Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

продемонстрировавший

Синонимы к слову продемонстрировавший

Полезные сервисы

продемонстрированный

Толковый словарь Ушакова

ПРОДЕМОНСТРИ́РОВАННЫЙ, продемонстрированная, продемонстрированное; продемонстрирован, продемонстрирована, продемонстрировано. прич. страд. прош. вр. от продемонстрировать.

Орфографический словарь

продемонстри́рованный; кратк. форма -ан, -ана

Синонимы к слову продемонстрированный

Морфемно-орфографический словарь

про/демонстр/и́р/ова/нн/ый.

Полезные сервисы

продемонстрировать

Толковый словарь

сов. перех. и неперех.

Произвести, провести демонстрацию чего-либо; наглядно показать.

Толковый словарь Ушакова

ПРОДЕМОНСТРИ́РОВАТЬ, продемонстрирую, продемонстрируешь. совер. к демонстрировать в 1 знач. «Бюрократы и канцеляристы дано уже набили руку на том, чтобы на словах продемонстрировать верность решениям партии и правительства, а на деле - положить их под сукно.» Сталин.

Толковый словарь Ожегова

ПРОДЕМОНСТРИ́РОВАТЬ см. демонстрировать.

Энциклопедический словарь

ПРОДЕМОНСТРИ́РОВАТЬ -рую, -руешь; св. (нсв. демонстри́ровать). кого-что. Наглядно показать, произвести демонстрацию чего-л. П. учебный диафильм. П. новый прибор. П. миролюбивую политику. П. стойкость, эгоизм, деспотизм. П. свои научно-технические достижения. П. себя в новом наряде (разг.).

Академический словарь

-рую, -руешь.

сов. к демонстрировать (во 2 знач.).

Орфографический словарь

продемонстри́ровать, -рую, -рует

Трудности произношения и ударения

продемонстри́ровать. Неправильно произношение [продэмонстри́ровать].

Формы слов для слова продемонстрировать

продемонстри́ровать, продемонстри́рую, продемонстри́руем, продемонстри́руешь, продемонстри́руете, продемонстри́рует, продемонстри́руют, продемонстри́руя, продемонстри́ровал, продемонстри́ровала, продемонстри́ровало, продемонстри́ровали, продемонстри́руй, продемонстри́руйте, продемонстри́ровавший, продемонстри́ровавшая, продемонстри́ровавшее, продемонстри́ровавшие, продемонстри́ровавшего, продемонстри́ровавшей, продемонстри́ровавших, продемонстри́ровавшему, продемонстри́ровавшим, продемонстри́ровавшую, продемонстри́ровавшею, продемонстри́ровавшими, продемонстри́ровавшем, продемонстри́рованный, продемонстри́рованная, продемонстри́рованное, продемонстри́рованные, продемонстри́рованного, продемонстри́рованной, продемонстри́рованных, продемонстри́рованному, продемонстри́рованным, продемонстри́рованную, продемонстри́рованною, продемонстри́рованными, продемонстри́рованном, продемонстри́рован, продемонстри́рована, продемонстри́ровано, продемонстри́рованы

продемонстри́ровать, продемонстри́рую, продемонстри́руем, продемонстри́руешь, продемонстри́руете, продемонстри́рует, продемонстри́руют, продемонстри́руя, продемонстри́ровал, продемонстри́ровала, продемонстри́ровало, продемонстри́ровали, продемонстри́руй, продемонстри́руйте, продемонстри́ровавший, продемонстри́ровавшая, продемонстри́ровавшее, продемонстри́ровавшие, продемонстри́ровавшего, продемонстри́ровавшей, продемонстри́ровавших, продемонстри́ровавшему, продемонстри́ровавшим, продемонстри́ровавшую, продемонстри́ровавшею, продемонстри́ровавшими, продемонстри́ровавшем, продемонстри́рованный, продемонстри́рованная, продемонстри́рованное, продемонстри́рованные, продемонстри́рованного, продемонстри́рованной, продемонстри́рованных, продемонстри́рованному, продемонстри́рованным, продемонстри́рованную, продемонстри́рованною, продемонстри́рованными, продемонстри́рованном, продемонстри́рован, продемонстри́рована, продемонстри́ровано, продемонстри́рованы

Синонимы к слову продемонстрировать

выказать, обнаружить, дать выход, выставить, выразить, изъявить, высказать, не скрыть, демонстрировать, не сделать секрета, экспонировать, оказать, включить в экспозицию, проявить, выявить, указать, показать, выставить напоказ, прокрутить, афишировать, явить, изобразить, представить, передать. Ant. скрыть

гл. сов.

показать

Тезаурус русской деловой лексики

Syn: изобразить, представить, показать, передать

Ant: скрыть

Морфемно-орфографический словарь

про/демонстр/и́р/ова/ть.

Грамматический словарь

продемонстри́ровать св 2a

Полезные сервисы

продемонстрироваться

Тезаурус русской деловой лексики

Полезные сервисы

математический анализ

Энциклопедия Кольера

МАТЕМАТИЧЕСКИЙ АНАЛИЗ - раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и поверхностями (интегральное исчисление). Для задач математического анализа характерно, что их решение связано с понятием предела. Начало математическому анализу положил в 1665 И. Ньютон и (около 1675) независимо от него Г. Лейбниц, хотя важную подготовительную работу провели И. Кеплер (1571-1630), Ф. Кавальери (1598-1647), П. Ферма (1601-1665), Дж. Валлис (1616-1703) и И. Барроу (1630-1677). Чтобы сделать изложение более живым, мы будем прибегать к языку графиков. Поэтому читателю, возможно, будет полезно заглянуть в статью

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ,

прежде чем приступать к чтению данной статьи.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Касательные. На рис. 1 показан фрагмент кривой y = 2x - x2, заключенный между x = -1 и x = 3. Достаточно малые отрезки этой кривой выглядят прямыми. Иначе говоря, если Р - произвольная точка этой кривой, то существует некоторая прямая, проходящая через эту точку и являющаяся приближением кривой в малой окрестности точки Р, причем чем меньше окрестность, тем лучше приближение. Такая прямая называется касательной к кривой в точке Р. Основная задача дифференциального исчисления заключается в построении общего метода, позволяющего находить направление касательной в любой точке кривой, в которой касательная существует. Нетрудно представить себе кривую с резким изломом (рис. 2). Если Р - вершина такого излома, то можно построить аппроксимирующую прямую PT1 - справа от точки Р и другую аппроксимирующую прямую РТ2 - слева от точки Р. Но не существует единственной прямой, проходящей через точку Р, которая одинаково хорошо приближалась к кривой в окрестности точки P как справа, так и слева, следовательно касательной в точке P не существует.

Рис. 1

1.">

Рис. 1.

Рис. 2.

Рис. 2.

На рис. 1 касательная ОТ проведена через начало координат О = (0,0). Угловой коэффициент этой прямой равен 2, т.е. при изменении абсциссы на 1 ордината увеличивается на 2. Если x и y - координаты произвольной точки на ОТ, то, удаляясь от О на расстояние х единиц вправо, мы удаляемся от О на 2y единиц вверх. Следовательно, y/x = 2, или y = 2x. Это уравнение касательной ОТ к кривой y = 2x - x2 в точке О. Необходимо теперь объяснить, почему из множества прямых, проходящих через точку О, выбрана именно прямая ОТ. Чем же прямая с угловым коэффициентом 2 отличается от других прямых? Существует один простой ответ, и нам трудно удержаться от искушения привести его, используя аналогию с касательной к окружности: касательная ОТ имеет с кривой только одну общую точку, тогда как любая другая невертикальная прямая, проходящая через точку О, пересекает кривую дважды. В этом можно убедиться следующим образом. Поскольку выражение y = 2x - x2 можно получить вычитанием х2 из y = 2x (уравнения прямой ОТ), то значения y для графика оказываются меньше знаний y для прямой во всех точках, за исключением точки x = 0. Следовательно, график всюду, кроме точки О, расположен ниже ОТ, и эта прямая и график имеют только одну общую точку. Кроме того, если y = mx - уравнение какой-нибудь другой прямой, проходящей через точку О, то обязательно найдутся две точки пересечения. Действительно, mx = 2x - x2 не только при x = 0, но и при x = 2 - m. И только при m = 2 обе точки пересечения совпадают. На рис. 3 показан случай, когда m меньше 2, поэтому справа от О возникает вторая точка пересечения.

Рис. 3.

Рис. 3.

То, что ОТ - единственная невертикальная прямая, проходящая через точку О и имеющая с графиком лишь одну общую точку, не самое главное ее свойство. Действительно, если мы обратимся к другим графикам, то вскоре выяснится, что отмеченное нами свойство касательной в общем случае не выполняется. Например, из рис. 4 видно, что вблизи точки (1,1) график кривой y = x3 хорошо аппроксимируется прямой РТ, имеющей однако, с ним более одной общей точки. Тем не менее, нам хотелось бы считать РТ касательной к этому графику в точке Р. Поэтому необходимо найти какой-то иной способ выделения касательной, чем тот, который так хорошо послужил нам в первом примере.

Рис. 4.

Рис. 4.

Предположим, что через точку О и произвольную точку Q = (h,k) на графике кривой y = 2x - x2 (рис. 5) проведена прямая (называемая секущей). Подставляя в уравнение кривой значения x = h и y = k, получаем, что k = 2h - h2, следовательно, угловой коэффициент секущей равен

Рис. 5.

Рис. 5.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При очень малых h значение m близко к 2. Более того, выбирая h достаточно близким к 0, мы можем сделать m сколь угодно близким к 2. Можно сказать, что m "стремится к пределу", равному 2, когда h стремится к нулю, или что предел m равен 2 при h, стремящемся к нулю. Символически это записывается так:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тогда касательная к графику в точке О определяется как прямая, проходящая через точку О, с угловым коэффициентом, равным этому пределу. Такое определение касательной применимо в общем случае. Покажем преимущества этого подхода еще на одном примере: найдем угловой коэффициент касательной к графику кривой y = 2x - x2 в произвольной точке P = (x,y), не ограничиваясь простейшим случаем, когда P = (0,0). Пусть Q = (x + h, y + k) - вторая точка на графике, находящаяся на расстоянии h справа от Р (рис. 6). Требуется найти угловой коэффициент k/h секущей PQ. Точка Q находится на расстоянии

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 6.

Рис. 6.

над осью х. Раскрывая скобки, находим:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Вычитая из этого уравнения y = 2x - x2, находим расстояние по вертикали от точки Р до точки Q:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно, угловой коэффициент m секущей PQ равен

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Теперь, когда h стремится к нулю, m стремится к 2 - 2x; последнюю величину мы и примем за угловой коэффициент касательной PT. (Тот же результат получится, если h принимает отрицательные значения, что соответствует выбору точки Q слева от P.) Заметим, что при x = 0 полученный результат совпадает с предыдущим. Выражение 2 - 2x называется производной от 2x - x2. В старину производную также называли "дифференциальным отношением" и "дифференциальным коэффициентом". Если выражением 2x - x2 обозначить f(x), т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

то производную можно обозначить

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Для того, чтобы узнать угловой коэффициент касательной к графику функции y = f(x) в какой-нибудь точке, необходимо подставить в f'(x) соответствующее этой точке значение х. Таким образом, угловой коэффициент f'(0) = 2 при х = 0, f'(0) = 0 при х = 1 и f'(2) = -2 при х = 2. Производную также обозначают у', dy/dx, Dхy и Dу. Тот факт, что кривая y = 2x - x2 вблизи данной точки практически неотличима от ее касательной в этой точке, позволяет говорить об угловом коэффициенте касательной как об "угловом коэффициенте кривой" в точке касания. Такие образом, мы можем утверждать, что угловой коэффициент рассматриваемой нами кривой имеет в точке (0,0) угловой коэффициент 2. Можно также сказать, что при x = 0 скорость изменения y относительно x равна 2. В точке (2,0) угловой коэффициент касательной (и кривой) равен -2. (Знак минус означает, что при возрастании x переменная y убывает.) В точке (1,1) касательная горизонтальна. Мы говорим, что кривая y = 2x - x2 имеет в этой точке стационарное значение.

Максимумы и минимумы. Мы только что показали, что кривая f(x) = 2x - x2 стационарна в точке (1,1). Так как f'(x) = 2 - 2x = 2(1 - x), ясно, что при x, меньших 1, f'(x) положительна, и, следовательно, y возрастает; при x, больших 1, f'(x) отрицательна, и поэтому y убывает. Таким образом, в окрестности точки (1,1), обозначенной на рис. 6 буквой М, значение у растет до точки М, стационарно в точке М и убывает после точки М. Такая точка называется "максимумом", поскольку значение у в этой точке превосходит любые его значения в достаточно малой ее окрестности. Аналогично, "минимум" определяется как точка, в окрестности которой все значения y превосходят значение у в самой этой точке. Может также случиться, что хотя производная от f (x) в некоторой точке и обращается в нуль, ее знак в окрестности этой точки не меняется. Такая точка, не являющаяся ни максимумом, ни минимумом, называется точкой перегиба. В качестве примера найдем стационарную точку кривой

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная этой функции равна

) позволяют представить ее график примерно так, как показано на рис. 7.

и обращается в нуль при x = 0, х = 1 и х = -1; т.е. в точках (0,0), (1, -2/15) и (-1, 2/15). Если х чуть меньше -1, то f'(x) отрицательна; если х чуть больше -1, то f'(x) положительна. Следовательно, точка (-1, 2/15) - максимум. Аналогично, можно показать, что точка (1, -2/15) - минимум. Но производная f'(x) отрицательна как до точки (0,0), так и после нее. Следовательно, (0,0) - точка перегиба. Проведенное исследование формы кривой, а также то обстоятельство, что кривая пересекает ось х при f(x) = 0 (т.е. при х = 0 или

) позволяют представить ее график примерно так, как показано на рис. 7.

) позволяют представить ее график примерно так, как показано на рис. 7.

Рис. 7.

Рис. 7.

В общем, если исключить необычные случаи (кривые, содержащие прямолинейные отрезки или бесконечное число изгибов), существуют четыре варианта взаимного расположения кривой и касательной в окрестности точки касания Р. (См. рис. 8, на котором касательная имеет положительный угловой коэффициент.) 1) По обе стороны от точки Р кривая лежит выше касательной (рис. 8,а). В этом случае говорят, что кривая в точке Р выпукла вниз или вогнута.

Рис. 8.

Рис. 8.

2) По обе стороны от точки Р кривая расположена ниже касательной (рис. 8,б). В этом случае говорят, что кривая выпукла вверх или просто выпукла. 3) и 4) Кривая располагается выше касательной по одну сторону от точки Р и ниже - по другую. В этом случае Р - точка перегиба. Сравнивая значения f'(x) по обе стороны от Р с ее значением в точке Р, можно определить, с каким из этих четырех случаев приходится иметь дело в конкретной задаче.

Приложения. Все изложенное выше находит важные приложения в различных областях. Например, если тело брошено вертикально вверх с начальной скоростью 200 футов в секунду, то высота s, на которой они будут находиться через t секунд по сравнению с начальной точкой составит

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Действуя так же, как в рассмотренных нами примерах, находим

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

эта величина обращается в нуль при

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная f'(x) положительна до значения

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и отрицательна по истечении этого времени.

Следовательно, s возрастает до

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

, затем становится стационарной, а после убывает. Таково общее описание движения брошенного вверх тела.

Из него мы узнаем, когда тело достигает высшей точки. Далее, подставляя t = 25/4 в f (t),

мы получаем 625 футов, максимальную высоту подъема. В данной задаче f'(t) имеет физический смысл.

Эта производная показывает скорость, с которой тело движется в момент времени t.

Рассмотрим теперь приложение

другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку с квадратным дном. Каковы

должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона основания коробки и h - ее

высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh. Преобразуя уравнение,

получаем:

Рассмотрим теперь приложение другого типа (рис. 9). Из листа картона площадью 75 см2 требуется изготовить коробку

с квадратным дном. Каковы должны быть размеры этой коробки, чтобы она имела максимальный объем? Если х - сторона

основания коробки и h - ее высота, то объем коробки равен V = x2h, а площадь поверхности равна 75 = x2 + 4xh.

Преобразуя уравнение, получаем:

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 9.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

откуда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Производная от V оказывается равной

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и обращается в нуль при х = 5. Тогда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и V = 125/2. График функции V = (75x - x3)/4 показан на рис. 10 (отрицательные значения х опущены как не имеющие физического смысла в данной задаче).

Рис. 10.

Рис. 10.

Производные. Важная задача дифференциального исчисления - создание методов, позволяющих быстро и удобно находить производные. Например, несложно посчитать, что

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(Производная от постоянной, разумеется, равна нулю.) Нетрудно вывести общее правило:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где n - любое целое число или дробь. Например,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

(На этом примере видно, как полезны дробные показатели степени.) Приведем некоторые важнейшие формулы:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Существуют также следующие правила: 1) если каждая из двух функций g(x) и f(x) имеет производные, то производная их суммы равна сумме производных этих функций, а производная разности равна разности производных, т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

2) производная произведения двух функций вычисляется по формуле:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

3) производная отношения двух функций имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

4) производная функции, умноженной на константу, равна константе, умноженной на производную этой функции, т.е.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Часто бывает, что значения функции приходится вычислять поэтапно. Например, чтобы вычислить sin x2, нам необходимо сначала найти u = x2, а затем уже вычислить синус числа u. Производную таких сложных функций мы находим с помощью так называемого "цепного правила":

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

В нашем примере f(u) = sin u, f '(u) = cos u, следовательно,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

откуда

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Эти и другие, аналогичные им, правила позволяют сразу же выписывать производные многих функций.

Линейные аппроксимации. То обстоятельство, что, зная производную, мы можем во многих случаях заменить график

функции вблизи некоторой точки ее касательной в этой точке, имеет огромное значение, поскольку с прямыми легче

работать. Эта идея находит непосредственное приложение в вычислении приближенных значений функций. Например,

довольно трудно вычислить значение

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ при x = 1,033. Но можно воспользоваться тем, что число 1,033 близко к 1 и

что Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Вблизи x = 1 мы можем заменить график кривой

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ

касательной, не совершая при этом сколько-нибудь серьезной ошибки. Угловой коэффициент такой касательной равен

значению производной (x1/3)' = (1/3)x-2/3 при x = 1, т.е. 1/3. Так как точка (1,1) лежит

на кривой и угловой коэффициент касательной к кривой в этой точке равен 1/3, уравнение касательной имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

или

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

На этой прямой при х = 1,033

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Полученное значение y должно быть очень близко к истинному значению y; и, действительно, оно лишь на 0,00012 больше истинного. В математическом анализе разработаны методы, позволяющие повышать точность такого рода линейных приближений. Эти методы обеспечивают надежность наших приближенных вычислений. Только что описанная процедура наводит на мысль об одном полезном обозначении. Пусть P - точка, соответствующая на графике функции f переменной х, и пусть функция f(x) дифференцируема. Заменим график кривой вблизи точки Р касательной к нему, проведенной в этой точке. Если х изменить на величину h, то ордината касательной изменится на величину h*f'(x). Если h очень мало, то последняя величина служит хорошим приближением к истинному изменению ординаты y графика. Если вместо h мы напишем символ dx (это не произведение!), а изменение ординаты y обозначим dy, то получим dy = f'(x)dx, или dy/dx = f'(x) (см. рис. 11). Поэтому вместо Dy или f'(x) для обозначения производной часто используется символ dy/dx. Удобство этого обозначения зависит главным образом от явного появления цепного правила (дифференцирования сложной функции); в новых обозначениях эта формула выглядит следующим образом:

Рис. 11.

Рис. 11.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где подразумевается, что у зависит от u, а u в свою очередь зависит от х. Величина dy называется дифференциалом у; в действительности она зависит от двух переменных, а именно: от х и приращения dx. Когда приращение dx очень мало, величина dy близка к соответствующему изменению величины y. Но предполагать, что приращение dx мало, нет необходимости. Производную функции y = f(x) мы обозначили f'(x) или dy/dx. Часто оказывается возможным взять производную от производной. Результат называется второй производной от f (x) и обозначается f"(x) или d 2y/dx2. Например, если f(x) = x3 - 3x2, то f'(x) = 3x2 - 6x и f"(x) = 6x - 6. Аналогичные обозначения используются и для производных более высокого порядка. Однако, чтобы избежать большого количества штрихов (равного порядку производной) четвертую производную (например) можно записать как f (4)(x), а производную n-го порядка как f (n)(x). Можно показать, что кривая в точке выпукла вниз, если вторая производная положительна, и выпукла вверх, если вторая производная отрицательна. Если функция имеет вторую производную, то изменение величины y, соответствующее приращению dx переменной х, можно приближенно вычислить по формуле

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Это приближение, как правило, лучше, чем то, которое дает дифференциал f'(x)dx. Оно соответствует замене части кривой уже не прямой, а параболой. Если у функции f(x) существуют производные более высоких порядков, то

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Остаточный член имеет вид

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

где x - некоторое число между x и x + dx. Приведенный выше результат называется формулой Тейлора с остаточным членом. Если f(x) имеет производные всех порядков, то обычно Rn (r) 0 при n (r) Ґ.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Площади. При изучении площадей криволинейных плоских фигур открываются новые аспекты математического анализа. Такого рода задачи пытались решать еще древние греки, для которых определение, например, площади круга было одной из труднейших задач. Больших успехов в решении этой проблемы добился Архимед, которому также удалось найти площадь параболического сегмента (рис. 12). С помощью весьма сложных рассуждений Архимед доказал, что площадь параболического сегмента составляет 2/3 от площади описанного прямоугольника и, следовательно, в данном случае равна (2/3)(16) = 32/3. Как мы увидим в дальнейшем, этот результат можно легко получить методами математического анализа.

Рис. 12.

Рис. 12.

Предшественники Ньютона и Лейбница, главным образом Кеплер и Кавальери, решали задачи о вычислении площадей криволинейных фигур с помощью метода, который трудно назвать логически обоснованным, но который оказался чрезвычайно плодотворным. Когда же Валлис в 1655 соединил методы Кеплера и Кавальери с методами Декарта (аналитической геометрией) и воспользовался только что зародившейся алгеброй, сцена для появления Ньютона была полностью подготовлена. Валлис разбивал фигуру, площадь которой требовалось вычислить, на очень узкие полоски, каждую из которых приближенно считал прямоугольником. Затем он складывал площади аппроксимирующих прямоугольников и в простейших случаях получал величину, к которой стремилась сумма площадей прямоугольников, когда число полосок стремилось к бесконечности. На рис. 13 показаны прямоугольники, соответствующие некоторому разбиению на полоски площади под кривой y = x2.

Рис. 13.

Рис. 13.

Основная теорема. Великое открытие Ньютона и Лейбница позволило исключить трудоемкий процесс перехода к пределу суммы площадей. Это было сделано благодаря новому взгляду на понятие площади. Суть в том, что мы должны представить площадь под кривой как порожденную ординатой, движущейся слева направо и спросить, с какой скоростью изменяется заметаемая ординатами площадь. Ключ к ответу на этот вопрос мы получим, если рассмотрим два частных случая, в которых площадь заранее известна. Начнем с площади под графиком линейной функции y = 1 + x, поскольку в этом случае площадь можно вычислить с помощью элементарной геометрии. Пусть A(x) - часть плоскости, заключенная между прямой y = 1 + x и отрезком OQ (рис. 14). При движении QP вправо площадь A(x) возрастает. С какой скоростью? Ответить на этот вопрос нетрудно, так как мы знаем, что площадь трапеции равна произведению ее высоты на полусумму оснований. Следовательно,

Рис. 14.

Рис. 14.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Скорость изменения площади A(x) определяется ее производной

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Мы видим, что A'(x) совпадает с ординатой у точки Р. Случайно ли это? Попробуем проверить на параболе, изображенной на рис. 15. Площадь A (x) под параболой у = х2 в интервале от 0 до х равна A(x) = (1/3)(x)(x2) = x3/3. Скорость изменения этой площади определяется выражением

Рис. 15.

Рис. 15.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

которое в точности совпадает с ординатой у движущейся точки Р. Если предположить, что это правило выполняется в общем случае так, что

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

есть скорость изменения площади под графиком функции y = f(x), то этим можно воспользоваться для вычислений и других площадей. На самом деле, соотношение A'(x) = f(x) выражает фундаментальную теорему, которую можно было бы сформулировать следующим образом: производная, или скорость изменения площади как функции от х, равна значению функции f (x) в точке х. Например, чтобы найти площадь под графиком функции y = x3 от 0 до х (рис. 16), положим

Рис. 16.

Рис. 16.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Возможный ответ гласит:

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

так как производная от х4/4 действительно равна х3. Кроме того, A(x) равна нулю при х = 0, как и должно быть, если A(x) действительно является площадью. В математическом анализе доказывается, что другого ответа, кроме приведенного выше выражения для A(x), не существует. Покажем, что это утверждение правдоподобно с помощью следующего эвристического (нестрогого) рассуждения. Предположим, что существует какое-либо второе решение В(x). Если A(x) и В(x) "стартуют" одновременно с нулевого значения при х = 0 и все время изменяются с одинаковой скоростью, то их значения ни при каком х не могут стать различными. Они должны всюду совпадать; следовательно, существует единственное решение. Как можно обосновать соотношение A'(x) = f(x) в общем случае? На этот вопрос можно ответить, лишь изучая скорость изменения площади как функции от х в общем случае. Пусть m - наименьшее значение функции f (x) в интервале от х до (x + h), а M - наибольшее значение этой функции в том же интервале. Тогда приращение площади при переходе от х к (x + h) должно быть заключено между площадями двух прямоугольников (рис. 17). Основания обоих прямоугольников равны h. Меньший прямоугольник имеет высоту m и площадь mh, больший, соответственно, М и Mh. На графике зависимости площади от х (рис. 18) видно, что при изменении абсциссы на h, значение ординаты (т.е. площадь) увеличивается на величину, заключенную между mh и Mh. Угловой коэффициент секущей на этом графике находится между m и M. Что происходит, когда h стремится к нулю? Если график функции y = f(x) непрерывен (т.е. не содержит разрывов), то и М, и m стремятся к f(x). Следовательно, угловой коэффициент A'(x) графика площади как функции от х равен f(x). Именно к такому заключению и требовалось придти.

Рис. 17.

Рис. 17.

Рис. 18.

Рис. 18.

Лейбниц предложил для площади под кривой y = f(x) от 0 до а обозначение

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При строгом подходе этот так называемый определенный интеграл должен быть определен как предел некоторых сумм на манер Валлиса. Учитывая полученный выше результат, ясно, что этот интеграл вычисляется при условии, что мы можем найти такую функцию A(x), которая обращается в нуль при х = 0 и имеет производную A'(x), равную f (x). Нахождение такой функции принято называть интегрированием, хотя уместнее эту операцию было бы называть антидифференцированием, имея в виду, что она является в некотором смысле обратной дифференцированию. В случае многочлена интегрирование выполняется просто. Например, если

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

то

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

в чем нетрудно убедиться, продифференцировав A(x). Чтобы вычислить площадь А1 под кривой y = 1 + x + x2/2, заключенную между ординатами 0 и 1, мы просто записываем

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

и, подставляя х = 1, получаем A1 = 1 + 1/2 + 1/6 = 5/3. Площадь A(x) от 0 до 2 равна A2 = 2 + 4/2 + 8/6 = 16/3. Как видно из рис. 19, площадь, заключенная между ординатами 1 и 2, равна A2 - A1 = 11/3. Обычно она записывается в виде определенного интеграла

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Рис. 19.

Рис. 19.

Объемы. Аналогичные рассуждения позволяют удивительно просто вычислять объемы тел вращения. Продемонстрируем

это на примере вычисления объема шара, еще одной классической задачи, которую древним грекам, с помощью известных

им методов, удалось решить с великим трудом. Повернем часть плоскости, заключенной внутри четверти круга радиуса r,

на угол 360° вокруг оси х. В результате мы получим полушарие (рис. 20), объем которого обозначим V(x).

Требуется определить, с какой скоростью возрастает V(x) с увеличением x. Переходя от х к х + h, нетрудно

убедиться в том, что приращение объема меньше, чем объем p(r2 - x2)h кругового цилиндра радиуса

Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ и высотой h, и больше, чем объем p[[r2 - (x + h)2]]h

цилиндра радиуса Энциклопедия Кольера МАТЕМАТИЧЕСКИЙ АНАЛИЗ и высотой h.

Следовательно, на графике функции V(x) угловой коэффициент секущей заключен между p(r2 - x2) и p[[r2 - (x + h)2]].

Когда h стремится к нулю, угловой коэффициент стремится к

Рис. 20.

Рис. 20.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно,

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

При x = r мы получаем

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

для объема полушария, и, следовательно, 4pr3/3 для объема всего шара. Аналогичный метод позволяет находить длины кривых и площади искривленных поверхностей. Например, если a(x) - длина дуги PR на рис. 21, то наша задача состоит в вычислении a'(x). Воспользуемся на эвристическом уровне приемом, который позволяет не прибегать к обычному предельному переходу, необходимому при строгом доказательстве результата. Предположим, что скорость изменения функции а(x) в точке Р такая же, какой она была бы при замене кривой ее касательной PT в точке P. Но из рис. 21 непосредственно видно, при шаге h вправо или влево от точки х вдоль РТ значение а(x) меняется на

Рис. 21.

Рис. 21.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Следовательно, скорость изменения функции a(x) составляет

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Чтобы найти саму функцию a(x), необходимо лишь проинтегрировать выражение, стоящее в правой части равенства. Оказывается, что для большинства функций выполнить интегрирование довольно трудн

Полезные сервисы

алгебра

Энциклопедия Кольера

АЛГЕБРА - раздел элементарной математики, в котором арифметические операции производятся над числами, значения которых заранее не заданы. Преимущества алгебраических методов обусловлены использованием достаточно компактных символических систем, что внешне выглядит как самая характерная их черта. Термин "алгебра" применяется также для обозначения более абстрактных областей математики, в которых символы используются сходным образом, но необязательно при этом представляют числа

(см. также АЛГЕБРА АБСТРАКТНАЯ; МНОЖЕСТВ ТЕОРИЯ). Для представления чисел можно использовать любые символы, но обычно для этого берут буквы латинского алфавита. Если x и y - два числа, то их сумма обозначается x + y, а разность x - y, т.е. как в арифметике. Так как знак умножения * легко спутать с буквой x, в алгебре знак * используется редко; обычно произведение чисел x и y обозначается xЧy или просто xy. (Знакомые всем позиционные обозначения, используемые при записи целых чисел и означающие, например, что 23 - это не два умножить на три, а два десятка плюс три единицы, в алгебре не применяются.) Аналогично, если одно из встречающихся в задаче чисел указано явно или заранее известно, например число 2, то сумма двойки и любого не указанного заранее числа x алгебраически записывается в виде 2 + x или x + 2, а произведение - как 2x. Множитель 2 в произведении 2x обычно называют коэффициентом. Частные, как правило, записывают в виде дробей; допустима запись x е y, но или (из соображений удобства набора) x/y встречается гораздо чаще. Символ = означает "равно", символ № - "не равно". Например, пусть x - число (если оно существует), такое, что если его удвоить, то оно совпадет с самим собой, увеличенным на три. Чтобы найти x ("неизвестное"), мы можем рассуждать на словах, как это и делали первые алгебраисты до изобретения символических систем, но гораздо эффективнее воспользоваться алгебраическими обозначениями. По условиям задачи, требуется, чтобы 2x = x + 3.

Такое представление равенства двух чисел называется уравнением. Пользуясь известными из арифметики правилами операций над числами, уравнение можно упростить. Если число x удовлетворяет уравнению, то числа 2x и x + 3 равны. Вычитая по x из каждого числа, мы снова получим равные числа, следовательно, можно записать x = 3, и задача решена (см. также АРИФМЕТИКА; ЧИСЛО). Заметим, что вычитание x из обеих частей уравнения приводит к такому же результату, как если бы мы взяли x из правой части уравнения и перенесли его в левую часть с другим знаком, т.е. как -x, в результате чего мы получим уравнение 2x - x = 3,

откуда x = 3. Аналогично, если два числа равны, будут равны также их удвоенные величины и их половины, а в более общем случае будут равны результаты их умножения на одно и то же число. Отсюда следует правило, согласно которому обе части уравнения можно умножать или делить на одно и то же число (кроме нуля). Например, из уравнения 3x = 6 мы заключаем, что x = 2. С другой стороны, если x = 1 и, следовательно, x - 1 = 0, мы не можем делить на x - 1 обе части уравнения x - 1 = 0; если же мы все-таки разделим, то скорее всего получим неверный результат, который можно записать в виде "равенства" 1 = 0.

Символы группировки. Огромные возможности алгебраических символов в полной мере раскрываются лишь когда необходимо записать уравнения более сложные, чем те, которые встречались нам до сих пор. В тех случаях, когда требуется изменить порядок выполнения операций, используются символы группировки членов, главным образом круглые скобки (), квадратные скобки [[]] и фигурные скобки {}. В некоторых случаях порядок выполнения операций несуществен, например, как в выражении 2 + 3 + 4; не важно, прибавим ли мы сначала 2 к 3, а затем прибавим результат, равный 5, к 4, или сначала прибавим 3 к 4, а затем полученную сумму, равную 7, прибавим к 2. Объясняется это тем, что сложение действительных чисел подчиняется закону ассоциативности. С другой стороны, смысл выражения 12 е 2 е 3 совершенно неясен: оно могло бы означать, что 12 следует разделить на 2 (и получить частное, равное 6), а затем полученный результат разделить на 3 и получить 2; или же что 2 следует разделить на 3 и получить частное, равное 2/3, а затем 12 разделить на 2/3 и получить 18. Чтобы исключить столь различные толкования, мы можем записать исходное выражение в виде (12 е 2) е 3 в первом случае и как 12 е (2 е 3) - во втором. Согласно принятому соглашению, операции, указанные в круглых скобках, выполняются первыми. В некоторых случаях смысл выражения определяет принятое соглашение о порядке выполнения операций, без которого выражение допускало бы различные толкования. Например, принято считать, что 2Ч3 + 4 означает 6 + 4, т.е. 10, а не 2*7, т.е. 14. Таким образом, если нет операций, заключенных в скобки, то сначала выполняются последовательно умножение и деление, а затем - сложение и вычитание. Если же мы хотим, чтобы сначала была выполнена операция сложения, то необходимо записать 2*(3 + 4) или просто 2(3 + 4). Используя закон дистрибутивности, это выражение можно упростить: 2(3 + 4) = (2*3) + (2*4). Если встречаются несколько скобок, круглых, прямоугольных и фигурных, то выполнять действия нужно, начиная с внутренних скобок; например, 2{3 + 4[[6 - (2 + 3)]]}

раскрывается последовательно следующим образом: 2{3 + 4[[6 - 5]]} = 2{3 + 4} = 2*7 = 14. К числам, представленным символами, следует применять те же правила, которые определяются свойствами чисел. Например, x + 2(3 - x) = x + 2*3 - 2x = 6 - x;

здесь мы воспользовались законом дистрибутивности, а затем законами ассоциативности и коммутативности сложения. Аналогично,

АЛГЕБРА

В этом примере мы помимо законов дистрибутивности, коммутативности и ассоциативности, воспользовались правилом, согласно которому произведение положительного и отрицательного чисел отрицательно, а произведение двух отрицательных чисел положительно.

Системы уравнений. В некоторых задачах требуется найти одновременно несколько чисел, для чего необходимо решить несколько уравнений. Предположим, например, что возраст Джона и удвоенный возраст Мэри вместе составляют 32 года, а если бы Джон был вдвое старше, а Мэри на четыре года младше, то им вместе было бы 24 года. Сколько лет Джону и Мэри? Обозначим возрасты Джона и Мэри любыми буквами, например, соответственно j и m. Тогда первое утверждение относительно возрастов можно записать в виде

АЛГЕБРА

а второе - в виде

АЛГЕБРА

или после упрощения как

АЛГЕБРА

Когда два (или больше) числа удовлетворяют двум, как в данном случае, или большему числу уравнений, говорят, что эти числа удовлетворяют системе уравнений. Существуют несколько методов решения систем уравнений. В нашей задаче уравнение (1) (его правую и левую части) можно умножить на 2:

АЛГЕБРА

Уравнение (2) утверждает, что 2j + m и 28 - одно и то же число; уравнение (3), если оно верно, останется в силе, если мы вычтем это число из его правой и левой частей, а именно: из левой части мы вычтем 2j + m, а из правой - число 28. В результате мы получим 3m = 36,

откуда m = 12 (т.е. Мэри 12 лет). Используя информацию, содержащуюся в уравнении (1), мы получаем j + 24 = 32 и, следовательно, j = 8 (т.е. Джону 8 лет). Другие методы решения систем уравнений мы продемонстрируем на следующих примерах (каждый из методов пригоден для решения любой из приведенных задач). Предположим, что руководителю предприятия выплачивается 20%-я премия от чистой прибыли, вычисляемой вычитанием из прибыли налогов, но не его премии, и что налоги взимаются в размере 30% от общей прибыли за вычетом причитающейся руководителю премии, но не самих налогов. Предположим, что общая прибыль до вычитания премии и налогов составляет 50 000 долларов. Какова премия и каковы налоги? Задача может показаться неразрешимой, если подходить к ней с позиций арифметики, так как ни премия, ни налоги не могут быть представлены в численном виде, пока мы не узнаем хотя бы одну из этих величин. Однако с помощью алгебраических методов справиться с решением такой задачи не составляет труда. Если обозначить величину премии через b, а размер взимаемых налогов через t, то b = 0,2(50 000 - t), t = 0,3(50 000 - b).

Здесь первое из уравнений утверждает, что b = 10 000 - 0,2t; используя это обстоятельство во втором уравнении, последовательно находим:

АЛГЕБРА

или после округления до ближайших целых чисел (долларов) t = 12 766$, b = 7447$.

Системы линейных уравнений вроде этих можно решать с помощью определителей. В более сложных случаях мы можем воспользоваться различными численными методами их решения. См. также ОПРЕДЕЛИТЕЛЬ. Степени и радикалы. Обозначение x2 (читается "икс в квадрате") используется для сокращенной записи произведения xx (т.е. "икс раз по икс"); например, 32 = 9 и (-1/2)2 = 1/4. Число 2 в этой записи называется показателем степени. Аналогичный смысл имеют более высокие показатели степени: x3 (читается "икс в кубе") означает xxx, а xn (читается "икс в степени n") означает произведение n сомножителей x. Например, 25 = 2*2*2*2*2 = 32. Само число x можно записать как x1 (икс в первой степени), но показатель 1 обычно опускается. Так как 22Ч23 = 25 и вообще xmЧxn = xm+n (в этом нетрудно убедиться, если воспользоваться определением степеней), мы приходим к определениям отрицательных и нулевого показателей степеней: x- n = 1/xn и x0 = 1. Например, 2- 3 = (1/2)3 = 1/8; 20 = 1. (Для нуля отрицательные и нулевая степени не определены.) Равенство xm*xn = xm+n - одно из трех фундаментальных правил действий над степенями, два других правила имеют вид xm*ym = (xy)m и (xm)n = xmn. Например, 23*33 = 63 и (23)4 = 212 = 4096. Повторные показатели следует интерпретировать следующим образом: означает . Таким образом, означает . Это число часто приводят как наибольшее число, которое можно записать с помощью трех цифр. Корнем n-й степени из числа x называется число, n-я степень которого совпадает с x. При n = 2 или n = 3 корни называются соответственно квадратным и кубическим. Например, 3 и -3 - квадратные корни из 9, так как 32 = 9 и (-3)2 = 9; 2 - кубический корень из 8, т.к. 23 = 8; -2 - кубический корень из -8; 1/2 - кубический корень из 1/8. У любого положительного числа существуют два квадратных корня, один положительный и один отрицательный. Положительный квадратный корень из x обозначается , поэтому . (Символ - стилизованная буква латинского алфавита r, первая буква латинского слова "radix" - корень.) Произвольное положительное число имеет n корней n-й степени; если n четно, то оба корня - действительные; если n нечетно, то действительным является один корень. Если x - положительное число, то символ означает положительный корень n-й степени при четном n; если x - положительное или отрицательное число, то означает один из действительных корней n-й степени при нечетном n. Например, , , , , , называются радикалами. Простые радикалы, выражающие иррациональные числа, например , , , и поныне называются несколько устаревшим термином "иррациональности". Следует подчеркнуть, что всегда означает положительный квадратный корень, так что, например, только в том случае, если y - положительное число; если же y отрицательно, то означает положительное число-y . Альтернативные обозначения корней основаны на использовании дробных степеней и предпочтительны с точки зрения удобства типографского набора. Если считать, что дробные показатели степеней должны подчиняться тем же законам, что и целые, то x1/2x1/2 должно означать (x1/2)2 = x1/2Ч2 = x; по определению мы полагаем . Аналогично, x1/n означает корень n-й степени из x, поэтому, например, 81/3 = 2. Естественно, xp/q означает p-ю степень корня q-й степени из числа x или имеет альтернативный (при положительных x - эквивалентный) смысл корня q-й степени из p-й степени числа x. Например, 82/3 = 22 = 4 или 82/3 = 641/3 = 4; 8-2/3 = 1/4 . Определения дробных и отрицательных степеней положительных чисел выбраны так, чтобы при работе с ними сохранялись правила действий с целыми положительными степенями. Например,

АЛГЕБРА

Определить степени отрицательных или комплексных чисел так, чтобы и для них выполнялись все без исключения правила действий над степенями, не представляется возможным. См. также ЛОГАРИФМ.

Тождества. Важную часть алгебры составляют формулы, которые можно использовать для упрощения сложных выражений. Например, справедливо следующее соотношение: (a + b)(c + d) = ac + bc + ad + bd.

Такое равенство называется тождеством; под этим понимается, что независимо от того, какие числа были обозначены символами a, b, c, d, результат выполнения операций, указанных в левой части равенства, совпадает с результатом операций, указанных в правой части равенства. Кстати сказать, приведенное выше тождество используется в арифметике при решении, например, таких задач: 25*36 = (20 + 5)(30 + 6) = 600 + 150 + 120 + 30;

обычная форма записи, принятая при выполнении вычислений, является сокращенной формой этого тождества. Другие тождества, такие как

АЛГЕБРА

могут использоваться как для упрощения решений в арифметике, так и для строго алгебраических целей. Например, 101*99 = (100 + 1)(100 - 1) = 1002 - 12 = 9999. Первые две из приведенных формул являются частными случаями (с показателем 2) бинома Ньютона (см. также НЬЮТОНА БИНОМ). Эти тождества можно читать и в обратную сторону, т.е. справа налево, для записи алгебраических выражений в виде произведения множителей, например,

АЛГЕБРА

Такая факторизация (разложение на множители) полезна при решении уравнений. Раскрыв произведение (ax + b)(cx + d), мы получим тождество (ax + b)(cx + d) = acx2 + (bc + ad)x + bd.

Довольно часто приходится сталкиваться с задачей представления в виде произведения двух множителей выражений типа x2 - x - 6. Если такое представление с целочисленными коэффициентами возможно, то его можно попытаться найти путем подбора коэффициентов (в рассматриваемом случае x2 - x - 6 = (x - 3)(x +2)).

Многочлены и уравнения. Многочленом называется выражение 2x3 - 5x2 + 6x - 1, в общем виде представляющее собой сумму целочисленных степеней одного и того же числа, взятых с заданными коэффициентами. С помощью десятичной записи целые числа можно представлять в виде многочленов по степеням числа 10, например, 365 = 3*(102) + 6(10) + 5. Если число x в выражении 2x3 - 5x2 + 6x - 1 не задано и может принимать значения из некоторого множества чисел, то оно называется переменной, и формула 2x3 - 5x2 + 6x - 1 определяет некоторую функцию, область определения которой совпадает с тем множеством значений, которые может принимать x. Такая функция называется полиномиальной или для краткости просто полиномом (многочленом); обычно областью определения многочлена принято считать область всех вещественных чисел или множество всех комплексных чисел

(см. ФУНКЦИЯ). Степенью многочлена называют высшую степень входящей в него переменной, например, 2x3 - 5x2 + 6x - 1 - многочлен третьей степени. Любое число, отличное от нуля, рассматриваемое как функция (постоянная, или константа), представляет собой многочлен нулевой степени. Многочлены степеней 1, 2, 3, 4 называются соответственно линейными, квадратными, кубическими и биквадратными. Многочлены можно складывать и умножать так же, как числа, за исключением операции переноса единицы в старший разряд. Последнее вполне естественно, т.к. обычный способ записи чисел по существу является их представлением в виде многочлена по степеням числа 10. Например, чтобы найти сумму многочленов 2x3 - 3x2 + 4x + 5 и x2 + 3x - 2, мы записываем

АЛГЕБРА

чтобы найти произведение тех же многочленов, мы записываем

АЛГЕБРА

Алгебраическое уравнение (в стандартной форме) - это записанное в алгебраических обозначениях утверждение о том, что некоторая полиномиальная функция обращается в нуль при некотором значении или некоторых значениях переменной (которые требуется найти; например, x2 - 5x + 6 = 0 - алгебраическое уравнение). Уравнение типа 5 - 2x = 6x2 - 3x, приводимое к стандартному алгебраическому уравнению, также называется алгебраическим уравнением. В тех разделах математики, где неалгебраические уравнения (например, ex + 2sin x = 3) не встречаются, вместо слов "алгебраическое уравнение" обычно говорят просто "уравнение". Значения переменной, при которых многочлен обращается в нуль, называются корнями многочлена; они также являются корнями уравнения, получающегося, если многочлен приравнять нулю. Например, многочлен x2 - 5x + 6 имеет корни 2 и 3, т.к. 22 - 5Ч2 + 6 = 0 и 32 - 5Ч3 + 6 = 0; уравнение x2 - 5x + 6 = 0 также имеет корни 2 и 3. Заметим, однако, что в многочлене x2 - 5x + 6 переменная x означает любое число из области определения функции; в уравнении же x2 - 5x + 6 = 0 неизвестная величина x означает одно из чисел, удовлетворяющих уравнению, т.е. превращающих его в тождество, а именно 2 или 3. Линейное уравнение общего вида можно записать как ax + b = 0, где a(№ 0) и b - два заданных числа. Оно имеет решение x = -b/a; таким образом, линейное (степени 1) уравнение имеет ровно один корень. Квадратное уравнение имеет вид ax2 + bx + c = 0. Некоторые простые квадратные уравнения удается решить методом факторизации: если уравнение имеет вид x2 - 5x + 6 = 0,

то его можно также записать в эквивалентной форме (x - 3)(x - 2) = 0,

а последнее выполняется только в том случае, когда x = 3 или x = 2 (т.к. произведение двух чисел равно нулю лишь когда один из сомножителей равен нулю). Следовательно, у интересующего нас уравнения два корня: 2 и 3. Было установлено, что квадратное уравнение обычно имеет два корня, хотя, например, у уравнения x2 - 4x + 4 = 0

только один корень. Считается, что в этом случае оба корня уравнения совпадают, так как многочлен, стоящий в левой части уравнения, можно представить в виде двух линейных сомножителей x2 - 4x + 4 = (x - 2)(x - 2).

Квадратное уравнение типа x2 + 2x + 4 = 0

не имеет действительных корней, т.к. x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3, т.е. значение многочлена x2 + 2x + 4 положительно при любом действительном x; однако у этого уравнения есть, как будет показано ниже, два комплексных корня. Так называемая основная теорема алгебры утверждает, что любой многочлен положительной степени n можно разложить в произведение n линейных сомножителей (возможно, с использованием комплексных чисел), поэтому в общем случае можно сказать, что алгебраическое уравнение степени n имеет n корней (хотя значения некоторых корней могут совпадать). Общий метод решения квадратного уравнения (называемый дополнением до полного квадрата) основан на идее, с помощью которой мы показали, что у уравнения x2 + 2x + 4 = 0 нет действительных корней. В качестве примера мы выберем уравнение, имеющее действительные корни: x2 + 2x - 2 = 0.

Запишем это уравнение в виде x2 + 2x = 2

и прибавим к правой и левой части по 1: x2 + 2x + 1 = 3.

В левой части теперь стоит полный квадрат, поэтому (x + 1)2 = 3.

Это означает, что число x + 1 - один из квадратных корней из 3, т.е.

АЛГЕБРА

откуда

АЛГЕБРА

Обычно для краткости это записывают так:

АЛГЕБРА

что следует понимать как альтернативу (x принимает либо одно, либо другое значение), но отнюдь не как утверждение о том, будто x принимает два значения одновременно. Следуя той же самой процедуре, мы можем решить квадратное уравнение в общем виде и получить формулу для его корней. Запишем уравнение в виде ax2 + bx + c = 0, где a № 0,

перенесем свободный член в правую часть с противоположным знаком и разделим каждый член уравнения на a:

АЛГЕБРА

Тогда

АЛГЕБРА

Если величина b2 - 4ac отлична от нуля, то радикал следует понимать как любой из двух квадратных корней из b2 - 4ac, один из которых - положительный, а другой - отрицательный, поэтому полученная формула дает ровно два корня; если величина b2 - 4ac равна нулю, то x = -b/(2a), и мы говорим, что уравнение имеет два равных корня. Если величина b2 - 4ac положительна, то никаких трудностей с извлечением квадратного корня не возникает. Если же величина b2 - 4ac отрицательна, то нам приходится вводить мнимую единицу i, определяемую как квадратный корень из -1, и корни уравнения становятся комплексными. Так, если, например, b2 - 4ac = -4, то

АЛГЕБРА

См. также ЧИСЛО. Чтобы продемонстрировать, как действует формула для корней квадратного уравнения в случае, когда b2 - 4ac < 0, рассмотрим уравнение 2x2 - 4x + 3 = 0.

Здесь a = 2, b = -4, c = 3, и корни равны

АЛГЕБРА

Формула для корней квадратного уравнения остается в силе и в том случае, когда коэффициенты уравнения - комплексные числа, но приводит к необходимости извлекать квадратный корень из комплексного числа, а поэтому менее удобна, чем в случае действительных коэффициентов. Формулы для корней уравнений третьей и четвертой степеней (кубических и биквадратных уравнений) выглядят гораздо сложнее, а для уравнений пятой и более высоких степеней они существуют лишь в отдельных случаях. Когда же коэффициенты уравнения достаточно сложны, например, выражаются числами со многими значащими цифрами, такие формулы не имеют практического значения, и гораздо эффективнее воспользоваться приближенными методами.

См. также УРАВНЕНИЯ. Неравенства. Символы > и < означают соответственно "больше, чем" и "меньше, чем"; например, 2 < 4 и -3 > -5. Неравенства, содержащие неизвестное число, можно решать, пользуясь методами, похожими на те, которыми решают уравнения. Применимы три правила: (i) из обеих частей неравенства можно вычитать одно и то же число, к обеим частям неравенства можно прибавлять одно и то же число; (ii) обе части неравенства можно умножать на одно и то же положительное число (но не на нуль); (iii) при умножении обеих частей неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный (т.е. вместо "больше, чем" неравенство переходит в "меньше, чем" и наоборот). В качестве примера решим неравенство -2x - 7 > 2 - 5x.

Пользуясь правилом (i), заменим это неравенство новым: -7 > 2 - 3x,

или -9 > -3x.

По правилу (iii) последнее неравенство эквивалентно неравенству 9 < 3x,

а по правилу (ii) это неравенство, в свою очередь, эквивалентно неравенству 3 < x.

Таким образом, числа x, удовлетворяющие неравенству -2x - 7 > 2 - 5x, это в точности те самые числа, которые больше 3. При умножении на множитель, содержащий неизвестную величину, следует иметь в виду, что этот множитель может быть как отрицательным, так и положительным.

См. также РЯДЫ; ПРОГРЕССИЯ.

ЛИТЕРАТУРА

Курош А.Г. Курс высшей алгебры. М., 1975 Скорняков Л.А. Элементы алгебры. М., 1980

Полезные сервисы