(гк)
См. арх.
Начальная часть сложных слов, вносящая значение: имеющий отношение к древности или к старине, связанный с ними (археоло́гия, археогра́фия и т.п.).
Архео...
Означает ‘древний’, ‘относящийся к древности’: археология, археография.
Этимология:
От греческого archaios ‘древний’.
Культура речи:
Пишется всегда слитно с последующей частью слова.
Архео... (от греч. archáios - древний), часть сложных слов, означающая: древний, относящийся к древности (например, археография).
АРХЕО... (от греч. archaios - древний) - часть сложных слов, означающая: древний, относящийся к древности.
архео...
((гр. archaios древний) первая составная часть сложных слов, соответствующая по значению слову древний , указывающая на отношение к древности, напр.: археография.
Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад. Состоящие из массивных каменных глыб размером до 20 м и весом до 100 т каждая, эти постройки являются крупнейшим строительным и организационным достижением людей бронзового века. Наиболее известен Стонхендж на равнине Солсбери в Южной Англии. Круговой ров 91 м в диаметре обрамляет два концентрических круга из вертикально стоящих камней с еще двумя концентрическими постройками внутри. В центре - алтарный камень. В основном это сооружение было создано между 2000 и 1500 до н.э. Археологический анализ показал, что это место использовалось и достраивалось не менее 1500 лет. В 18 в. ученые обнаружили, что наиболее заметные камни Стонхенджа указывают направление на точку восхода Солнца в день летнего солнцестояния. Астроном Дж. Хокинс установил в 1963, что
Стонхендж использовали как гигантский прибор для предсказания времени и места на небе определенных астрономических событий, в основном восходов и заходов Солнца, Луны и некоторых звезд.
См. также СТОНХЕНДЖ.
ВАВИЛОНСКАЯ, ШУМЕРСКАЯ И ЕГИПЕТСКАЯ АСТРОНОМИЯ
Доисторические люди, несомненно, использовали элементы практической астрономии для расчета сезонов и моментов различных астрономических событий. Антропологи зафиксировали множество таких обычаев и приемов даже у народов, не имевших письменности. Благодаря изобретению письменности сохранилось множество документальных свидетельств развития астрономии у великих речных цивилизаций, особенно Междуречья и Египта. Такой уровень развития астрономии достигнут, безусловно, благодаря сложной культуре этих цивилизаций. На клинописных табличках, сделанных около 1800 до н.э., сохранились записи моментов восхода Луны и ее первого появления в новолуние. Как и многие другие народы, вавилоняне вели лунный календарь и начинали отсчет дней месяца с первого появления лунного серпа в лучах вечерней зари.
Его легко было заметить в ясную погоду, но предсказать наперед, в какой именно вечер появится молодая Луна, было непростой задачей. Этот прогноз зависит не только от таких очевидных факторов, как продолжительность месяца, но и от весьма сложного сезонного изменения угла между эклиптикой и западной частью горизонта. Одним из достижений шумерской, а затем вавилонской астрономии была разработка арифметического алгоритма для предсказания этого важнейшего явления. Венера - заметный объект, часто наблюдаемый в сумерки на западе. Поэтому не удивительно, что вечерний заход и утренний восход Венеры также отмечались, а затем вычислялись и предсказывались. В самых ранних из сохранившихся табличек записаны также восходы, заходы и кульминации некоторых ярких звезд. Вавилоняне уделяли особое внимание звездам Зодиака - полосы, проходящей вдоль видимого пути Солнца (эклиптики), в пределах которой перемещаются планеты. Они разделили Зодиак на 12 равных частей, назвав каждую из них именем ближайшего созвездия, и стали использовать угловые единицы, делившие небо на 360 частей (в основе системы счисления вавилонян лежало число 60).
См. также СОЗВЕЗДИЕ; ЗОДИАК. К 6 в н.э. вавилонская астрономия достигла высокого уровня. Была полностью решена проблема вычисления месяца и года, весьма осложненная тем обстоятельством, что периоды орбитального движения Луны и Земли не кратны друг другу, и поэтому лунный и солнечный календари не удается согласовать надолго.
См. также КАЛЕНДАРЬ. Другими достижениями вавилонских математиков были предвычисления сезонного изменения продолжительности дня, положения и фаз Луны, положения ярких планет и даже наступления лунных затмений. Вавилонские вычисления основывались не на какой-либо теории истинного положения небесных тел, а лишь на регулярности их видимых перемещений. Таким образом, вавилонские теории были полностью арифметическими: находились повторяющиеся последовательности в записях чисел и делались попытки продолжить их в будущее. Эти теории примитивнее развитых позже греками геометрических теорий, хотя и не уступают им в точности. Египетская цивилизация существовала одновременно с вавилонской и достигла многого в области культуры, но к астрономии это не относилось. Вначале египтяне использовали лунный календарь, но вскоре отказались от него в пользу более простого, разделив год на 365 дней (12 месяцев по 30 дней плюс 5 праздничных дней в конце) и позволив солнечному календарю (т.е. сезонам года) расходиться с лунным календарем на четверть суток в год. Египтяне отмечали моменты восхода и захода ярких звезд, используя их для счета времени. Они также были отменными топографами: их пирамиды и прочие монументы изумительно точно (до нескольких угловых минут) ориентированы по сторонам света. Некоторые вентиляционные коридоры в пирамидах, вероятно, были ориентированы в точки верхней кульминации определенных звезд и могли служить визирными трубами.
ЭЛЛИНИСТИЧЕСКАЯ АСТРОНОМИЯ
Расцвет греческой (эллинистической) цивилизации в пору угасания вавилонской и египетской отмечен крупными изменениями в практической и теоретической астрономии. Греки переняли многие знания и учения предшествовавших цивилизаций, но изменили и систематизировали их в соответствии с новым взглядом на мир. Основанная на философии и космологии Платона и Аристотеля, имеющая теоретической базой геометрию греческих математиков, объединившая множество новых, зачастую более точных данных, астрономия Древней Греции стала развитой наблюдательной и теоретической дисциплиной и приобрела тот вид, который сохранился вплоть до эпохи Возрождения.
В ГРЕЧЕСКОЙ ГЕОЦЕНТРИЧЕСКОЙ СИСТЕМЕ Луна (A), Солнце (D) и планеты - Меркурий (B), Венера (C), Марс (E), Юпитер (F) и Сатурн (G) - движутся равномерно по окружностям X, называемым эпициклами, с центрами Y, также равномерно движущимися по большим окружностям, называемым деферентами, в центре которых находится Земля. Поскольку Меркурий и Венера никогда не удаляются от Солнца на большой угол, центры эпициклов этих планет и Солнца всегда лежат на одной прямой.
Греки развили практические методы астрономии для мореплавания, отраженные в поэмах Гомера 9 и 8 вв. до н.э. (в нескольких местах этих поэм описаны приемы определения месяца и года, ведения календаря и счета времени). Греки поддерживали тесные торговые контакты с соседними странами, и когда у них начался расцвет философии и естествознания (часто именуемый "греческим чудом"), они смогли объединить достижения разных народов.
Открытие прецессии. Около 430 до н.э. было обнаружено, что продолжительность сезонов не одинакова. Для определения дат равноденствий греки отмечали дни, когда Солнце садится в точке запада. Вместо того, чтобы выбирать ближайшую звезду, от которой начинать деление Зодиака на 12 знаков (как это делали вавилоняне), они выбрали точку неба, через которую проходит Солнце в день весеннего равноденствия, пересекая небесный экватор. В то время эта точка находилась в созвездии Овна и поэтому была названа "первой точкой Овна". В течение нескольких столетий никаких видимых изменений не отмечалось, но затем наблюдатели заметили, что эта точка смещается на фоне звезд, и открыли таким образом предварение равноденствия - прецессию.
См. также НЕБЕСНАЯ СФЕРА; ЗЕМЛЯ. Эфирные сферы и круговое движение. Используя греческие и старые вавилонские наблюдения, Евдокс Книдский (ок. 406 - ок. 347 до н.э.) попытался создать геометрическую модель небесных явлений. Он представлял Землю покоящейся в центре, вокруг которого вращается несколько концентрических прозрачных сфер. На каждой из них зафиксирована планета (в число которых тогда включали Солнце и Луну). Некоторые из сфер несли на себе другие сферы с осью, смещенной на некоторый угол. На самой внешней сфере располагались все звезды, поскольку их взаимное расположение никогда не менялось. Каждая из сфер вращалась с постоянной скоростью (важное философское требование): например, каждая звезда совершала оборот за сутки. Подбирая скорости вращения, расположение сфер и углы взаимного наклона их осей, Евдокс мог воспроизводить основные небесные явления. Ему удалось объяснить даже такие сложные и загадочные движения, как обратные петли Марса, Юпитера и Сатурна на фоне звезд и колебания Меркурия и Венеры около Солнца. Позже Аристотель (ок. 384-322 до н.э.) включил эту теорию в свое учение, количество сфер возросло и превысило 50, но попытки Каллиппа (род. ок. 370 до н.э.) и других сделать теорию более точно соответствующей наблюдениям не дали результата. Вскоре от этой теории как от расчетной схемы отказались, но она сохранила важное значение как космологическая модель.
ЗОДИАКАЛЬНАЯ АРМИЛЛА (упрощенной схемы) впервые применена древними греками для измерения разностей эклиптических широт и долгот двух небесных объектов.
Обобщенная космологическая система Аристотеля, доминировавшая на Западе около 2000 лет, утверждала одни физические принципы для подлунной сферы, а другие - для небесной. Четыре элемента подлунной сферы - земля, вода, воздух и огонь - характеризовались естественным прямолинейным движением либо к занятому Землей центру Вселенной (тяжелые), либо от него (легкие). В отличие от этого эфир, единственный элемент небесной сферы, обладал естественным круговым движением. Все научные теории о поведении вещества - то, что сейчас мы называем физикой, химией и даже геологией, - произошли из аристотелевой системы естественных движений и естественных мест. Согласно Аристотелю, планеты прикреплены к эфирным сферам Евдокса, круговое движение которых следует из их небесной природы.
Гиппарх. Гиппарх с о. Родос (ранее 161 - ок. 126 до н.э.) внес важный вклад в развитие астрономии. Он провел много точных наблюдений и сравнил их с результатами вавилонских и других астрономов. Составив новый каталог положений ярких звезд и сравнив его с предшествовавшими каталогами, он заметил, что эклиптические долготы всех звезд смещаются примерно на градус в столетие, тогда как широты остаются неизменными. Отсюда он заключил, что положение Солнца относительно звезд в моменты равноденствий (и солнцестояний) смещается, или прецессирует, в обратном направлении. Наиболее важным вкладом Гиппарха стало развитие планетной теории. Тщательно измерив неравенство продолжительности сезонов, он понял, что Солнце перемещается по небу в течение года с переменной скоростью. Поскольку, согласно космологии Платона и Аристотеля, движение Солнца должно быть круговым и равномерным, он заключил, что неравномерность солнечного движения лишь кажущаяся. Расположив Землю чуть в стороне от центра сферы, несущей Солнце, он получил наблюдаемое неравномерное движение светила при истинном равномерном. Проблему сложного движения Луны Гиппарх разрешил несколько иным путем. Вместо того, чтобы располагать центр лунного движения в центре Земли или чуть в стороне от него, он заставил Луну обращаться по небольшой окружности - эпициклу - центр которой движется вокруг центра Земли.
См. также ГИППАРХ.
Птолемей. Греческая геометрическая астрономия достигла кульминации в Александрии в работах Птолемея (ок. 100 - ок. 170). Его сложный геометрический аппарат и математические методы дополнили вычислениями космологию Аристотеля и восторжествовали над конкурирующими методами и системами. Величайшая работа Птолемея Альмагест - это трактат по математическим методам вычисления положений планет на небесной сфере. Опираясь на глубокую традицию греческой геометрии, Птолемей преобразовал космологию Аристотеля в математическую модель Вселенной. Для каждой планеты он разработал свою теорию, состоящую из разнообразных геометрических приемов. Планета, по Птолемею, равномерно обращается вокруг центра эпицикла, который, в свою очередь, движется по кругу деферента, в центре которого (или рядом с ним) находится Земля. Эти движения планет, казавшиеся тогда не связанными друг с другом, позже нашли объяснение как движения с переменной скоростью по эллиптическим орбитам вокруг Солнца под действием его притяжения.
КВАДРАНТ использовался для измерения высоты звезд в меридиане.
Даже при низкой точности глазомерных измерений 2 в. н.э. простой комбинации эпицикла и деферента было недостаточно. Поэтому Птолемей модифицировал теорию, нарушив этим канон Аристотеля. Во-первых, используя идею Гиппарха, он поместил Землю не в центре деферента. В случае Солнца эксцентрический деферент позволил ему вообще обойтись без эпицикла. Во-вторых, он предположил движение деферента равномерным не по отношению к его центру или даже к центру Земли, а по отношению к воображаемой точке, названной эквантом и расположенной симметрично положению Земли относительно центра деферента. Подбирая размер и наклон этих элементов, периоды обращения и смещение точек эксцентра и экванта, Птолемей мог объяснить наблюдаемое движение планет. Альмагест Птолемея - объемистый и сложный трактат по астрономии. В нем описаны приборы и методы проведения наблюдений, даны таблицы положения звезд и предвычисленных положений планет, детально объяснены различные теории планет и указано, как пользоваться ими для вычисления положений планет, подробно обсуждаются данные наблюдений и теории предшественников. Альмагест далеко превзошел все предшествующие астрономические трактаты, поэтому большинство из них перестали копировать, и со временем они оказались потеряны, за исключением небольших фрагментов или ссылок.
См. также
ПТОЛЕМЕЙ Клавдий. Предсказание движений планет имело огромное значение. Во-первых, оно укрепляло веру в рациональное устройство мира. Эта заповедь Аристотеля, объединенная с теологией, воплотилась в "план Творца". На более практическом уровне математическая астрономия позволила рассчитывать календари, предсказывать затмения и, что важно, составлять гороскопы для государственных и личных нужд. Это последнее сохранило свою заметную, хотя и спорную роль даже после распространения на Западе христианства.
См. также АСТРОЛОГИЯ; ЗАТМЕНИЯ.
СРЕДНЕВЕКОВАЯ АСТРОНОМИЯ
Технический прогресс в изготовлении приборов для измерений невооруженным глазом привел к созданию более точных таблиц движения планет, а развитие вычислительных методов позволило точнее определять теоретические значения. Однако при этом выяснилось, что согласие между теорией и наблюдениями не очень хорошее. Было немало споров о том, как выйти из этого положения, но основная схема Птолемея, представляющая движение планет вокруг Земли с помощью комбинации равномерно вращающихся окружностей, сохранилась вплоть до Возрождения. В Римской империи астрономия не развивалась. Хотя римляне достигли большого прогресса в политике, юриспруденции, риторике и технике, теорию и наблюдения в астрономии они почти не продвинули. После распада империи и нашествия варваров астрономия на Западе стала угасать. Она еще существовала в виде копий старых работ, но механическое переписывание сопровождалось множеством ошибок. Разработка календаря стала большой проблемой, и даже такое рутинное, но нужное дело, как определение основанных на лунном календаре дат религиозных праздников (например, Пасхи), было доступно лишь немногим образованным людям. Каталоги и рассчитанные Птолемеем таблицы сохранились, но все меньше и меньше людей понимало их и могло использовать. Те немногие, кто еще проводил наблюдения и фиксировал астрономические события, пользовались солнечными часами и простейшими приборами.
См. также СОЛНЕЧНЫЕ ЧАСЫ. В то время как астрономия угасала в Европе после падения Рима, эта эллинистическая наука пустила мощные корни в соседних культурах Центральной Азии, а также достигла Индии. Были построены многочисленные обсерватории, крупнейшей из которых стала обсерватория Улугбека в Самарканде. Ученые Среднего Востока владели всеми астрономическими знаниями той эпохи, исправляли и дополняли методы и технику Птолемея.
См. также ОБСЕРВАТОРИЯ. Даже после 12 в., когда некоторые работы Аристотеля были открыты заново и в Европе начались интеллектуально наполненные времена схоластики, астрономия оставалась в упадке. Тем не менее, популярными стали космологические темы, касающиеся общего строения и движения Вселенной. Основой этого периода средневековой мысли были сочинения Аристотеля, к которым теологи и ученые написали множество комментариев. Вместе с Библией и трудами отцов церкви работы Аристотеля стали основой обучения. Предметом пылких дискуссий стало устройство сфер Евдокса и физические принципы их движения, возможная множественность миров и даже природа Луны. Эти дискуссии подготовили образованный Запад к интеллектуальному взлету Возрождения, наступившему в 14 в., когда сохранившиеся в арабских странах античные знания хлынули в Европу. Наконец-то европейские астрономы смогли прочитать Птолемея, Аристотеля и других ученых древности в полном объеме и, что особенно важно, увидеть полную картину развития античной астрономии.
ВОЗРОЖДЕНИЕ
Коперник и гелиоцентризм. Н. Коперник (1473-1543), оказавшийся революционером в астрономии, поначалу работал в традиционном русле и почитал античное знание. Желая, тем не менее, упростить астрономические расчеты, ставшие чересчур сложными, он поместил Солнце в центр, сделал Землю планетой, а Луну - спутником Земли. При этом он пытался сохранить равномерное круговое движение и отказался от приемов, введенных Птолемеем и его последователями.
В ГЕЛИОЦЕНТРИЧЕСКОЙ СИСТЕМЕ КОПЕРНИКА, представленной здесь в упрощенном виде, Солнце находится в центре, вокруг него обращаются Земля и другие планеты, а Луна как спутник обращается вокруг Земли. В действительности Коперник для объяснения лунного и планетных движений, подобно грекам, использовал эпициклы, но ему удалось обойтись без многих искусственных приемов, введенных Птолемеем и его последователями.
В итоге возникло непримиримое противоречие между геоцентрической системой Птолемея и гелиоцентрической Коперника. Последняя воспринималась как искусственная вычислительная схема с точки зрения теологии и религиозных убеждений и с позиций физики той эпохи. С чисто математической точки зрения - какая из систем может точнее воспроизвести наблюдаемые на небе перемещения светил, - обе они были почти равноценны. Более того, возвращаясь к традиции Аристотеля, система Коперника вынуждена была использовать даже больше эпициклов, чем система Птолемея, и поэтому в определенном смысле была сложнее. См. также КОПЕРНИК Николай.
Тихо Браге и изменчивость небес. Эксцентричный и колоритный датский астроном Т. Браге (1546-1601) занялся повышением точности наблюдений для сравнения между собой конкурирующих систем мироздания. Используя новые приемы, он довел измерения с помощью невооруженного глаза до невероятной точности почти в 1'. В 1585 при государственной поддержке он основал обсерваторию на острове Вен, где, создавая великолепные инструменты, он и его помощники с высокой точностью измеряли положения планет. Он надеялся использовать эти наблюдения для подтверждения собственной гибридной системы мироздания, согласно которой Земля находится в центре, Луна и Солнце обращаются вокруг нее, а остальные планеты движутся вокруг Солнца. Так Т. Браге пытался сохранить относительную простоту планетной системы Коперника, оставляя при этом Землю неподвижной.
СЕКСТАНТ, каким пользовался Тихо; требовал двух наблюдателей для измерения углового расстояния между двумя звездами.
Не желая считать Землю планетой, Тихо, тем не менее, оказался первопроходцем в изучении новых небесных явлений. 11 ноября 1572 он заметил в созвездии Кассиопеи объект, сияющий ярче любой звезды или планеты. Этот объект постепенно терял яркость, став к декабрю как Юпитер, а в мае 1573 достигнув второй звездной величины. В высшей степени надежные наблюдения Т.Браге не выявили параллакса, хотя своими приборами он измерял параллаксы атмосферных явлений, таких, как метеоры. Значит, новое светило, которое он назвал по-латыни просто "nova", находится дальше сферы Луны, где-то на неизменных небесах. Пять лет спустя Тихо был поражен еще более изумительным небесным спектаклем: появилась комета, по яркости сравнимая с Венерой и с хвостом длиной в 45 диаметров Луны. Он наблюдал ее несколько недель и даже переопределил для этого положения опорных звезд, от которых измерял углы. Из этих наблюдений он заключил, что комета прошла от Земли на расстоянии, более чем в пять раз превышающем расстояние до Луны. Новое светило и комета доказали, что за пределом лунной сферы могут и действительно происходят перемены. Кометы, которые Аристотель считал атмосферными явлениями, теперь превратились в планеты.
См. также БРАГЕ Тихо.
Кеплер и разрушение круговых движений. В 1600, за год до своей смерти, живший теперь в Праге Т. Браге пригласил И. Кеплера (1571-1630), чтобы передать ему свое интеллектуальное наследство. До этого в сочинении "Тайна Вселенной" (Prodromus dissertationum mathematicarum continens mysterium cosmographicum, 1596) Кеплер пытался проверить с точки зрения неоплатонизма единство и необходимость принципов, лежащих в основе системы Коперника. Полностью доверяя высокоточным наблюдениям Тихо, Кеплер два года тщетно пытался подыскать наборы традиционных круговых движений. В случае Марса лучшие из его вариантов давали расхождение вычисленных и наблюдаемых положений планеты до восьми угловых минут (Коперник в свое время удовлетворился десятью минутами). Однако Кеплер упорно проводил утомительные вычисления, делал и исправлял ошибки, искал все новые и новые варианты. Наконец, с сожалением он отказался от окружностей и начал для описания орбиты Марса экспериментировать с овалами. Когда, наконец, в 1605 он использовал эллипс для описания орбиты Марса, все стало на свои места. Его Новая астрономия (Astronomia Nova, 1609) содержала два из трех утверждений, называемых теперь кеплеровскими законами движения планет, а именно, что орбита планеты есть эллипс, в одном из фокусов которого расположено Солнце, и что линия, соединяющая этот фокус с планетой, заметает равные площади за равное время. Эти два элегантных утверждения позволили покончить с громоздкими построениями Птолемея, Коперника и Тихо. Из них вытекало, что тела могут двигаться в космосе по орбитам, не будучи прикрепленными к сферам, эпициклам, деферентам и прочим носителям, что планеты могут ускоряться и замедляться по известному закону, не подчиняясь аристотелеву принципу равномерного кругового движения. Диктатура окружности была сломлена так же, как привилегированное положение и неподвижность Земли. Третий закон Кеплера, гласящий, что отношение квадратов орбитальных периодов любых двух планет или спутников равно отношению кубов их средних расстояний от центрального тела, был опубликован в его работе Гармония Мира (Harmonice mundi, 1619). Эти законы продемонстрировали глубокую рациональность Солнечной системы с ее эллиптическими орбитами и сгладили разочарование, вызванное отказом от аристотелева принципа равномерных круговых движений. Масштабы Солнечной системы и спутниковых систем планет теперь легко могли быть получены из наблюдений. Составленное Кеплером Краткое изложение коперниканской астрономии (Epitomes astronomiae Copernicanae, 1617-1621) включало полное описание законов Кеплера. Это Изложение стало дополнением к Рудольфовым таблицам (Tabulae Rudolphinae, 1627), в которых Кеплер привел практические методы и результаты вычисления положений планет. Таблицы, вычисленные по теории Кеплера, быстро вытеснили все другие, что привело к увяданию астрономии Птолемея.
См. также
Галилей, новая физика и телескоп. Произведенная Коперником революция в астрономии означала нечто большее, чем перемену положений Земли и Солнца и определение траекторий планет. Удаление Земли из центра мира, придание ей орбитального и вращательного движений, свободный полет планет в пространстве по некруговым траекториям - все это требовало совершенно новой физики, отличной от аристотелевой. В то время как Кеплер обеспечивал идеям Коперника важную теоретическую поддержку, его флорентийский знакомый и коллега Г. Галилей (1564-1642) делал это не только теоретически, но и практически. Галилей рано стал приверженцем коперниканства, он стремился найти физические доказательства гипотезы Коперника и установить новые физические принципы и законы, которые бы опровергли "очевидные" возражения против этой спорной теории. Исследования Галилея по физике падающих тел привели к математическому описанию действия гравитации вблизи поверхности Земли, а Кеплер в своих законах дал математическое описание действия гравитации на движущиеся по орбитам планеты.
ДВА ТЕЛЕСКОПА ГАЛИЛЕЯ на музейной подставке (Флоренция). Ниже, в центре виньетки, - разбитый объектив первого телескопа Галилея. На схеме внизу показано расположение линз в этой простой телескопической системе.
ОПТИЧЕСКАЯ СИСТЕМА первого телескопа Галилея.
Решающий вклад в утверждение идей Коперника Галилей внес с помощью телескопа. Первый раз Галилей взглянул на небо в свой только что сделанный телескоп в январе 1610. То, что он увидел, полностью разрушило представления Аристотеля о космосе, царившие в течение 20 веков. Телескоп показал, что поверхность Луны не гладкая и абсолютно сферическая, как думали философы в отношении Луны и других небесных тел. Напротив, она грубая, неровная, изобилующая впадинами и выпуклостями, такая же, как поверхность Земли с ее горными цепями и долинами. Весть об этих открытиях быстро разошлась среди образованной публики, вызывая восторг и восхищение. Когда Галилей направил свой телескоп на звезды, в особенности на Млечный Путь, он увидел мириады новых звезд, не известных ранее. Яркие планеты предстали маленькими дисками, тогда как звезды остались туманными точками, что указывало на их значительно большую удаленность, как и предполагал Коперник. На Марсе и Сатурне, которые располагались тогда на небе близко к Солнцу и были максимально удалены от Земли, не удалось заметить деталей. Зато Юпитер продемонстрировал поразительную и совершенно анти- аристотелевскую картину. Изучая его матовый диск в телескоп, Галилей заметил рядом четыре спутника, обращающихся вокруг самого Юпитера. Он даже смог определить, какой из спутников обращается ближе к Юпитеру, а какой - дальше, и приблизительно установил их периоды обращения. Это открытие подкрепило гипотезу Коперника, показав, что обращение Луны вокруг Земли не есть уникальное явление. В июле 1610 Галилей обнаружил то, что принял за два спутника Сатурна, которые, в отличие от обращающихся вокруг планеты спутников Юпитера, постоянно держались по бокам от диска планеты и были едва различимы. Они исчезли в 1612, вновь появились в 1613 и стали похожи на "ручки". Это загадочное явление объяснил лишь в 1659 Х. Гюйгенс (1629-1695) как изменение внешнего вида кольца, окружающего планету. В изучении Венеры Галилей достиг большего. Осенью и зимой 1610-1611 он обнаружил, что Венера, подобно Луне, имеет цикл смены фаз. Поскольку Венера никогда не удаляется от Солнца более чем на 48°, а в сильно ущербленной и выпуклой фазах видна еще ближе к Солнцу, наблюдение полного цикла ее фаз пришлось проводить в сумерки и дневное время, что весьма непросто. Эта полная смена фаз окончательно сломила систему Птолемея, согласно которой Венера не может демонстрировать полного цикла фаз. Вскоре после обнародования наблюдений Галилея в практической астрономии перестали пользоваться системой Птолемея. В конце 1610 с помощью телескопа и аккуратно выполненных рисунков Галилей смог проследить перемещение пятен по диску Солнца. Перспективное искажение формы пятен при их приближении к лимбу Солнца и одинаковое время (ок. 14 сут), за которое они пересекали солнечный диск по параллельным траекториям, указывали, что пятна находятся на сферической поверхности самого Солнца. Их движение свидетельствовало о том, что Солнце вращается так же, как вся остальная Солнечная система Коперника. Слава Галилея и поддержка, полученная им от многих здравомыслящих ученых, вызвали недовольство и интриги со стороны приверженцев церкви и взглядов Аристотеля. В 1616 инквизиция осудила учение Коперника о том, что "Солнце неподвижно пребывает в центре мира, а Земля движется и вращается". Галилею пришлось заявить, что он не поддерживает это учение. Тем не менее с 1625 по 1630 он работал над "Диалогом о двух главнейших системах мира - птолемеевой и коперниковой" (Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano, 1632). Эта книга Галилея, написанная по-итальянски, а не на латыни, как было тогда принято, имеет форму диалога, в котором с полной очевидностью усматриваются Аристотель, сам автор и любопытствующий простак. Открытия с телескопом, изучение приливов и другие исследования Галилея, представленные в Диалоге, ясно показывают, что только гипотеза Коперника может объяснить все эти явления. В 1633 Галилея вызвали в инквизицию, судили и подвергли домашнему аресту до конца жизни. Его последний труд Беседы и математические доказательства, касающиеся двух новых наук (Discorsi e dimostrazioni mathematiche intorno a due nuove scienze attenenti alla meccanica, 1638) содержит систематическое изложение новой физики.
См. также ГАЛИЛЕЙ Галилео. Наблюдения Галилея с телескопом открыли новую эру в астрономии. Телескопы быстро распространились в Европе, где их модернизировали и использовали многие увлеченные и прилежные наблюдатели. За несколько десятилетий после первых открытий Галилея астрономы обнаружили в космосе бездну новых явлений. Они описали множество деталей на поверхности Луны, Марса, Юпитера и, немного позже, Сатурна, открыв при этом его кольца. Было исследовано движение четырех спутников Юпитера и обнаружены у него и Сатурна другие спутники. Удалось наблюдать фазы Венеры, хотя на ней и на маленьком Меркурии почти не было видно деталей. Телескоп не только помог увидеть новые объекты и явления, но и стал важным дополнением к традиционным приборам для измерения положений звезд и планет, что позволило измерять положения значительно точнее и было незамедлительно использовано при вычислении эфемерид.
СТАРИННЫЙ ТЕЛЕСКОП-РЕФРАКТОР
Астрономия попала в круг правительственных интересов. Торговое, военное и научное мореплавание крайне нуждалось в точном определении долгот. В Париже (1667), Гринвиче (1675) и Берлине (1705) были основаны государственные обсерватории для составления точных таблиц положения навигационных звезд и движения Луны и планет, которыми могли бы пользоваться моряки.
См. также ОБСЕРВАТОРИЯ.
ЭПОХА НЬЮТОНА
Ньютон и гравитация. Замена небесных сфер Аристотеля кеплеровым движением планет по эллиптическим орбитам выдвинула на передний план вопрос о силах, удерживающих планеты на орбитах. Французский философ и математик Р.Декарт (1596-1650) предположил, что все пространство между телами заполнено тончайшей материей. Вихри этого вещества удерживают планеты на их орбитах, а все взаимодействия передаются путем прямого контакта.
См. также ДЕКАРТ Рене. В конце 1600-х годов в научных кругах Англии стали обсуждаться альтернативные теории тяготения. Поскольку было известно, что свет ослабляется пропорционально квадрату расстояния, несколько английских ученых, включая Э.Галлея (1656-1743), Р.Гука (1635-1702) и К.Рена (1632-1723), предположили, что могла бы существовать некая подобная сила взаимного притяжения тел. Ни один из них, однако, не дал математического решения этой проблемы.
См. также
РЕН Кристофер. В 1684 Галлей посетил И. Ньютона (1643-1727), чтобы обсудить проблему тяготения, и, увидев, что тот близок к ее решению, настоял на ускорении работ. Следующие три года Ньютон при поддержке Галлея почти непрерывно трудился над этой проблемой. Объединив исследования Галилея над падающими на Земле телами и кеплеровы законы планетных движений, Ньютон создал строгую теорию тяготения, действительно объединившую Солнце, Землю и планеты в единую систему. Ньютон изложил свои открытия в "Математических началах натуральной философии" (Philosophiae naturalis principia mathematica, 1687). Все наблюдаемые в Солнечной системе явления выводились в книге Ньютона с математической точностью из нескольких основных принципов и закона всемирного тяготения. Книга I - математическое описание движения свободного тела под влияние действующих на него сил - утверждает новые принципы механики. Она начинается с определения того, что теперь называют инерцией, массой и импульсом, а затем формулирует три знаменитых ньютоновых закона движения. Книга II - о движении тел в среде с сопротивлением - в основном опровергает теорию вихрей Декарта. В Книге III Ньютон применяет свою теорию гравитации фактически ко всем телам Солнечной системы - к планетам, Луне и другим спутникам,
архео́граф, архео́графы, архео́графа, архео́графов, архео́графу, архео́графам, архео́графом, архео́графами, архео́графе, архео́графах
АРХЕОГРАФ (этим. см. предыд. сл.). Занимающийся отыскиванием, описанием и изданием письменных древностей.
Археографи́ческая коми́ссия - учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. С 1922 в АН (с 1956 при Отделении истории). Издаёт «Археографический ежегодник» (с 1958).
* * *
АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - АРХЕОГРАФИ́ЧЕСКАЯ КОМИ́ССИЯ, учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. В 1922-91 в АН СССР, с декабря 1991 в РАН (с 1956 при Отделении истории). Издает «Археографический ежегодник» (с 1958).
АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. В 1922-91 в АН СССР, с декабря 1991 в РАН (с 1956 при Отделении истории). Издает "Археографический ежегодник" (с 1958).
АРХЕОГРАФИ́ЧЕСКАЯ КОМИ́ССИЯ - науч. учреждение, созд. в Петербурге в 1834 при Мин-ве нар. просвещения для изд. материалов, собранных в ходе археографич. эксп. В 1837 утверждена как самостоят. науч. учреждение. Издавала актовые мат-лы по истории разл. местностей России, предприняла первое систематич. изд. "Полного собрания рус. летописей" (с 1841), многотомной "Русской ист. б-ки" (с 1872). А. к. выявляла док. материалы по истории России в иностр. архивах, приобретала соотв. док-ты в России и за рубежом. В сер. 19 в. наряду с Петерб. А. к. возникли А. к. в Киеве, Вильне, Тифлисе (Кавказская). В 1826 образована А. к. при Моск. археологич. об-ве. В 1922 Петрогр. А. к. передана в ведение Рос. АН, в 1926 на ее базе созд. Ист.-археографич. комиссия при АН СССР (в 1931-36 - Ист.-археографич. ин-т). В 1956 по инициативе М. Н. Тихомирова созд. А. к. при Отделении истории АН СССР (ныне РАН). А. к. издает "Археографич. ежегодник".
Лит.: Библиографич. указ. изданий Археографии комиссии, 1836-1936, Л., 1985; Копанев А. И. К 150-летию Археографич. комиссии, в кн.: Вспомогат. ист. дисциплины, В. 16. Л., 1985.
АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - в Петербурге, учреждение для рассмотрения и издания различных исторических актов и памятников. Учреждена Николаем I в 1834 г.
АРХЕОГРАФИ́ЧЕСКИЙ, археографическая, археографическое (филол.). прил. к археография. Археографическая комиссия.
АРХЕОГРА́ФИЯ, -и, ж. Историческая дисциплина, занимающаяся описанием и изданием письменных памятников прошлого, а также научное собирание таких памятников.
археографи́ческий, археографи́ческая, археографи́ческое, археографи́ческие, археографи́ческого, археографи́ческой, археографи́ческих, археографи́ческому, археографи́ческим, археографи́ческую, археографи́ческою, археографи́ческими, археографи́ческом, археографи́ческ, археографи́ческа, археографи́ческо, археографи́чески
ж.
Вспомогательная историческая дисциплина, занимающаяся теорией и методикой издания древних письменных памятников.
АРХЕОГРА́ФИЯ, археографии, мн. нет, жен. (от греч. archaios - древний и grapho - пишу) (филол.). Историческая дисциплина, занимающаяся собиранием, описанием и изданием письменных памятников прошлого.
АРХЕОГРА́ФИЯ, -и, жен. Историческая дисциплина, занимающаяся описанием и изданием письменных памятников прошлого, а также научное собирание таких памятников.
| прил. археографический, -ая, -ое.
АРХЕОГРАФИЯ - жен., греч. описание письменных памятников древности, часть археологии, науки о древностях вообще, особ. греческой и римской. Археологические розыски; археографические снимки. Археолог муж. исследователь древностей, древлянин, древник, старинарь, старинщик, ветховщик, ветух. Археограф, сведущий в древних письменах и грамотах. Архива жен. или архив муж. место хранения старых письменных дел и бумаг; склад, куда передаются все оконченные, решенные на бумаге дела и переписка; письмохранилище, письмосклад, писемник, бумажница. Архивные, архивские дела. Архиварий, -риус муж. заведывающий архивом.
АРХЕОГРА́ФИЯ, -и, ж
Вспомогательная историческая наука, занимающаяся собиранием, описанием и изданием рукописных, печатных и др. древних текстов - памятников прошлого.
Археография оформилась как научная дисциплина во второй половине XIX - начале XX века.
АРХЕОГРА́ФИЯ -и; ж. [от греч. archаios - древний и graphō - пишу]. Вспомогательная историческая наука, занимающаяся собиранием, описанием и изданием древних письменных памятников.
◁ Археографи́ческий, -ая, -ое. А-ая экспедиция.
* * *
археогра́фия (от архео... и ...графия), специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.
* * *
АРХЕОГРАФИЯ - АРХЕОГРА́ФИЯ (от греч. archaios - древний и графия), специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.
АРХЕОГРАФИЯ (от архео... и ...графия) - специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.
-и, ж.
Вспомогательная историческая наука, занимающаяся собиранием, описанием и изданием древних письменных памятников.
[От греч. ’αρχαι̃ος - древний и γράφω - пишу]
АРХЕОГРА́ФИЯ (от греч. αρχεοζ - древний и γραφω - пишу) - спец. ист. дисциплина, имеющая целью поиск, описание и издание древних рукописей. В России А. развивается с 18 в., когда началось издание летописных и док. памятников. Крупную роль в развитии рус. А. сыграл Н. И. Новиков - издатель "Древней Рос. Вивлиофики". В нач. 19 в. существ. значение имела работа историков, группировавшихся вокруг гр. Н. П. Румянцева - создателя Румянцевского музея. Систематич. поиск древних рукописей начат с образованием Археографич. экспедиции, преобразованной в 1834 в Археографич. комиссию (см.). В 19 - нач. 20 в. изданы многие десятки томов ист. пам. в составе "Актов Археографич. экспедиции", "Актов исторических" и дополнений к ним, "Рус. ист. б-ки", "Сб. рус. ист. об-ва" и др. С 1841 ведется систематич. издание "Полн. собр. рус. летописей" (ПСРЛ) и "Писем и бумаг Петра Великого". После окт. 1917 археографич. деятельностью занимались учреждения АН СССР и ведущие высшие уч. заведения. Среди крупнейших рус. археографов - П. М. Строев, Н. В. Калачев, Н. П. Лихачев, А. А. Шахматов, А. С. Лаппо-Данилевский, С. Б. Веселовский, С. Н. Валк, И. А. Голубцов, Л. В. Черепнин. М. Н. Тихомиров и др.
Лит.: Корнева И. И., Тальман Е. М., Энштейн Д. М. История археографии дорев. России. М., 1969; Добрушин Е. М. История отеч. археографии: совр. проблемы и задачи изучения. М., 1989.
археогра́фия, археогра́фии, археогра́фий, археогра́фиям, археогра́фию, археогра́фией, археогра́фиею, археогра́фиями, археогра́фиях
АРХЕОГРАФИЯ и, ж. archéographie f. Вспомогательная историческая дисциплина, занимающаяся теорией и методикой издания древних письменных памятников. БАС-2. Термин "археография" (от гр. archaios - древний и grapho - пишу) в России впервые был употреблен в 1807 г. профессором Московского университета Н. Ф. Кошанским при переводе книги французского историка А. Милленя "Руководство к познанию древностей", где этот термин обозначал любое "объяснение памятников". К последним относились все "древности", за исключением нравов и обрядов прошлого. В 1823 г. выпускник Московского университета, в будущем известный историк и археограф П. М. Строев употребил этот термин применительно лишь к описанию письменных памятников. Сегодня археография - это научная дисциплина, занимающаяся изучением документальных публикаций как одно из проявлений человеческого духа, разработкой принципов, методов и способов их подготовки (теоретическая археография), а также их реализацией (прикладная археография). ОА 2001 1 11. - Лекс. САН 1847: археогра/фия; САН 1847: археогра/ф, Уш. 1935: архео/граф; САН 1847: археографи/ческий.
АРХЕОГРАФИЯ (от греч. archaios - первоначальный, древний, и grapho - пишу). Отрасль знаний, имеющая целью описывать и издавать древние письменные памятники.
- Наука, разрабатывающая основы издания исторических документов.
- Наука о методике издания письменных исторических источников.
АРХЕОЗО́ЙСКИЙ -ая, -ое. [от греч. archē - начало и zōē - жизнь]. = Архе́йский; относящийся к этой эпохе. А-ая эра. А-ие породы.
археозо́йский, археозо́йская, археозо́йское, археозо́йские, археозо́йского, археозо́йской, археозо́йских, археозо́йскому, археозо́йским, археозо́йскую, археозо́йскою, археозо́йскими, археозо́йском, археозо́йск, археозо́йска, археозо́йско, археозо́йски
АРХЕО́ЛОГ, -а, м
Специалист по археологии.
… Профессор занимался раскопками, уезжая на лето в экспедиции с археологами из берлинского музея «Пергамон» (Ю. Сем.).
Профессия * Врач * Историк * Менеджер * Офицер * Персонал * Солдат * Торговец * Ученик * Ученый * Учитель * Финансист * Юрист
Историк (Археолог) -
Историк - властелин минувших эпох. -
Историк - это крупнокалиберный сплетник. -
Бирс (Bierce)
Первая задача истории - воздержаться от лжи, вторая - не утаивать правды, третья - не давать никакого повода заподозрить себя в пристрастии или в предвзятой враждебности. -
Цицерон (Marcus Tullius Cicero)
Археологи выкапывают из земли историю, которую закопали политики. -
Историк - это неудавшийся прозаик. -
Менкен Генри (Mencken)
Лживых историков следовало бы казнить, как фальшивомонетчиков. -
Сервантес Мигель де (Cervantes).
Бог не может изменить прошлое, но историки могут. -
Батлер (Butler)
Книги по истории, написанные победителями, призваны мешать побежденным извлечь правильные уроки из поражения. -
Те, кто творят историю, часто заодно и фальсифицируют ее. - В. Брудзиньский
Разница между историками и юристами только в точках зрения: историки видят причины, не замечая следствия; юристы замечают только следствия, не видя причин. -
архео́лог, архео́логи, архео́лога, архео́логов, архео́логу, архео́логам, архео́логом, архео́логами, архео́логе, архео́логах
АРХЕОЛОГ а, м. archéologue m. Знаток древностей. Сл. 18. Все лучшие Археологи признают, что нынешний Российский язык есть только диалект или наречие Славянскаго. Сев. в. 1 116. Он <Оленин> имел притязания на звание литератора, артиста, археолога; даже те люди, кои видели неосновательность сих претензий, любя его, всегда готовы были признавать их правилами. Вигель Зап. // Р. мем. 1800 501. Какие личные догадки Археологам дальних дней. Вяземский Послание Башилову. || сужен. Специалист по памятникам материальной культуры, которые находят при раскопках. БАС-2. Он понимал того впечатлительного археолога, который, расчистив ход к еще неизвестным гробам, постучался в дверь прежде чем войти, и, войдя, упал в обморок. Набоков Подвиг. // Н. Озеро 354. Археологиня и, ж. шутл. Археологиня из Дарема. Октябрь 2000 11 64. - Лекс. Сл. 18: археолог 1804; С. Татищев 1832. ЭС. САН 1847: археоло/г; САН 1891: архео/лог и археоло/г; Уш. 1935: архео/лог.
- «Детектив прошлого».
- Учёный, чья карьера лежит в руинах.
- «Профессия» Хмыря или Косого.
- Дипломированный осквернитель тысячелетних могил.
- Учёный, который любит покопаться в земле.
- Историк-копатель.
- Специалист по раскопкам.
- Специальность того, для кого радость - пожар, счастье - помойка, а мечта - могила.
- Кто был по профессии киногерой Индиана Джонс?
- Историк с лопатой.
- Учёный на раскопках.
- Индиана Джонс по профессии.
- Кто обычно проводит камеральные работы?
АРХЕОЛОГИЗМ - АРХЕОЛОГИ́ЗМ, направление в изобразительном искусстве последней четверти 20 в. В Германии обозначается криминалистическим термином Spurensicherung (сохранение следов). Мастера (напр., французы А. и П. Пуарье, американец Ч. Саймондс или немец Л. Баумгартен) конструируют в виде проектов и макетов этнографические этюды или полуфантастические «модели истории» с приметами древних или современных (но обращенных в руины) цивилизаций.
АРХЕОЛОГИЗМ - направление в изо-искусстве последней четверти 20 в. В Германии обозначается криминалистическим термином Spurensicherung (сохранение следов). Мастера (напр., французы А. и П. Пуарье, американец Ч. Саймондс или немец Л. Баумгартен) конструируют в виде проектов и макетов этнографические этюды или полуфантастические "модели истории" с приметами древних или современных (но обращенных в руины) цивилизаций.
АРХЕОЛОГИЗМ а, м. archéologue m. Тщательная точность восстановления. Пуссену чужд скрупулезный археологизм <в передачи античности>. ИИ 17 117. Театр этот <Мейнингенский> .. славен железною своей дисциплиной, натуралистической мелочностью и кропотливым археологизмом своих постановок. Совр. 1914 8 241. Не стыдно будет ему <Грибоедову> перед Софоклом, Еврипидом.., удостоившимися любовной модернизации сквозь призму стилизма, архелогизма и балаганизма. 1913. А. Бенуа. // Меерхольд 1997 272. На господствовашем тогда <нач. 20 в.> на тогдашней сцене педантичном археологизме, декорации Поленова воспринимались далекими от слепого копирования памятников. НН 1998 46 129. В театральной живописи обнаружился интерес к couleur locale, к своеобразному увражному архелогизму. Давыдова 1974 61.
Археоло́гии Институ́т (ИА) РАН - создан в 1937 на базе Государственной академии истории материальной культуры (1919-1937) как Институт истории и материальной культуры; переименован в Институт археологии в 1959 (Москва).
* * *
АРХЕОЛОГИИ ИНСТИТУТ (ИА) РАН - АРХЕОЛО́ГИИ ИНСТИТУ́Т (ИА) РАН, создан в 1937 на базе Государственной академии истории материальной культуры (1919-37) как Институт истории материальной культуры; переименован в Институт археологии в 1959 (Москва).
Археологи́ческая датиро́вка - определение возраста археологических памятников. Хронология их может быть абсолютная, выраженная в годах, столетиях, тысячелетиях, и относительная, определённая относительно других памятников (раньше, позже). Археологическая датировка производится археологическими методами (стратиграфический, типологический) и методами естественных наук (радиоуглеродный метод датировки и др.).
* * *
АРХЕОЛОГИЧЕСКАЯ ДАТИРОВКА - АРХЕОЛОГИ́ЧЕСКАЯ ДАТИРО́ВКА, определение возраста археологического памятника. Хронология их может быть абсолютная, выраженная в годах, столетиях, тысячелетиях, и относительная, определенная относительно других памятников (раньше, позже). Археологическая датировка производится археологическими методами (стратиграфическими, типологическими) и методами естественных наук (радиоуглеродный метод датировки и др.).
АРХЕОЛОГИЧЕСКАЯ ДАТИРОВКА - определение возраста археологического памятника. Хронология их может быть абсолютная, выраженная в годах, столетиях, тысячелетиях, и относительная, определенная относительно других памятников (раньше, позже). Археологическая датировка производится археологическими методами (стратиграфическими, типологическими) и методами естественных наук (радиоуглеродный метод датировки и др.).
АРХЕОЛОГИЧЕСКАЯ КОМИССИЯ - АРХЕОЛОГИ́ЧЕСКАЯ КОМИ́ССИЯ (Императорская археологическая комиссия), официальный научный и организационный центр русской дореволюционной археологии в 1859-1919 годах, также вела работу по охране и реставрации монументальных памятников старины. Создана в Санкт-Петербурге на основе Комиссии для расследования древностей (основана 1850) под председательством Л.А. Перовского (см. ПЕРОВСКИЙ Лев Алексеевич).
Председателями Археологической комиссии были С.Г. Строганов (см. СТРОГАНОВ Сергей Григорьевич), А.А. Васильчиков, А.А. Бобринский (см. БОБРИНСКИЕ). В 1889 году комиссия получила исключительное право разрешать и контролировать археологические раскопки на государственных, городских и крестьянских землях. Археологическая комиссия выпускала ежегодные отчеты о своей деятельности за 1859-1915 годы, «Известия» (1901-1918), а также «Материалы по археологии России» в 37 томах (1866-1918) и отдельные издания. В 1919 году комиссия была ликвидирована и ее функции были возложены на организованную Российскую Академию истории материальной культуры в Петрограде.
Археологи́ческая культу́ра - общность археологических памятников, относящихся к одному времени и определенной территории.
* * *
АРХЕОЛОГИЧЕСКАЯ КУЛЬТУРА - АРХЕОЛОГИ́ЧЕСКАЯ КУЛЬТУ́РА, понятие, обозначающее общность археологических памятников, относящихся к одному времени, определенной территории и отличающихся местными особенностями. Отражает (не всегда) этническую общность.
АРХЕОЛОГИЧЕСКАЯ КУЛЬТУРА - понятие, обозначающее общность археологических памятников, относящихся к одному времени, определенной территории и отличающихся местными особенностями. Отражает (не всегда) этническую общность.
АРХЕОЛОГИ́ЧЕСКАЯ КУЛЬТУ́РА - одно из фундаментальных понятий археологии (см.). По И. С. Каменецкому, А. К. - группа памятников, занимающих сплошную терр., границы к-рой могут меняться, и обладающих объективно существующим сходством материальных и нематериальных признаков, образующих сложную внутренне связанную систему, единообразно изменяющуюся во времени и ограниченно варьирующуюся в пространстве, существенно отличающуюся от аналогичного типа систем, характеризующего др. культуры. Под археологич. памятниками обычно понимают остатки древних поселений (стоянки, селища, городища), погребальные (грунтовые или курганные кладбища и отд. могилы) и культовые (святилища) сооружения, клады, случайные находки. По Л. С. Клейну, А. К. определяется на базе упорядоченной совокупности устойчиво взаимосвязанных типов явлений материального мира, данных нам в археологич. остатках. Признаками А. К. обычно являются типы жилых и хоз. построек, способы захоронения и устройства могил, типы орудий труда, оружия, одежды, орнаментация и т. д. На терр. Вост. Европы выделены десятки А. К. - от эпохи камня до Средневековья. Часто (как правило - в археологии жел. века) А. К. сопоставляется с этнич. образованиями (скифы, сарматы, балты, финны, германцы, кельты). Среди древнейших слав. культур - пражская и роменско-боршевская.
Лит.: Каменецкий И. С. Археологич. культура - ее определение и интерпретация, "Сов. археология", 1970, № 2; Клейн Л. С. Пролема определения археологич. культуры. Там же.
Археологи́ческие разве́дки - поиск археологических памятников для их регистрации (составления археологических карт) и последующих раскопок.
* * *
АРХЕОЛОГИЧЕСКИЕ РАЗВЕДКИ - АРХЕОЛОГИ́ЧЕСКИЕ РАЗВЕ́ДКИ, поиск археологических памятников для их регистрации (составления археологических карт) и последующих раскопок.
АРХЕОЛОГИЧЕСКИЕ РАЗВЕДКИ - поиск археологических памятников для их регистрации (составления археологических карт) и последующих раскопок.