива и после него идет параллельно оси системы. Окуляр направляет его в свой задний фокус под углом b. Поскольку расстояние от переднего фокуса объектива до глаза наблюдателя пренебрежимо мало по сравнению с расстоянием до предмета, то из схемы рис. 2 можно получить выражение для видимого увеличения M телескопа: M = -tgb /tga = -F/f' (или F/f). Отрицательный знак показывает, что изображение перевернуто. В астрономических телескопах оно таким и остается; в телескопах для наблюдений за наземными объектами применяют оборачивающую систему, чтобы рассматривать нормальные, а не перевернутые изображения. В оборачивающую систему могут входить дополнительные линзы или, как в биноклях, призмы.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 2. <a href='/dict/простой' class='wordLink' target='_blank'>ПРОСТОЙ</a> <a href='/dict/телескоп' class='wordLink' target='_blank'>ТЕЛЕСКОП</a> (<a href='/dict/оптическая' class='wordLink' target='_blank'>оптическая</a> <a href='/dict/схема' class='wordLink' target='_blank'>схема</a>).

Рис. 2. ПРОСТОЙ ТЕЛЕСКОП (оптическая схема).

Бинокли. Бинокулярный телескоп, обычно именуемый биноклем, представляет собой компактный прибор для наблюдений обоими глазами одновременно; его увеличение, как правило, от 6 до 10 крат. В биноклях используют пару оборачивающих систем (чаще всего - Порро), в каждую из которых входят две прямоугольные призмыоснованием под 45°), ориентированные навстречу прямоугольными гранями. Чтобы получить большое увеличение в широком поле зрения, свободном от аберраций объектива, и, следовательно, значительный угол обзора (6-9°), биноклю необходим очень качественный окуляр, более совершенный, чем телескопу с узким углом зрения. В окуляре бинокля предусмотрена фокусировка изображения, причем с коррекцией зрения, - его шкала размечена в диоптриях. Кроме того, в бинокле положение окуляра подстраивается под расстояние между глазами наблюдателя. Обычно бинокли маркируются в соответствии с их увеличениемкратах) и диаметром объективамиллиметрах), например, 8*40 или 7*50.

<a href='/dict/бинокль' class='wordLink' target='_blank'>БИНОКЛЬ</a>

БИНОКЛЬ

Оптические прицелы. В качестве оптического прицела можно применить любой телескоп для наземных наблюдений, если в какой-либо плоскости его пространства изображений нанести четкие метки (сетки, марки), отвечающие заданному назначению. Типичное устройство многих военных оптических установок таково, что объектив телескопа открыто смотрит на цель, а окуляр находится в укрытии. Такая схема требует излома оптической оси прицела и применения призм для ее смещения; эти же призмы преобразуют перевернутое изображение в прямое. Системы со смещением оптической оси называются перископическими. Обычно оптический прицел рассчитывается так, что зрачок его выхода удален от последней поверхности окуляра на достаточное расстояние для предохранения глаза наводчика от ударов о край телескопа при отдаче оружия.

Дальномеры. Оптические дальномеры, с помощью которых измеряют расстояния до объектов, бывают двух типов: монокулярные и стереоскопические. Хотя они различаются конструктивными деталями, основная часть оптической схемы у них одинакова и принцип действия один: по известной стороне (базе) и двум известным углам треугольника определяется неизвестная его сторона. Два параллельно ориентированных телескопа, разнесенных на расстояние b (база), строят изображения одного и того же удаленного объекта так, что он кажется наблюдаемым из них в разных направлениях (базой может служить и размер цели). Если с помощью какого-нибудь приемлемого оптического устройства совместить поля изображений обоих телескопов так, чтобы их можно было рассматривать одновременно, окажется, что соответствующие изображения предмета пространственно разнесены. Существуют дальномеры не только с полным наложением полей, но и с половинным: верхняя половина пространства изображений одного телескопа объединяется с нижней половиной пространства изображений другого. В таких приборах с помощью подходящего оптического элемента проводится совмещение пространственно разнесенных изображений и по относительному сдвигу изображений определяется измеряемая величина. Часто в качестве сдвигающего элемента служит призма или комбинация призм. В схеме монокулярного дальномера, показанной на рис. 3, эту функцию исполняет призма P3; она связана со шкалой, проградуированной в измеряемых расстояниях до объекта. Пентапризмы B используются как отражатели света под прямым углом, поскольку такие призмы всегда отклоняют падающий световой пучок на 90°, независимо от точности их установки в горизонтальной плоскости прибора. Изображения, создаваемые двумя телескопами, в стереоскопическом дальномере наблюдатель видит сразу обоими глазами. База такого дальномера позволяет наблюдателю воспринимать положение объекта объемно, на некоторой глубине в пространстве. В каждом телескопе имеется сетка с марками, соответствующими значениям дальности. Наблюдатель видит шкалу расстояний, уходящую в глубь изображаемого пространства, и по ней определяет удаленность объекта.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 3. <a href='/dict/монокулярный' class='wordLink' target='_blank'>МОНОКУЛЯРНЫЙ</a> <a href='/dict/дальномер' class='wordLink' target='_blank'>ДАЛЬНОМЕР</a>. A - <a href='/dict/прямоугольная' class='wordLink' target='_blank'>прямоугольная</a> <a href='/dict/призма' class='wordLink' target='_blank'>призма</a>; B - <a href='/dict/пентапризмы' class='wordLink' target='_blank'>пентапризмы</a>; C - <a href='/dict/линзовые' class='wordLink' target='_blank'>линзовые</a> <a href='/dict/объективы' class='wordLink' target='_blank'>объективы</a>; D - <a href='/dict/окуляр' class='wordLink' target='_blank'>окуляр</a>; E - <a href='/dict/глаз' class='wordLink' target='_blank'>глаз</a>; P1 и P2 -<a href='/dict/неподвижные' class='wordLink' target='_blank'>неподвижные</a> <a href='/dict/призмы' class='wordLink' target='_blank'>призмы</a>; P3 - <a href='/dict/подвижная' class='wordLink' target='_blank'>подвижная</a> <a href='/dict/призма' class='wordLink' target='_blank'>призма</a>; I 1 и I 2 - <a href='/dict/изображения' class='wordLink' target='_blank'>изображения</a> <a href='/dict/половин' class='wordLink' target='_blank'>половин</a> <a href='/dict/поля' class='wordLink' target='_blank'>поля</a> <a href='/dict/зрения' class='wordLink' target='_blank'>зрения</a>.

Рис. 3. МОНОКУЛЯРНЫЙ ДАЛЬНОМЕР. A - прямоугольная призма; B - пентапризмы; C - линзовые объективы; D - окуляр; E - глаз; P1 и P2 -неподвижные призмы; P3 - подвижная призма; I 1 и I 2 - изображения половин поля зрения.

Осветительные и проекционные приборы. Прожекторы. В оптической схеме прожектора источник света, например кратер дугового электрического разряда, находится в фокусе параболического отражателя. Лучи, исходящие из всех точек дуги, отражаются параболическим зеркалом почти параллельно друг другу. Пучок лучей немного расходится потому, что источником служит не светящаяся точка, а объем конечного размера.

Диаскоп. В оптическую схему этого прибора, предназначенного для просмотра диапозитивов и прозрачных цветных кадров, входят две линзовые системы: конденсор и проекционный объектив. Конденсор равномерно освещает прозрачный оригинал, направляя лучи в проекционный объектив, который строит изображение оригинала на экране (рис. 4). В проекционном объективе предусматриваются фокусировка и замена его линз, что позволяет менять расстояние до экрана и размеры изображения на нем. Оптическая схема кинопроектора такая же.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 4. <a href='/dict/схема' class='wordLink' target='_blank'>СХЕМА</a> <a href='/dict/диаскопа' class='wordLink' target='_blank'>ДИАСКОПА</a>. A - <a href='/dict/диапозитив' class='wordLink' target='_blank'>диапозитив</a>; B - <a href='/dict/линзовый' class='wordLink' target='_blank'>линзовый</a> <a href='/dict/конденсор' class='wordLink' target='_blank'>конденсор</a>; C - <a href='/dict/линзы' class='wordLink' target='_blank'>линзы</a> <a href='/dict/проекционного' class='wordLink' target='_blank'>проекционного</a> <a href='/dict/объектива' class='wordLink' target='_blank'>объектива</a>; D - <a href='/dict/экран' class='wordLink' target='_blank'>экран</a>; S - <a href='/dict/источник' class='wordLink' target='_blank'>источник</a> <a href='/dict/света' class='wordLink' target='_blank'>света</a>.

Рис. 4. СХЕМА ДИАСКОПА. A - диапозитив; B - линзовый конденсор; C - линзы проекционного объектива; D - экран; S - источник света.

Спектральные приборы. Основным элементом спектрального прибора может быть дисперсионная призма либо дифракционная решетка. В таком приборе свет сначала коллимируется, т.е. формируется в пучок параллельных лучей, затем разлагается в спектр, и, наконец, изображение входной щели прибора фокусируется на его выходную щель по каждой длине волны спектра.

Спектрометр. В этом более или менее универсальном лабораторном приборе коллимирующая и фокусирующая системы могут поворачиваться относительно центра столика, на котором расположен элемент, разлагающий свет в спектр. На приборе имеются шкалы для отсчетов углов поворота, например дисперсионной призмы, и углов отклонения после нее разных цветовых составляющих спектра. По результатам таких отсчетов измеряются, например, показатели преломления прозрачных твердых тел.

Спектрограф. Так называется прибор, в котором полученный спектр или его часть снимается на фотоматериал. Можно получить спектр от призмы из кварца (диапазон 210-800 нм), стекла (360-2500 нм) или каменной соли (2500-16000 нм). В тех диапазонах спектра, где призмы слабо поглощают свет, изображения спектральных линий в спектрографе получаются яркими. В спектрографах с дифракционными решетками последние выполняют две функции: разлагают излучение в спектр и фокусируют цветовые составляющие на фотоматериал; такие приборы применяют и в ультрафиолетовой области.

См. также АСТРОНОМИЯ И АСТРОФИЗИКА; ОПТИКА.

ЛИТЕРАТУРА

Борн М., Вольф Э. Основы оптики. М., 1970 Ефремов А.А. и др. Сборка оптических приборов. М., 1978 Справочник конструктора оптико-механических приборов. Л., 1980 Кулагин С.В. Основы конструирования оптических приборов. Л., 1982 Погарев Г.В. Юстировка оптических приборов. Л., 1982

Полезные сервисы

оптические призмы

оптические стандарты частоты

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптические явления

Словарь иностранных слов

Полезные сервисы

оптический

Толковый словарь

Толковый словарь Ушакова

Толковый словарь Ожегова

Энциклопедический словарь

Академический словарь

Орфографический словарь

Словарь ударений

Формы слов для слова оптический

Синонимы к слову оптический

Тезаурус русской деловой лексики

Морфемно-орфографический словарь

Грамматический словарь

Словарь иностранных слов

Полезные сервисы

оптический диск

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптический институт

Энциклопедический словарь

Опти́ческий институ́т - Государственный (ГОИ) имени С. И. Вавилова, организован в 1918 Д. С. Рождественским в Петрограде. В институте выполнены ставшие классическими исследования по оптике, спектроскопии и др., построен советский электронный микроскоп, первый геодезический светодальномер и другие приборы, создан метод голографии с записью в трехмерной среде. Основана школа вычислительной оптики. Научно-исследовательский центр оптико-механической промышленности.

* * *

ОПТИЧЕСКИЙ ИНСТИТУТ - ОПТИ́ЧЕСКИЙ ИНСТИТУ́Т им. С. И. Вавилова Государственный (ГОИ), организован в 1918 Д. С. Рождественским в Петрограде. В институте выполнены ставшие классическими исследования по оптике, спектроскопии и др., построен советский электронный микроскоп, первый геодезический светодальномер и другие приборы, создан метод голографии с записью в 3-мерной среде. Основная школа вычислительной оптики. Научно-исследовательский центр оптико-механической промышленности.

Полезные сервисы

им. с. и. вавилова" itemscope="" itemtype="http://schema.org/Article">

оптический институт им. с. и. вавилова

Большой энциклопедический словарь

Полезные сервисы

оптический квантовый генератор

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптический квантовый генератор (окг)

оптический контакт

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптический обман

Фразеологический словарь

Сборник слов и иносказаний

Синонимы к слову оптический обман

сущ., кол-во синонимов: 1

Словарь иностранных слов

Полезные сервисы

оптический пирометр

оптический прибор

Идеография

Полезные сервисы

оптический пробой

оптический резонатор

Энциклопедический словарь

Опти́ческий резона́тор - система зеркал, в которой могут возбуждаться электромагнитные волны оптического диапазона. Оптический резонатор обеспечивает положительную обратную связь в лазерах. Простейший оптический резонатор - система двух плоских параллельных зеркал (резонатор Фабри-Перо). Известны двухзеркальный оптический резонатор со сферическими зеркалами и кольцевые оптические резонаторы.

* * *

ОПТИЧЕСКИЙ РЕЗОНАТОР - ОПТИ́ЧЕСКИЙ РЕЗОНА́ТОР, система зеркал, в которой могут возбуждаться электромагнитные волны оптического диапазона. Оптический резонатор обеспечивает положительную обратную связь в лазерах. Простейший оптический резонатор - система двух плоских параллельных зеркал (резонатор Фабри - Перо). Известны двухзеркальный оптический резонатор со сферическими зеркалами и кольцевые оптические резонаторы.

Большой энциклопедический словарь

Полезные сервисы

оптический ридер

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

оптический телеграф

Энциклопедический словарь

Опти́ческий телегра́ф - система визуальной связи с использованием семафорной азбуки. Изобретён в 1793 К. Шаппом. Первая линия оптического телеграфа была построена в 1794 между Парижем и Лиллем (225 км). Передающее устройство оптического телеграфа - совокупность подвижных реек, установленных на башне. Линия оптического телеграфа состояла из цепочки башен, отстоящих друг от друга на расстоянии прямой видимости. В России в 1839-54 действовала самая длинная в мире линия оптического телеграфа между Санкт-Петербургом и Варшавой (1200 км). Во второй половине XIX в. с развитием сети электрической телеграфной связи оптический телеграф потерял своё значение.

* * *

ОПТИЧЕСКИЙ ТЕЛЕГРАФ - ОПТИ́ЧЕСКИЙ ТЕЛЕГРА́Ф, система визуальной связи с использованием семафорной азбуки. Изобретен в 1793 К. Шаппом. Первая линия оптического телеграфа была построена в 1794 между Парижем и Лиллем (225 км). Передающее устройство оптического телеграфа - совокупность подвижных реек, установленных на башне. Линия оптического телеграфа состояла из цепочки башен, отстоящих друг от друга на расстоянии прямой видимости. В России в 1839-54 действовала самая длинная в мире линия оптического телеграфа между Санкт-Петербургом и Варшавой (1200 км). Во 2-й пол. 19 в. с развитием сети электрической телеграфной связи оптический телеграф потерял свое значение.

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

Полезные сервисы

оптический угол

Словарь иностранных слов

Полезные сервисы