Толковый словарь
I м.
Элементарная частица с наименьшим отрицательным электрическим зарядом, участвующая в строении вещества.
II м.
Лёгкий магниевый сплав, содержащий алюминий, цинк, марганец, обладающий большой прочностью и эластичностью.
III м. устар.
Сплав золота и серебра янтарного цвета, применявшийся для изготовления драгоценных изделий.
Толковый словарь Ушакова
ЭЛЕКТРО́Н, элктрона, муж. (греч. elektron - янтарь).
1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток.
2. только ед. Легкий магниевый сплав, употр. при постройке летательных аппаратов (тех.).
Толковый словарь Ожегова
ЭЛЕКТРО́Н, -а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом.
Энциклопедический словарь
ЭЛЕКТРО́Н -а; м. [от греч. ēlektron - янтарь] Мельчайшая элементарная частица вещества, имеющая отрицательный электрический заряд. Поток электронов.
◁ Электро́нный (см.).
* * *
электро́н (е, е-), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой около 9·10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном., слабом и гравитационном взаимодействиях. Электрон - один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств макроскопических тел.
-----------------------------------
«Электро́н» - ИСЗ, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами - один по траектории, лежащей ниже, а другой - выше радиационных поясов. В 1964 запущено 2 пары «Электронов».
Большой энциклопедический словарь
"ЭЛЕКТРОН" - искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами - один по траектории, лежащей ниже, а другой - выше радиационных поясов. В 1964 запущено 2 пары "Электронов".
-----------------------------------
ЭЛЕКТРОН (е - е-), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10-28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях. Электрон - один из основных структурных элементов вещества; электронные оболочки атомов определяют оптические, электрические, магнитные и химические свойства атомов и молекул, а также большинство свойств твердых тел.
Академический словарь
1)
-а, м.
Мельчайшая элементарная частица вещества, имеющая отрицательный электрический заряд.
[От греч. ’ήλεκτρον - янтарь]
2)
-а, м. устар.
Сплав алюминия с магнием, литием и цинком, обладающий большой легкостью, прочностью и пластичностью.
[От греч. ’ήλεκτρον - сплав золота с серебром]
Энциклопедия Кольера
ЭЛЕКТРОН - элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это - самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение - релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.) Все электроны тождественны и подчиняются статистике Ферми - Дирака. Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов - валентных электронов, определяющих химические свойства атомов, - зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е. Другое следствие состоит в том, что электронные "облака", окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (me " 0,51 МэВ " 0,91*10 -27 г), заряд (-e " -1,6*10 -19 Кл) и спин (1/2ћ "1/2*0,66*10-33 Дж*с, где - постоянная Планка h, деленная на 2p). Через них выражаются все остальные характеристики электрона, например магнитный момент ("1,001m3 " 1,001*0,93*10 -23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см. ниже). Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е. Наименование "электрон" вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают "катодные лучи", несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е, то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей. Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шредингером в 1926. Одновременно на основании анализа атомных спектров С. Гаудсмитом и Дж. Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П. Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок). Из уравнения Дирака вытекало существование еще одной частицы - положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і mс2 (mс2 - энергия покоя электрона), либо Ј - mс2; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского "моря" электронов с отрицательными энергиями удалить один электрон, то возникшая электронная "дырка" будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К. Андерсоном (1932). По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать "атом", так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, - обычно их два. (С точки зрения "моря" электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку - незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна mс2. Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией "конвертируется" в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример - распад первого возбужденного состояния ядра 16О, изотопа кислорода. Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад - процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия "бета-лучи", исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица - нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков: Нейтрон -> протон + электрон + антинейтрино. Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой "рождение пары" из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К-захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.
Роль в науке и технике. Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях - для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах - установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.
См. также
АНТИВЕЩЕСТВО;
АТОМ;
АТОМА СТРОЕНИЕ;
ХИМИЯ;
МОЛЕКУЛ СТРОЕНИЕ;
ЭЛЕКТРОННЫЙ МИКРОСКОП;
АТОМНОГО ЯДРА СТРОЕНИЕ;
УСКОРИТЕЛЬ ЧАСТИЦ;
ФИЗИКА;
ПЛАНКА ПОСТОЯННАЯ;
КВАНТОВАЯ МЕХАНИКА;
РАДИОАКТИВНОСТЬ;
ФИЗИКА ТВЕРДОГО ТЕЛА;
СПЕКТРОСКОПИЯ.
ЛИТЕРАТУРА
Китайгородский А.И. Электроны. М., 1982 Волькенштейн Ф.Ф. Электроны и кристаллы. М., 1983
Иллюстрированный энциклопедический словарь
ЭЛЕКТРОН (e-, e) (от греческого elektron - янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10-19 Кл и массой 9´10-28 г. Относится к классу лептонов. Открыт английским физиком Дж.Дж. Томсоном в 1897. Термин "электрон" предложен ирландским физиком Дж. Стони. Электрон образует вместе с положительными ядрами нейтральные атомы. Электронные оболочки атомов и молекул определяют их физические и химические свойства. Электроны обусловливают электрические и тепловые свойства твердых тел. В физике микромира заряд электрона e служит единицей заряда: электрические заряды всех известных элементарных частиц и ядер (кроме кварков) кратны e.
Толковый словарь
Электрон, а, м.
Мужское имя. Бондалетов, 134.
Орфографический словарь
Словарь ударений
электро́н, -а; р. мн. -ов
Трудности произношения и ударения
электро́н, род. мн. электро́нов.
Формы слов для слова электрон
электро́н, электро́ны, электро́на, электро́нов, электро́ну, электро́нам, электро́ном, электро́нами, электро́не, электро́нах
Синонимы к слову электрон
сущ., кол-во синонимов: 12
Омонимы к слову электрон
электрон I
волна и отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества; единственный стабильный из заряженных лептонов (как позитрон)
У этого атома два электрона.
общее название для электрона и позитрона
Великий Дирак, получив своё знаменитое уравнение для положительно и отрицательно заряженного электрона, долго боялся ему поверить.
электрон II
сплав золота и серебра
По тяжести это могло быть золотом или электроном.
Есть такой сплав - электрон, из которого в античности любили изготавливать драгоценные предметы.
сплав алюминия с магнием, литием и цинком, обладающий большой лёгкостью, прочностью и пластичностью
Идеография
Морфемно-орфографический словарь
Грамматический словарь
Новый словарь иностранных слов
электро́н
(гр. elektron)
1) устойчивая элементарная частица с массой, равной 9,108- кг28 г, отрицательным элементарным электрическим зарядом и спином v2; электроны играют важнейшую роль в строении вещества: электронные оболочки атомов определяют оптические, электрические, магнитные и хим. свойства атомов и молекул, а также большинство свойств твердых тел; направленный поток электронов в проводниках (металлах) и полупроводниках представляет собой электрический ток;
2) устар. легкий магниевый сплав, содержащий также алюминий, цинк, марганец;
3) иначе электр - у древних греков - янтарь, а также сплав золота с серебром.
Сканворды для слова электрон
- Первая гипотеза немецкого физика Макса Абрагама о его структуре признавала его твёрдым шаром с равномерно распределённым зарядом.
- Элементарная частица.
- Сплав золота и серебра у древних греков.
- Марка российского телевизора.
- Московский кинотеатр.
- Российский искусственный спутник.
Полезные сервисы