Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

космическая

Идиоматика

космическая скорость

Полезные сервисы

космическая биология

Энциклопедический словарь

Косми́ческая биоло́гия - комплекс главным образом биологических наук, изучающий жизнедеятельность земных организмов в условиях космического пространства и при полётах на космических летательных аппаратах, биологические системы жизнеобеспечения на космических кораблях и станциях.

* * *

КОСМИЧЕСКАЯ БИОЛОГИЯ - КОСМИ́ЧЕСКАЯ БИОЛО́ГИЯ, комплекс главным образом биологических наук, изучающий жизнедеятельность земных организмов в условиях космического пространства и при полетах на космических летательных аппаратах, биологические системы жизнеобеспечения на космических кораблях и станциях.

Большой энциклопедический словарь

КОСМИЧЕСКАЯ БИОЛОГИЯ - комплекс главным образом биологических наук, изучающий жизнедеятельность земных организмов в условиях космического пространства и при полетах на космических летательных аппаратах, биологические системы жизнеобеспечения на космических кораблях и станциях.

Полезные сервисы

космическая гавань

Синонимы к слову космическая гавань

сущ., кол-во синонимов: 2

Полезные сервисы

космическая гостья

Синонимы к слову космическая гостья

космическая странница, космическая скиталица, комета

Полезные сервисы

космическая материя

Словарь иностранных слов

КОСМИЧЕСКАЯ МАТЕРИЯ - из которой состоят туманности и подвижные звезды.

Полезные сервисы

космическая медицина

Энциклопедический словарь

Косми́ческая медици́на - изучает влияние космического полёта на здоровье и работоспособность человека, разрабатывает медицинские требования к системе обеспечения жизнедеятельности и управления космическими аппаратами, методы профессионального отбора и подготовки космонавтов, меры профилактики и лечения заболеваний, обусловленных космическим полётом.

* * *

КОСМИЧЕСКАЯ МЕДИЦИНА - КОСМИ́ЧЕСКАЯ МЕДИЦИ́НА, изучает влияние космического полета на здоровье и работоспособность человека, разрабатывает медицинские требования к системе обеспечения жизнедеятельности и управления космическими аппаратами, методы профессионального отбора и подготовки космонавтов, меры профилактики и лечения заболеваний, обусловленных космическим полетом.

Большой энциклопедический словарь

КОСМИЧЕСКАЯ МЕДИЦИНА - изучает влияние космического полета на здоровье и работоспособность человека, разрабатывает медицинские требования к системе обеспечения жизнедеятельности и управления космическими аппаратами, методы профессионального отбора и подготовки космонавтов, меры профилактики и лечения заболеваний, обусловленных космическим полетом.

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКАЯ МЕДИЦИНА, смотри Авиационная медицина.

Полезные сервисы

космическая мудрость

Евразийская мудрость от А до Я.

КОСМИЧЕСКАЯ МУДРОСТЬ -

одна из центральных категорий софиогонии (направление в евразийской философии), представляет собой олицетворение удивительной гармонии, единства и многообразия, целесообразности, любви и красоты в структуре и строении, в принципах и законах самовозникновения, самодвижения и саморазвития Вселенной.

Полезные сервисы

космическая пушка

Практический толковый словарь

мист. "КОСМИЧЕСКАЯ ПУШКА" - гипотетический искусственный (или возможно, естественный) источник, который обстреливает из космоса нашу планету потоком частиц, обладающих колоссальной энергией - примерно 10 в двадцатой степени электрон-вольт. Принято считать, что космические частицы приобретают энергию, разгоняясь межзвездными магнитными полями. Но даже если бы они пролетали насквозь всю Вселенную, они не смогли бы набрать 10 в двадцатой степени электрон-вольт. Это невозможно еще и потому, что межзвездный газ тормозил бы их разбег. Значит, предположили ученые, "космическая пушка" расположена где-то неподалеку. Но где? В нашей галактике нет ничего похожего на источник такого излучения.Чтобы разгадать природу происхождения частиц со сверхвысокой энергией, сотрудники Чикагского университета предложили создать две сети водных детекторов, площадью в пять тысяч квадратных километров каждая - это в несколько раз больше территории Москвы. Частицы высоких энергий, пролетая через резервуар с водой, вызывают ее свечение (эффект Вавилова-Черенкова), что и позволяет фиксировать их. Ориентировочная стоимость проекта 100 миллионов долларов. Поиски "космической пушки" диктуются не просто академическим интересом. Дело в том, что таинственные частицы играют существенную роль в формировании погоды - проходя сквозь атмосферу Земли, они инициируют масштабные атмосферные ливни. Предсказать эти катаклизмы невозможно, пока не будет известно расположение источника излучения и периодичности с какой он посылает на Землю свои лучи.

Полезные сервисы

космическая пыль

Энциклопедический словарь

Косми́ческая пыль - частицы конденсированного вещества в межзвёздном и межпланетном пространстве. По современной представлениям, космическая пыль состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует сгущения - облака и глобулы. Вызывает ослабление света, испускаемого звёздами и другими небесными светилами (в среднем на 1 звёздную величину на 1 кпк в галактической плоскости).

* * *

КОСМИЧЕСКАЯ ПЫЛЬ - КОСМИ́ЧЕСКАЯ ПЫЛЬ, частицы конденсированного вещества в межзвездном и межпланетном пространстве. По современным представлениям, космическая пыль состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует сгущения - облака и глобулы. Вызывает ослабление света, испускаемого звездами и другими небесными светилами (в среднем на 1 звездную величину (см. ЗВЕЗДНАЯ ВЕЛИЧИНА) на 1 кпк в галактической плоскости).

Большой энциклопедический словарь

КОСМИЧЕСКАЯ ПЫЛЬ - частицы конденсированного вещества в межзвездном и межпланетном пространстве. По современным представлениям, космическая пыль состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует сгущения - облака и глобулы. Вызывает ослабление света, испускаемого звездами и другими небесными светилами (в среднем на 1 звездную величину на 1 кпк в галактической плоскости).

Полезные сервисы

космическая ракета

Энциклопедический словарь

Косми́ческая раке́та - см. Ракета-носитель.

* * *

КОСМИЧЕСКАЯ РАКЕТА - КОСМИ́ЧЕСКАЯ РАКЕ́ТА, см. Ракета-носитель (см. РАКЕТА-НОСИТЕЛЬ).

Большой энциклопедический словарь

КОСМИЧЕСКАЯ РАКЕТА - см. Ракета-носитель.

Полезные сервисы

космическая связь

Энциклопедический словарь

Косми́ческая связь - радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приёмно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи, между несколькими космическими аппаратами.

* * *

КОСМИЧЕСКАЯ СВЯЗЬ - КОСМИ́ЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами.

Большой энциклопедический словарь

КОСМИЧЕСКАЯ связь - радиосвязь или оптическая (лазерная) связь, осуществляемая между наземными приемно-передающими станциями и космическими аппаратами, между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (напр., пояс иголок), между несколькими космическими аппаратами.

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКАЯ СВЯЗЬ, радио- или оптическая (лазерная) связь между наземными приемопередающими станциями и космическими аппаратами (КА), между несколькими наземными станциями преимущественно через спутники связи или пассивные ретрансляторы (например, пояс иголок в космосе), между несколькими КА.

Полезные сервисы

космическая скиталица

Синонимы к слову космическая скиталица

Полезные сервисы

космическая станция

Энциклопедия Кольера

КОСМИЧЕСКАЯ СТАНЦИЯ - обитаемый долговременный летательный аппарат, предназначенный для исследований на околоземной орбите или в открытом космосе. Космическая станция может служить как космический корабль, долговременное место пребывания космонавтов, лаборатория, телекоммуникационный центр, мастерская, космический порт, база для заправки топливом и строительная площадка. Следующие признаки отличают космическую станцию от других объектов космической техники: 1) способность поддерживать жизнеобеспечение присутствующих на ней людей в течение долгого периода времени; 2) длительное существование (до ее оставления или демонтажа) на орбите вокруг Земли или какого-либо тела Солнечной системы.

КОНЦЕПЦИИ ДОСПУТНИКОВОЙ ЭРЫ

Станция дозаправки топливом и проживание в космическом пространстве. В своей небольшой книге Ракета в космическом пространстве (Die Rakete zu den Planetenrumen) Г.Оберт высказал мысль, что, используя стандартную технику полярных экспедиций - поэтапного движения из базового лагеря и/или использования складов, исследователям космоса не нужно будет совершать весь путь от Земли до Луны или Марса в одной большой ракете. Он пришел к выводу, что полет к Луне или Марсу был бы возможен, если бы удалось разработать достаточно мощный ракетный двигатель для достижения заправочной станции, расположенной в некоторой промежуточной точке на низкой околоземной орбите, используя существующие топлива и материалы. В 1920-х годах вместе с другими энтузиастами космических полетов, главным образом из Австрии и Германии, Оберт развил концепцию космической станции и предложил использовать такую станцию как орбитальный вокзал, который может использоваться для решения широкого круга военных и экономических задач, включая разведку, стратегические военные действия, связь, метеорологию, и иметь широкое научно-техническое применение. См. также ОБЕРТ, ГЕРМАН. Облик, назначение, состав, стоимость. Потенциальная возможность многоцелевого использования космической станции привела к жарким теоретическим дебатам по ряду вопросов. Какой должна быть космическая станция и что на ней делать? Сколько станций необходимо иметь, когда и где? Единственного ответа на любой из этих вопросов не существует. При разработке космической станции, как и при разработке любого крупного технического проекта, всегда приходится делать выбор и идти на компромиссы. С 1929 до 1957 теоретики космических станций обсуждали четыре взаимосвязанных аспекта их проектирования: облик, назначение, состав и стоимость. С вращением или без вращения. Самый старый и наиболее обсуждаемый вопрос проектирования космической станции состоит в следующем. Должны ли конструкторы пытаться создать внутри станции условия, похожие на земные, для удобства экипажа и других форм жизни, или же экипаж должен приспосабливаться к условиям космического пространства, чтобы лучше изучить новую среду обитания? В зависимости от ответа на этот вопрос были

выдвинуты концепции вращающейся и невращающейся станции. На станции с вращением используется эффект центростремительного ускорения для создания искусственной силы тяжести, величина которой может быть в диапазоне от 0,1 до 1,0 g, где g - ускорение силы тяжести на поверхности Земли. На космической станции, не имеющей собственного вращения, существуют условия невесомости (точнее, микрогравитации, для которой характерны величины ускорений от 0,001 до 0,000001 g). Г. Поточник (1892-1929), капитан австрийской армии, выступая под псевдонимом Герман Нордунг, впервые описал в популярной форме станцию с вращением в своей книге Проблема путешествия в мировое пространство (Das Problem der Befahrung des Weltraums, 1929). Его "жилое колесо" было очень похоже на камеру большой автомобильной шины. Журнал "Кольерс" 22 марта 1952 опубликовал статью известного конструктора ракет Вернера фон Брауна, озаглавленную "Через последнюю границу", в которой описывалась огромная вращающаяся космическая станция и полный набор средств космической техники, включая космические многоразовые корабли, космические буксиры, астронавтов в скафандрах и зонды для исследования дальнего космоса.

См. также БРАУН, ВЕРНЕР ФОН; РАКЕТА. Концепция наращивания и добавления модулей. Два наиболее многообещающих подхода к проектированию космических станций, которые были выдвинуты еще в доспутниковую эру, - применение наращиваемых конструкций и добавление модулей. Хотя фон Браун популяризировал огромные космические станции в форме колеса, он считал, что их создание на начальном этапе освоения космоса нецелесообразно. Он высказывался за разработку спутников-автоматов, затем одно-двухместных пилотируемых космических кораблей, а после - небольших космических станций с экипажем из четырех человек. Он полагал, что только после создания достаточно мощной космической индустрии, соответствующих технологий и знаний можно будет создать большие космические станции. Г. Келле и Д. Ромик, работая независимо в Западной Европе и США, представили теоретическое обоснование концепции постепенного наращивания и добавления модулей. При таком подходе неотложные и долгосрочные операции сочетаются с практическими потребностями космического строительства, безопасности и развития долговременной станции. Начиная с 1930-х годов аналогичные исследования велись в Советском Союзе энтузиастами ГИРД и ГДЛ, но результаты их исследований не публиковались.

КОСМИЧЕСКИЕ СТАНЦИИ ВРЕМЕН ХОЛОДНОЙ ВОЙНЫ

В конце 1950-х годов специалисты как в Соединенных Штатах, так и в Советском Союзе не имели ясного представления о влиянии микрогравитации на человеческий организм и другие формы жизни. Аэрокосмические круги в обеих странах в какой-то момент пришли к выводу, что необходимо создать орбитальные лаборатории для исследования возможностей пребывания человека в условиях микрогравитации и работоспособности человека в таких условиях.

Пилотируемые орбитальные лаборатории. Хотя администрация президента Джонсона в 1965 поставила перед ВВС США задачу создания пилотируемой орбитальной лаборатории (MOL), действующая американская космическая станция так и не была создана. К концу 1960-х годов робототехника и микроэлектроника достигли такого уровня, что беспилотные спутники начали выполнять некоторые военные задачи, особенно разведывательные, которые раньше возлагались на космические станции. При этом, даже несмотря на все более широкое использование космических систем в военных операциях, необходимость присутствия человека в космосе для таких операций становилась все менее очевидной.

См. также ВОЕННО-КОСМИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ. В результате проект орбитальной станции превратился в выводимую на орбиту "больничную палату", предназначенную для получения медицинских данных о влиянии микрогравитации на двух космонавтов, которые должны были находиться на станции в течение двух недель. Эта программа постоянно испытывала недостаток финансирования и откладывалась. После оценки ее стоимости в 1,3 млрд. долл. и пятилетней подготовки космонавтов министерство обороны США отменило проект в 1969, когда рабочий прототип находился на стартовой позиции.

Станция "Скайлэб". Когда в середине 1960-х годов приобрела конкретные очертания программа "Аполлон", научные центры НАСА и их подрядчики провели обширные поисковые исследования возможности использования технологий, разработанных для ракеты-носителя "Сатурн" и космического корабля "Аполлон", применительно к космической станции.

См. также КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ. К концу 1966 в Центре космических полетов им. Маршалла (Хантсвилл, шт. Алабама) был разработан проект т.н. "мокрой" орбитальной лаборатории. Бак жидкого водорода отработавшей второй ступени S-4B ракеты "Сатурн-1B", запущенной на околоземную орбиту, предполагалось продуть и загерметизировать, чтобы предоставить космонавтам достаточно большое пространство для экспериментов в условиях невесомости. Космонавты, после выведения на орбиту основного блока корабля "Аполлон" другой ракетой "Сатурн-1B" и стыковки с лабораторией, должны были войти внутрь через причальную конструкцию и шлюзовую камеру. Последующие экспедиции должны были доставить комплект астрономических приборов (ATM) - лунный модуль корабля "Аполлон", на котором вместо спускаемой ступени установлен комплект солнечных телескопов. Экипаж должен был использовать основной блок КК "Аполлон" в качестве жилого отсека и для проведения медико-биологических экспериментов. Оборудование "мокрой" лаборатории потребовало бы значительного объема работ в открытом космосе. Однако опыт пилотируемых космических полетов, в частности в рамках программы "Джемини", показал специалистам НАСА, что работа в открытом космосе предъявляет к экипажу более высокие требования, чем ожидалось. В связи с этим, а также из-за недостатка финансирования и доступных технических средств НАСА в 1969 переключилось на "сухой" вариант космической станции "Скайлэб", полностью оборудуемой на Земле и запускаемой двухступенчатой ракетой "Сатурн-5". "Скайлэб" состоял из четырех основных модулей: орбитальной лаборатории (ступень S-4В ракеты "Сатурн-5") длиной 27 м и диаметром 7 м, шлюзовой камеры, причальной конструкции и комплекта астрономических приборов. На станции предполагалось развернуть панели солнечных батарей и телескопы, а через сутки доставить экипаж и приступить к работе. Цель программы состояла в исследовании возможности пребывания человека в условиях микрогравитации и его работоспособности в 30-, 60- и 90-суточном полетах.

КОСМИЧЕСКАЯ СТАНЦИЯ СКАЙЛЭБ на околоземной орбите, фотоснимок сделан с КК Аполлон.

КОСМИЧЕСКАЯ СТАНЦИЯ "СКАЙЛЭБ" на околоземной орбите, фотоснимок сделан с КК "Аполлон".

ВНУТРИ СТАНЦИИ командир экспедиции Дж.Карр указательным пальцем держит на весу пилота У.Поуга - наглядная иллюстрация невесомости в космосе. Фотоснимок сделан Э.Гибсоном. Три космонавта провели почти три месяца в 1973-1974 на борту космической станции Скайлэб. Этого времени им вполне хватило, чтобы отрастить бороды.

ВНУТРИ СТАНЦИИ командир экспедиции Дж.Карр указательным пальцем держит на весу пилота У.Поуга - наглядная иллюстрация невесомости в космосе. Фотоснимок сделан Э.Гибсоном. Три космонавта провели почти три месяца в 1973-1974 на борту космической станции "Скайлэб". Этого времени им вполне хватило, чтобы отрастить бороды.

Программа "Скайлэб" была успешной. Продолжительность трех экспедиций программы составила: первой - 28 сут (25 мая - 22 июня 1973), второй - 59 сут (28 июля - 25 сентября 1973) и третьей - 89 сут (16 ноября 1973 - 8 февраля 1974). Космонавты выполнили большой объем научных и технологических экспериментов, в том числе по поведению материалов в условиях микрогравитации, астрофизике, физике Солнца, исследованию земных ресурсов и космической технологии. Астрономические наблюдения, по мнению специалистов, позволили удвоить объем информации по физике Солнца и привели к открытию нескольких неизвестных физических процессов в солнечной короне. Данные по адаптации человека к условиям невесомости служили отправной точкой для космической медицины в течение более десяти последующих лет. Стоившая более 2,4 млрд. долл. (в ценах 1974) программа "Скайлэб" развеяла последние сомнения специалистов в США в том, что долговременная невращающаяся космическая станция со сменой экипажа каждые 90 сут вполне реальна. См. также ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ.

"Салют". Советский Союз в 1964 начал разработку военной космической станции "Алмаз", рассчитанной на пребывание на орбите двух или трех космонавтов в течение одно-двухлетнего периода. При проектировании возникли проблемы, и конструкторам пришлось заимствовать ряд систем (двигательную установку и солнечные батареи) с корабля "Союз", который первоначально разрабатывался для национальной программы высадки человека на Луну. После постепенного свертывания последней (1969-1972) "Алмаз" получил дополнительное финансирование и в конце концов превратился в многоплановую программу. Целью этой программы являлось предоставление советским инженерам, ученым и медикам возможности исследования влияния микрогравитации на человеческий организм и другие формы жизни и выполнения программ экспериментов во время длительного пребывания в космосе. Первоначально станция состояла из трех основных элементов: 1) корабля "Союз" для доставки экипажа на станцию и обратно; 2) стыковочного устройства и 3) основного жилого модуля "Салют", который имел собственный источник электроэнергии - солнечные батареи. Применяя концепцию постепенного наращивания и добавления модулей при проектировании и строительстве станции, советские конструкторы использовали новые знания и опыт, полученные при эксплуатации каждой станции, для проектирования новой. После предварительного полета двух космонавтов на корабле "Союз-9" (1-19 июня 1970), очевидно, с медицинскими целями для планирования долгосрочных операций на борту космической станции, 19 апреля 1971 (на два года раньше "Скайлэба") был запущен "Салют-1". Технические неполадки не позволили экипажу "Союза-10" (22-24 апреля 1971) попасть внутрь станции после стыковки, однако следующий экипаж корабля "Союз-11" (Г.Т.Добровольский, В.Н.Волков и В.И.Пацаев) осуществил успешную стыковку и проработал на станции 24 дня (6-29 июня 1971). Однако при возвращении на Землю во время спуска в атмосфере клапан выравнивания давления между орбитальным отсеком (который вместе с приборно-агрегатным отсеком отстреливался после включения тормозной установки) и спускаемым аппаратом полностью не закрылся. Из-за этой неисправности весь воздух из аппарата вышел наружу, и экипаж в течение нескольких секунд погиб от удушья. Всего было запущено шесть станций типа "Алмаз": одна не вышла на орбиту (1972); "Салют-2" (3-14 апреля 1973) и "Космос-557" (14-22 мая 1973) прекратили существование вскоре после выведения на орбиту; "Салют-3" (24 июня 1974 - 24 января 1975) и "Салют-5" (22 июня 1976 - 8 августа 1977) были военными станциями; на "Салюте-4" (26 декабря 1974 - 2 февраля 1977) выполнялись в основном научные исследования. "Салют-6" (29 сентября 1977 - 29 июля 1982), в конструкцию которого был внесен ряд усовершенствований и учтен опыт предыдущих станций, стал станцией нового поколения и продемонстрировал возросший уровень советской космической программы. Станция имела больше солнечных батарей, объединенную двигательную установку, включающую два корректирующих ракетных двигателя с тягой по КОСМИЧЕСКАЯ СТАНЦИЯ3 кН и исполнительные органы системы ориентации и стабилизации, а также более благоприятные условия для проведения научных экспериментов. На агрегатном отсеке был установлен второй стыковочный узел, который позволял стыковаться второму кораблю "Союз" или автоматическому грузовому кораблю "Прогресс" при одном пристыкованном корабле "Союз". Это изменение конструкции позволило варьировать доставку и замену экипажей и грузов и тем самым продлить время непрерывного пребывания космонавтов на станции. На "Салюте-6" побывало 16 экипажей в ходе пяти экспедиций, которые расширили время пребывания человека в космосе до 185 сут. В конструкцию станции "Салют-7" (19 апреля 1982 - 7 февраля 1991) были, в частности, внесены некоторые изменения для повышения ее комфортабельности. Советские специалисты также стали более широко использовать модули серии "Космос" (некоторые из них по своим размерам были почти такими же, как сама станция) для доставки больших систем или для увеличения внутреннего рабочего пространства. На станции "Салют-7" побывало шесть экспедиций в период с 25 июня 1982 по 21 ноября 1985; продолжительность пребывания человека в космосе была доведена до 237 сут.

РОССИЙСКАЯ КОСМИЧЕСКАЯ СТАНЦИЯ МИР перед стыковкой с многоразовым космическим кораблем Атлантис в июне 1995.

РОССИЙСКАЯ КОСМИЧЕСКАЯ СТАНЦИЯ "МИР" перед стыковкой с многоразовым космическим кораблем "Атлантис" в июне 1995.

ПОСЛЕ СТЫКОВКИ КОРАБЛЕЙ американец Ч.Прекурт вплывает из Атлантиса в Мир во время исторического одиннадцатидневного полета пяти американских и пяти российских космонавтов.

ПОСЛЕ СТЫКОВКИ КОРАБЛЕЙ американец Ч.Прекурт вплывает из "Атлантиса" в "Мир" во время исторического одиннадцатидневного полета пяти американских и пяти российских космонавтов.

Станция "Мир". К концу программы "Салют" советские специалисты убедились, что пребывание в космосе более шести месяцев не приводит к сколько-нибудь серьезным отрицательным последствиям, хотя и становится довольно утомительным. Поэтому следующим этапом было проведение практически непрерывной работы в космосе на борту новой станции, названной "Мир", которая была запущена 19 февраля 1986. На ней побывало несколько экспедиций, наиболее длительная из которых продолжалась 423 сут. Станция "Мир" имела более совершенные солнечные батареи, а связь осуществлялась через ретрансляционный спутник. Самым значительным изменением конструкции было создание нового переходного отсека с пятью стыковочными узлами, расположенного в передней части станции. В 1997 масса комплекса более чем в шесть раз превышала первоначальную и составляла около 120 т без учета массы грузового корабля и корабля "Союз". В 1999 станция "Мир" продолжала функционировать, хотя один из ее блоков в результате аварии утратил герметичность и, таким образом, вышел из строя.

Группа космического планирования. 13 февраля 1969, незадолго до первой посадки космического корабля "Аполлон" на Луне, в США была создана группа космического планирования под руководством вице-президента С. Агню для планирования космических исследований после выполнения программы "Аполлон". Несмотря на успешный облет Луны кораблем "Аполлон-8" в декабре 1968 и высадку на Луне "Аполлона-11" в июле 1969, администрация Никсона из всех предложенных группой систем в конце концов одобрила (1972) многоразовый космический корабль. См. КОСМИЧЕСКИЙ КОРАБЛЬ "ШАТТЛ".

Станция "Фридом". К 1981 Советский Союз опередил Соединенные Штаты в области создания космических станций, как в свое время с запуском первого космонавта. Обладание орбитальными космическими станциями могло стать важным стратегическим преимуществом. Поэтому администрация Рейгана-Буша выдвинула новую доктрину. Суть ее состояла в выигрыше Соединенными Штатами холодной войны за счет более высоких затрат в гонке вооружений, что заставило бы Советский Союз сойти с дистанции. Предполагалось, что этот образ действий должен привести к банкротству Советского Союза, возникновению внутренних конфликтов и революции. Программа стратегической оборонной инициативы, объявленная в марте 1983, была ключевым моментом рейгановского плана. См. также ВОЙНЫ ЗВЕЗДНЫЕ. Чтобы выполнить многообразные требования к долговременной космической станции, НАСА и его партнеры из космической промышленности разработали проект космической станции третьего поколения "Фридом", которая значительно превосходила все, что мог сделать Советский Союз в обозримом будущем. Первоначальная конструкция энергетической установки башенного типа базировалась на 140-метровой ферме, к которой крепился обычный набор функциональных модулей. Эта конструкция обеспечивала от 75 до 150 кВт электрической мощности и хорошие условия для различных научных экспериментов. В 1985 вместо этой конструкции была предложена двухкилевая для выполнения жестких требований по микрогравитации и динамической устойчивости. Большинство технологий, предложенных для строительства и функционирования такой конструкции, были не только не апробированы, но даже еще не разработаны. В результате стоимость создания космической станции стремительно выросла с первоначально планировавшихся 8 до 14 млрд. долл. Катастрофа с многоразовым космическим кораблем "Челленджер" в 1986 губительно отразилась на всей программе космической станции, поскольку стало ясно, что разрабатываемая космическая транспортная система далеко не столь надежна для доставки людей и грузов, как предполагали многие официальные лица и специалисты. Руководство НАСА было вынуждено пойти на сокращение программы.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ

В 1993 администрация Клинтона предложила коренным образом пересмотреть программу "Фридом", отчасти из-за того, что главная побудительная причина создания станции потеряла свою актуальность. С распадом Советского Союза стратегическая цель, с точки зрения администрации, состояла в поддержке капиталистической демократии в России. Одним из методов достижения экономической стабильности (и, возможно, военной безопасности США) была бы поддержка аэрокосмической промышленности России за счет приглашения ее к участию в программе создания международной космической станции. Возможными побочными следствиями были бы облегчение финансового бремени США и их партнеров, а также доступ к ценным российским космическим технологиям и опыту, включая использование ракет-носителей. С учетом этих соображений концепция программы "Фридом" была радикально изменена и рассчитывалась теперь на совместные усилия ряда партнеров, включая Россию. Первый этап этой программы (1994-1997) предусматривал накопление опыта совместных полетов для повышения безопасности при сборке и работе станции, а также для как можно более раннего начала широких научных экспериментов. Он включал участие российских космонавтов в полетах на кораблях "Шаттл", посещение американцами станции "Мир" и стыковки "Шаттла" с "Миром" для смены экипажей и приборной модернизации станции.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ. Виден пристыкованный к станции корабль Шаттл. На рисунке, полученном средствами компьютерной графики, показана полностью собранная работающая станция. На этом заключительном этапе станция содержит конструктивные блоки разработки Соединенных Штатов, России, Европы, Канады и Японии.

МЕЖДУНАРОДНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ. Виден пристыкованный к станции корабль "Шаттл". На рисунке, полученном средствами компьютерной графики, показана полностью собранная работающая станция. На этом заключительном этапе станция содержит конструктивные блоки разработки Соединенных Штатов, России, Европы, Канады и Японии.

На втором этапе (1998-1999) было создано ядро международной космической станции (МКС). После запуска российского сегмента, состоящего из функционально-грузового блока и служебного модуля, представляющего собой модификацию "Мира", к станции должен быть пристыкован научный модуль разработки США, после чего предполагается начать проведение научных экспериментов и исследований. Создание станции планируется завершить на третьем этапе (1999-2002) после присоединения канадского дистанционного манипулятора, японского экспериментального модуля, орбитального блока Европейского космического агентства, американского модуля аккомодации на центрифуге, двух российских научных модулей и последних солнечных батарей и элементов несущей фермы. Второй и третий этапы требуют 27 полетов кораблей "Шаттл" (21 для сборки и 6 для доставки снаряжения), 44 полета российских носителей (15 для сборки, 10 для доставки экипажей и 19 для доставки топлива на станцию с целью поддержания ее средней высоты 350 км) и один полет европейской ракеты "Ариан-5". Общие расходы программы на разработку и строительство станции оцениваются в 27,5 млрд. долл. После окончания строительства станция будет иметь размеры 110 на 88 м (с учетом солнечных батарей), массу 462 т, объем герметичных отсеков 1 300 м3 и экипаж из шести человек.

ЛИТЕРАТУРА

Вопросы ракетной техники. М., 1965-1974 Глушко В.П. и др. Космонавтика: энциклопедия. М., 1985 Гэтланд К. и др. Космическая техника: иллюстрированная энциклопедия. М., 1985 Глушко В.П. Развитие ракетостроения и космонавтики в СССР. М., 1987 Раушенбах Б.В. Герман Оберт. М., 1994

Полезные сервисы

космическая станция альфа

Практический толковый словарь

до 1995 года полуофициальное название МКС (Международной Космической Станции).

Полезные сервисы

космическая станция мир-2

Практический толковый словарь

планировалась до 1993 года в качестве следующего шага на пути развития российской национальной космической программы, а затем была "поглощена" Международной Космической Станцией, как и американская станция "Фридом". Представляла собой дальнейшее развитие идеи сочетания базового блока (аналогичного ББ станции "Мир") и целевых модулей различного назначения. Основные отличия от станции "Мир" - переход на модули меньшей размерности, создаваемые на базе конструкций РКК "Энергия", а также добавление развитых ферменных и разворачиваемых конструкций, часть из которых (энергетические установки) перешла в проект МКС.

Полезные сервисы

космическая стража

Практический толковый словарь

мист. международная исследовательская организация, учрежденная в 1996 году в Риме. "КС" ставит перед собой задачу объединить специалистов всех стран, чтобы предотвратить возможное столкновение Земли с ОКО (опасными космическими объектами) - астероидами и кометами. Ученые из России явились одними из инициаторов создания "КС".

Полезные сервисы

космическая странница

Синонимы к слову космическая странница

Полезные сервисы

космическая съёмка

Энциклопедический словарь

Косми́ческая съёмка - съёмка (фотографическая, телевизионная и др.) Земли, небесных тел и космических явлений аппаратурой, находящейся за пределами атмосферы Земли (на ИСЗ, космических кораблях и т. п.) и дающей изображения в различных областях электромагнитного спектра. Ср. масштаб космических снимков Земли 1:1 000 000-1:10 000 000.

* * *

КОСМИЧЕСКАЯ СЪЕМКА - КОСМИ́ЧЕСКАЯ СЪЕМКА, съемка (фотографическая, телевизионная и др.) Земли, небесных тел и космических явлений аппаратурой, находящейся за пределами атмосферы Земли (см. АТМОСФЕРА ЗЕМЛИ) (на искусственных спутниках (см. ИСКУССТВЕННЫЙ СПУТНИК (ИС)) Земли, космических кораблях и т. п.) и дающей изображения в различных областях электромагнитного спектра. Средний масштаб космических снимков Земли 1:1000000 - 1:10000000.

Иллюстрированный энциклопедический словарь

Снимки Земли, сделанные с борта станции Салют-4. Атлантический океан.

Снимки Земли, сделанные с борта станции "Салют-4". Атлантический океан.

Космическая съемка

КОСМИЧЕСКАЯ СЪЁМКА, съемка (фотографическая, телевизионная) Земли, небесных тел и космических явлений с искусственного спутника Земли, космических кораблей и т.п., выполненная в различных областях спектра электромагнитного излучения. Средний масштаб космических снимков Земли 1:1 000 000-1:10 000 000.

Снимки Земли, сделанные с борта станции Салют-4. Океания.

Снимки Земли, сделанные с борта станции "Салют-4". Океания.

Полезные сервисы

космическая съемка

Большой энциклопедический словарь

КОСМИЧЕСКАЯ СЪЕМКА - съемка (фотографическая, телевизионная и др.) Земли, небесных тел и космических явлений аппаратурой, находящейся за пределами атмосферы Земли (на искусственных спутниках Земли, космических кораблях и т. п.) и дающей изображения в различных областях электромагнитного спектра. Средний масштаб космических снимков Земли 1:1000000 - 1:10000000.

Полезные сервисы

космически

Толковый словарь

I нареч. качеств.-обстоят.

1. С точки зрения космоса как мира, Вселенной.

2. В соответствии с законами космоса.

3. перен. разг.

В высшей степени, предельно в своём проявлении; чрезмерно, чрезвычайно, очень.

II предик.

Оценочная характеристика чего-либо как необычайного, предельного в своём проявлении.

Синонимы к слову космически

нареч, кол-во синонимов: 3

грандиозно, громадно

Полезные сервисы

космически обследованный

Слитно. Раздельно. Через дефис

косми/чески обсле/дованный

Полезные сервисы

космически-всеобщий

Слитно. Раздельно. Через дефис

косми/чески-всео/бщий

Полезные сервисы

космически-вулканический

Слитно. Раздельно. Через дефис

косми/чески-вулкани/ческий

Полезные сервисы

космически-преобразовательный

Слитно. Раздельно. Через дефис

косми/чески-преобразова/тельный

Полезные сервисы

космические аппараты вега

Практический толковый словарь

советские автоматические межпланетные станции (АМС), участвовавшие в международном проекте "Венера - комета Галлея". АМС "В.-1" запущена РН "Протон" с космодрома Байконур 15 декабря 1984 г. 9 июня 1985 г. от АМС был отделен спускаемый аппарат, который произвел посадку на Венере 11 июня. В ходе спуска в атмосфере Венеры от спускаемого аппарата был отделен аэростатный зонд (АЗ) с советской и французской научной аппаратурой, впервые выполнивший аэростатический полет в атмосфере другой планеты. В остальном СА АМС "В." аналогичен СА ранее использовавшихся АМС "Венера-9" - "Венера-14". 6 марта 1986 года пролетный аппарат (ПА) АМС "В.-1" прошел на расстоянии 8890 км от ядра кометы Галлея. Это расстояние было выбрано в целях минимизации воздействия метеорных частиц, сопровождавших комету. В целом ПА "В." представляет собой вариант так называемого "бабакинского шасси", использовавшегося в качестве базового при создании АМС "Венера-9" - "Венера-16", "Марс-3" - "Марс-6" и ИСЗ "Астрон", "Радиоастнон". Принципиально-новым узлом является автоматическая стабилизированная платформа АСП-Г, разработанная совместно СССР и Чехословакией. На этой платформе расположены телевизионная система, инфракрасный и так называемый трехканальный спектрометры и датчик наведения. Характерной особенностью платформы является то, что в течении большей части времени она находилась в транспортном положении, вдоль топливного отсека ПА, и только незадолго до пролета ядра кометы, 12 февраля 1986 г. переведена в рабочее положение. Кроме оптической аппаратуры на ПА "В.-1" были установлены приборы для исследования концентрации и химического состава пыли и исследования плазмы. В разработке научной аппаратуры для "В." принимали участие Болгария, Венгрия, ГДР, Польша, Чехословакия, Австрия, ФРГ, Франция. Слежение за полетом аэростатного зонда в атмосфере Венеры выполнялось РЛС Франции, США, ФРГ, Швеции, Канады, Бразилии, Великобритании. Полет аналогичной АМС "В.-2" проходил по такой же программе: старт 21 декабря 1984 г., отделение СА 13 июня 1985 г., посадка СА и ввод АЗ - 15 июня 1985 г., приведение стабилизированной платформы в рабочее положение - 15 февраля 1986 г., пролет ядра кометы Галлея на расстоянии 8030 км - 9 марта 1986 г. Информация, полученная с "В." позволила в рамках проекта "Лоцман" провести более метеорнозащищеную западноевропейскую АМС "Джотто" на расстоянии около 600 км от ядра кометы Галлея.

Полезные сервисы

космические аппараты венера

Практический толковый словарь

общее название 16 ("В.-1" - "В.-16") советских автоматических межпланетных станций (АМС) для исследования планеты Венера и межпланетного космического пространства. "В.-1" создана в ОКБ-1 под руководством С.П.Королева, запущена с космодрома Байконур РН "Молния" 12 февраля 1961 г., и стала первым советским КА, успешно выведенным на межпланетную траекторию. "В.-2" - "В.-8" созданы под руководством Г.Н.Бабакина в НПО им. С.А.Лавочкина, куда в середине 60-х годов была передана разработка автоматических межпланетных станций. Начиная с "В.-3" на АМС устанавливался спускаемый аппарат сферической формы. СА "В.-3" и "В.-4" разрушились в атмосфере, в дальнейшем все СА благополучно работали до момента посадки и далее. СА "В.-8" впервые произвел посадку на освещенной стороне планеты. Целью этого эксперимента было измерение освещенности для определения возможности проведения фотокиносъемки АМС следующего поколения. Запуски АМС "В.-2" - "В.-8" осуществлялись с космодрома Байконур РН "Молния" в период с 12 ноября 1965 по 27 марта 1972 года. "В.-9" - "В.-16" представляющие собой 3-е поколение АМС, созданы под руководством Г.Н.Бабакина с использованием так называемого "бабакинского шасси" - унифицированного блока, объединяющего цилиндрический топливный отсек и герметичный приборный отсек торовой формы, в центральном проеме которого устанавливалась корректирующая двигательная установка. На "В.-9" - "В.-14" и "Вега-1 и -2" на свободном торце топливного отсека устанавливался СА ступенчатого спуска. Внешний сферический теплозащитный кожух сбрасывался после этапа интенсивного торможения, далее выполнялся плавный - для исследования атмосферы - спуск на парашютах, а затем - "быстрый", для предотвращения преждевременного перегрева, спуск на тормозном щитке, установленном в верхней части собственно СА. Кроме тормозного щитка вне прочного корпуса СА находились торовый посадочный амортизатор, антенна и грунтозаборное устройство. СА "В.-9" - "В.-14" впервые передали на Землю панораму поверхности Венеры и выполнили химический анализ проб венерианского грунта. Пролетные аппараты (ПА) "В.-9 и -10" были выведены на околовенерианскую орбиту, ПА "В.-11, -12, -13, -14" продолжали полет по межпланетным траекториям. Во всех случаях ПА выполняли ретрансляцию сигналов СА. "В.-15 и -16" выведены на орбиту спутников Венеры и впервые произвели радиолокационную картографическую съемку поверхности планеты в районе северного полюса, для чего вместо СА на них были установлены радиовысотомеры и радиолокаторы бокового обзора. Запуски АМС "В.-9" - "В.-16" выполнялись с космодрома Байконур при помощи РН "Протон" с разгонным блоком "Д" в период с 8 июня 1975 по 7 июня 1983 гг.

Полезные сервисы

космические аппараты марс

Практический толковый словарь

общее название двух серий советских автоматических межпланетных станций, предназначенных для исследования планеты Марс и космического пространства между Землей и Марсом.

Полезные сервисы

космические аппараты фобос

Практический толковый словарь

советские автоматические межпланетные станции, предназначенные для исследования Марса, его спутника Фобоса межпланетного пространства, а так же Солнца. Первые АМС нового поколения, которыми предполагается заменить так называемое "бабакинское шасси". Характерные особенности - применение отдельного высокоэнергетического ракетного блока для доразгона и коррекции межпланетной траектории, широкое использование внешнего (вне герметичных приборных отсеков) размещения научной аппаратуры. После 1986 года, в эйфории от успехов АМС "Вега", работы по "Ф." были резко форсированы, значительно возрос объем научных исследований, преимущественно - за счет международных экспериментов. Астрономически (и политически) детерминированная дата старта не позволила в полном объеме отработать все вопросы связанные с функционированием сложнейших комплексов. Уже задним числом вероятность успешного выполнения 50% программы оценивалась как очень хорошая. Первый "Ф." был утерян на межпланетном участке полета из-за передачи на борт неправильной команды, вызвавшей прекращение работы станции. Причиной потери второй АМС, уже на околомарсианской орбите, скорее всего является ошибка проектировщиков, приведшая к дефициту электроэнергии и обесточиванию станции при выполнении очередного маневра (прошла команда на разворот, но не прошла на его прекращение). Изображение крупной тени на поверхности Марса, напоминающей выхлоп стартующей ракеты, переданное "Ф." непосредственно перед потерей связи, скорее всего является помехой, вызванной спецификой малокадрового телепередатчика, хотя, конечно, не исключена и другая, самая невероятная причина... Полет АМС "Ф." дал огромный объем ценнейшей научной информации, научная программа выполнена более чем на 60%. Однако наиболее интересные исследования собственно - Фобоса при помощи посадочных аппаратов и лучевого зондирования так и остались невыполненными.

Полезные сервисы

космические войска

Энциклопедический словарь

КОСМИЧЕСКИЕ ВОЙСКА - КОСМИ́ЧЕСКИЕ ВОЙСКА́ Вооруженных сил РФ, род войск, предназначен для обеспечения безопасности России в космической сфере. Созданы в 2001 по решению Совета безопасности РФ на базе объединений и частей запуска и управления космическими аппаратами Ракетных войск стратегического назначения, а также войск ракетно-космической обороны.

Космические войска ведут визуальную и радиоэлектронную разведку (в частности, заблаговременное получение данных о подготовке вооруженных сил иностранных государств к нападению), обеспечивают космической информацией всех виды и рода войск Вооруженных сил (см. ВООРУЖЕННЫЕ СИЛЫ) РФ и руководство страны, в целях предупреждения о ракетно-ядерном нападении, осуществляют связь, а также контроль за состоянием космической группировки.

Основными задачами Космических войск являются доведение информации предупреждения высшего военно-политического руководства страны о ракетном нападении, противоракетная оборона г. Москвы (см. МОСКВА (город)), создание, развертывание, поддержание и управление орбитальной группировки космических аппаратов военного, двойного, социально-экономического и научного назначения.

Полезные сервисы

космические корабли

Практический толковый словарь

летательные аппараты, предназначенные для полета человека (в более общем понятии - пилота) в космическом пространстве. Все КК имеют следующие общие черты: Тем или иным способом им сообщается по крайней мере первая космическая скорость. В настоящее время для этого используются ракетоносители, но вполне представим КК, способный выйти с поверхности Земли на околоземную орбиту "своим ходом", тем более это характерно для кораблей, обеспечивающих высадку на другие планеты. КК имеют средства для изменения своей ориентации и перемещения в пространстве. Как правило, последнее ограничивается коррекцией орбиты и тормозным импульсом при посадке. Однако реализованные КК для полетов к Луне и проектировавшиеся для полетов к другим планетам имеют куда более широкие возможности. Все КК имеют системы жизнеобеспечения, позволяющие человеку находиться в них более или менее длительное время. Эта задача тем более осложняется, что космическая среда однозначно враждебна человеку как биологическому объекту. Все КК имеют (по крайней мере - теоретически) достаточную степень автоматизации, позволяющую им совершать полет, пусть не по полной программе, без участия человека.

Полезные сервисы

космические корабли аполлон

Практический толковый словарь

пилотируемые КК для полета человека на Луну, созданные по программе "Аполлон" (см. "Программа "Аполлон") фирмой North Amerikan - Rokwell. Экипаж 3 человека. Ниже приведены характеристики "основного блока" КК "А.", модернизированного для полетов по программам "Скайлэб" и "ЭПАС". КК состоит из командного модуля, служебного модуля, стыковочного модуля (при полете по программе "ЭПАС") и имеет следующие массово-габаритные характеристики: масса (со стыковочным модулем) - 16500 (по другим данным - 14737) кг, длина - 10700 мм, диаметр - 3920 мм. СА: масса - 5470-5500 (по другим данным - 4850) кг, длина - 3430 мм, диаметр - 3920 мм, свободный объем - 6.1 куб.м, аэродинамическое качество - 0.28-0.4 (до 0.5 при угле атаки 33 град.). Служебный модуль: масса - 9000 кг, длина - 3943 (с учетом сопла - 7916) мм; диаметр - 3914 мм; Стыковочный модуль: масса - 2500 кг, длина - 2940 (по другим данным - 3150) мм, диаметр - 1420 мм (по другим данным - 1600) мм, свободный объем - 3.65 куб.м. Описание конструкции: СА конической формы с углом раствора 60 град. имеет многослойную конструкцию. Внутренняя оболочка выполнена из алюминиевых сотовых панелей толщиной 20-38 мм, сварная; внешняя оболочка состоит из профилированных сотовых панелей, сваренных из нержавеющей стали толщиной 0.2-1.0 мм. Абляционное покрытие имеет толщину 8-44 мм (на донной защите более 60 мм) Масса конструкции - 2130 кг. В передней, негерметичной, части СА размещен стыковочный узел типа "штырь" с внутренним люком-лазом; вокруг него уложены парашюты; здесь же размещены 2 из 12 ЖРД управления СА. В средней части СА на амортизаторах установлены кресла экипажа (суммарная масса - 840 кг), причем среднее складывается для облегчения посадки астронавтов (в варианте для ЭПАС командир корабля находится в левом кресле, пилот основного блока - в среднем, пилот стыковочного модуля - в правом); пульты управления (200 кг); блоки СОЖ (200 кг + 80 кг запасов воды и пищи) и радиоэлектронного оборудования (660 кг); здесь же находится быстрооткрывающийся люк трапецевидной формы (установлен после пожара на "Apollo-1"), служащий для посадки и выхода экипажа, и 5 иллюминаторов прямоугольной формы. В донной части размещаются блоки реактивной системы управления СА (10 ЖРД). Масса систем прицеливания и ориентации, размещенных в СА - 715 кг. В служебном модуле (масса конструкции - 1100 кг) находятся топливные баки, топливные элементы системы электропитания, блоки системы связи (115 кг), маршевый двигатель и ДУ системы ориентации и управления (масса блоков СО и СУ - 438 кг). На внешней поверхности модуля расположены антенны дальней связи. Радиаторы (масса - 113 кг) вмонтированы в многослойные панели обшивки. Маршевый (корректирующе-тормозной) двигатель AJ-10-137: тяга - 9300 кг, ресурс - 750 сек, многократное включение длительностью 0.4-500 сек. Двигатели ориентации - 16 штук, тягой по 45 кг; топливо - монометилгидразин + азотный тетроксид. При входе в атмосферу СА управляется 12-ю ЖРД тягой по 414 Н, топливо - монометилгидразин+азотная кислота. Энергопитание: в служебном модуле размещены 3 топливных элемента мощностью по 1.42 кВт и аккумуляторная серебряно-цинковая батарея емкостью 400 ампер*часов; в СА установлена химическая батарея на 98 ампер*часов. Системы "A." потребляют постоянный ток напряжением 27 В. На электродвигатели АПАС подается переменный ток с U=115 В. Система ориентации и навигации; инерциальная гиростабилизированная платформа массой 19.3 кг с потребляемой мощностью 219 Вт, аварийная бесплатформенная инерциальная система; 16-ти разрядная БЦВМ массой 26.3 кг, объемом 21.3 куб.дм, мощность - 200 Вт. Масса системы обеспечения жизнедеятельности - 460 кг. В "А." поддерживается чисто-кислородная атмосфера: давление - 0.35 кгс/кв.см (0.35-0.38 атм.), влажность - 40-70%, температура - 21-27 град.С. Допустимая утечка кислорода - 0.227 кг/ч, максимальная - 0.3 кг/мин, ресурс - до 16-ти суток. Во время предстартовой подготовки на Земле в кабине создается атмосфера, состоящая из 40% кислорода и 60% азота, давление 1 атм. Запас кислорода хранится в сверхкритическом состоянии. В системе связи массой 242 кг используются УКВ-диапазоны 259.7 и 296.8 МГц. Для стыковки с ОПС "Skylab", стыковочным модулем, а ранее - с лунным экспедиционным модулем LEM используется стыковочный агрегат типа "штырь-конус", "активным" КА является "A.". Для стыковки с "Союзом" используется андрогинно-переферийный агрегат стыковки (АПАС), "активным" может быть любой КА. В систему посадки входят 2 тормозных парашюта диаметром по 5 м, вводящиеся на высоте 7600 м. На высоте 4500 м вводятся 3 вытяжных парашюта диаметром по 3 м, а на 4200-4000 м - 3 основных парашюта диаметром по 26.8 м. каждый. Посадка производится на воду, остойчивость обеспечивается тремя надувными баллонами. Увод СА от аварийной РН осуществляется РДТТ со следующими характеристиками: масса - 2180 кг, масса топлива - 1480 кг, длина - 4640 мм, диаметр - 660 мм, 4 сопла развернуты на 35 град. к оси РН; тяга - 700 кН; удельный импульс - 253 сек; обеспечиваемое ускорением - 90 м/с*с.

Полезные сервисы

космические корабли восток

Практический толковый словарь

первые в мире пилотируемые (одноместные) космические корабли. Разработка "В." начата осенью 1958 года в ОКБ-1; Генеральный конструктор - С.П.Королев, главный конструктор пилотируемых КЛА - М.К.Тихонравов, ведущий конструкторы - К.П.Феоктистов, О.Г.Ивановский; Первый полет "В." в автоматическом режиме состоялся 5 мая 1960 года. До 25 апреля 1961 г.- 5 беспилотных полетов, из них 2 аварийных (отказ системы ориентации; нештатная работа РН). Первый пилотируемый полет на "В." 12 апреля 1961 г. выполнил космонавт Ю.А.Гагарин. До 19 июня 1963 г. на кораблях "В." осуществлено 6 пилотируемых полетов, самый длительный - до 6 суток. Позднее "В." использован как базовый при создании ПКС "Восход" и различных ИСЗ научного ("Ресурс-Ф", "Фотон") и военного назначения. Стартовая масса - 4730 кг; длина (без антенн) - 4400 мм; максимальный диаметр - 2430 мм. "В." состоит из спускаемого аппарата (СА, масса - 2460 кг; наружный диаметр - 2430 мм; диаметр герметичного корпуса - 2200 мм; объем герметичного корпуса - 5,2 куб.м; свободный объем - 1,6 куб.м; наибольшая толщина ТЗ - 180 мм, наименьшая - 30 мм.; диаметр входного, парашютного и технологического люков - 1000 мм.) и приборно-агрегатного отсека (ПАО, масса - 2270 кг; диаметр - 2430 мм; длина - 2250 мм; объем - 3 куб.м. В сферическом СА размещены: кресло космонавта, блоки систем обеспечения жизнедеятельности, терморегулирования, электропитания, ориентации и управления, телеметрии, пульт космонавта, оптический визир "Взор", ручка управления, средства пеленгации и связи. Слева от кресла расположен парашютный контейнер (люк N2). Входной люк (N1) находится "над головой" космонавта, а технологический (N3) - "под ногами". Масса теплозащиты - 17.7% стартовой массы. На поверхности СА расположены антенны КРЛ, плата кабель-мачты, узел крепления стяжных лент. ПАО сострит из двух усеченных конусов, соединенных большими основаниями, выполненных из алюминиевого сплава; со стороны СА - вогнутое сферическое днище, с противоположной стороны - ниша под ТДУ-1; приборная рама сделана из сплава МА-2. В ПАО размещены блоки системы ориентации и управления движением, электропитания, системы "Заря", телеметрии, программно-временное устройство. На поверхности ПАО расположены шаробаллоны (14 штук) с азотом для системы ориентации и кислородом для СОЖ, двигатели ориентации, датчики Солнца, датчики телеметрии, навесные холодные радиаторы с жалюзи. Отсеки соединяются стяжными лентами с пирозамками. Масса конструкции - 20% стартовой массы. Тормозной двигатель ТДУ-1 (масса - 396 кг (8.4% стартовой массы), топлива - 280 кг, тяга - 1600 кг) обеспечивает изменение скорости КЛА на 100-140 м/с. Система ориентации - 2 блока по 8 сопел, тягой 14,7 Н каждое, рабочее тело - азот (запас газа - 1.0% стартовой массы). В качестве источников тока используются аккумуляторные батареи; масса СЭП - 12.5% стартовой массы, бортовой кабельной сети - 8.6%. Применена автоматическая ориентация на Солнце, ручная ориентация на Землю осуществляется при помощи оптического визира "Взор"; радиосистема пеленгации и контроля параметров орбиты. Тепловой режим обеспечивается принудительной циркуляцией газа наддува (для ПАО - азот), охлаждаемого жидким теплоносителем. Оптические параметры размещенных на ПАО навесных холодильников-радиаторов регулируются жалюзи. Атмосфера в кабине по составу близка к земной (22-25% кислорода по объему), давление - 755-775 мм.рт,ст., температура 17-26 град.С.; расчетный ресурс - 10 сут; основной запас кислорода хранится в связном виде (надпероксид калия). Суточный рацион продуктов питания - 2.7 кг, в том числе 1.2 кг воды. Система связи включает УКВ ("Заря", 143.625 МГц.) и КВ (9.019 и 20.006 МГц., система передачи данных о самочувствии космонавта "Сигнал" - 19.995 МГц.) - аппаратуру для двусторонней связи с Землей, командная радиолиния и ТВ-система с двумя камерами для наблюдения за космонавтом. В СА установлен парашютный контейнер, объемом 330 куб.дм, площадь основного парашюта - 574 кв.м, высота ввода - 4000 м, скорость спуска - 10 м/с. Космонавт катапультируется и приземляется на своем парашюте площадью 83.5 кв.м (тормозной парашют - 2 кв.м., запасной - 56 кв.м), катапультное кресло оснащено 2 РДТТ, основным и вспомогательным парашютами, носимым аварийным запасом. Система приземления занимает 3.2% стартовой массы, кресло с космонавтом - 7.1%. При возникновении аварийной ситуации до отделения ГО и 1 ступени (до высоты 40000 м.) - катапультирование космонавта; далее - аварийный спуск. Рабочая орбита - 190 - 250 км, для обеспечения аварийного спуска при отказе ТДУ в течении не более чем 7 дней.

Полезные сервисы

космические корабли меркурий (mercury)

Практический толковый словарь

серия американских одноместных пилотируемых космических кораблей, на которых были выполнены первые в США полеты человека в космос. Разработка "М." начата фирмой McDonnell Douglas в 1958 г., в рамках предложенной бригадным генералом ВВС Д.Фликинджером программы MISS ("Человек в космосе как можно быстрее"). С 25 апреля 1961 г. осуществлено 4 беспилотных пуска. С 5 мая 1961 г. совершено 2 суборбитальных, а с 20 февраля 1962 г. по май 1963 г. - 4 орбитальных пилотируемых полета. Результаты программы использованы при создании КК "Geminy". "М." состоит из спускаемого аппарата, включающего парашютный отсек и кабину астронавта. Стартовая масса "М." - 1930 (по другим данным - 1300) кг, длина - 2900(2700) мм (с обтекателем антенны и ТДУ - 3342 мм, с системой аварийного спасения (САС) - 7914 мм), максимальный диаметр - 1892 мм, минимальный - 660(813) мм, объем гермоконтура - 1.5 куб.м, в том числе свободный - 1 куб.м. СА многослойной конструкции, из двух слоев титана толщиной по 0.25 мм. каждый; передняя и задняя переборки выполнены из однослойного титана толщиной 0.25 мм; внешняя теплозащита (излучающего типа) сделана из никелевого сплава Rene-41 толщиной 0.4 мм; для теплоизоляции применено керамическое волокно (фиброкерамика); теплозащитный экран выполнен из многослойного стеклопластика, парашютный отсек - из бериллия толщиной 5.5 мм; иллюминатор трапецевидной формы сделан из кварцевого стекла. СА имеет два люка: штатный, трапецевидной формы, в боковой поверхности, и аварийный, круглый, в переднем днище (выход через парашютный отсек, при этом отодвигается правая часть приборной доски, демонтируется передняя стенка кабины, выталкивается парашютный контейнер и раскрывается спасательный плот). Блок РДТТ САС закреплен на специальной ферме перед парашютным отсеком и сбрасывается перед выходом на ОЗО; парашютный отсек - цилиндр диаметром 660(по другим данным - 813) мм размещен на малом днище усеченного конуса с углом раствора 55 град. - кабины астронавта; на переднем днище парашютного отсека под обтекателем в форме усеченного конуса размещены антенны и два датчика горизонта. Двигательная установка включает 3 тормозных РДТТ тягой 4500 Н и 18 двигателей ориентации тягой от 4.5 до 110 Н (в том числе 6 - ручного и 12 - автоматического управления), работающих на перекиси водорода. Энергопитание обеспечивают аккумуляторные батареи, 3 по 3 квт/ч. и 2 по 1.5 квт/ч. Система ориентации и навигации инерциальная, кроме того, используются ИК-датчики горизонта. Возможна визуальная ориентация по линии горизонта при выдаче тормозного импульса, по маркерам на иллюминаторе фиксируются отклонения по тангажу на 34 град. и крену. Охлаждение атмосферы кабины при помощи хладагента в газожидкостном теплообменнике. Охлаждение скафандра прокачкой кислорода. В кабине поддерживается чисто-кислородная атмосфера с давлением 38 кПа, температура в кабине - 10-27 (по другим данным - 27-38) град.C. Запас кислорода на 28 часов (3.6 кг) хранится под давлением 51 МПа. Система связи работает в метровом и дециметровом диапазонах. В командной радиолинии применены УКВ-передатчики FRW-2. Система посадки включает ленточный тормозной парашют диаметром 1.8 м (вводится на высоте 6300 м) и основной парашют диаметром 19.2 м (вводится на высоте 3000 м). Вертикальная скорость в момент касания - 9 м/с, посадка на воду. Для аварийной посадки на грунт предусмотрен деформируемый амортизатор (цилиндр высотой 1220 мм и диаметром 1780 мм из стеклоткани толщиной 1.016 мм с гибким стальным каркасом). Для облегчения поисков СА после посадки в океане применяется ультразвуковая акустическая сигнальная бомба SOFAR. При полетах по суборбитальной траектории запуск "М." осуществлялся РН "Redstone", при космических полетах - "Atlas-D".

Полезные сервисы

космические лучи

Энциклопедический словарь

Косми́ческие лучи́ - поток стабильных частиц высоких энергий (приблизительно от 1 до 1012 ГэВ), приходящих на Землю из мирового пространства (первичное излучение), а также рождённое этими частицами при взаимодействиях с атомными ядрами атмосферы вторичное излучение, в состав которого входят все известные элементарные частицы. Первичное космическое излучение изотропно в пространстве и неизменно во времени; в его состав входят протоны (около 90%), альфа-частицы (около 7%) и другие атомные ядра вплоть до самых тяжёлых, а также небольшое количество электронов, позитронов и гамма-квантов. Подавляющая часть первичных космических лучей приходит на Землю из Галактики (галактические космические лучи), и лишь небольшая их часть связана с активностью Солнца (солнечные космические лучи); космические лучи с энергией выше 10ГэВ, возможно, приходят из Метагалактики. Наиболее вероятные источники галактических космических лучей - вспышки сверхновых звёзд и образующиеся при этом пульсары. Заряженные частицы ускоряются, по-видимому, электромагнитными полями, возникающими в пульсарах или в окружающих их турбулентных плазменных оболочках. Сильные магнитные поля закручивают релятивистские электроны, что вызывает интенсивное синхротронное излучение из областей, где рождаются космические лучи. Ускоренные заряженные частицы рассеиваются межзвёздными магнитными полями и достигают Земли в среднем через 20-100 млн. лет в виде изотропного излучения.

Космические лучи - уникальный естественный источник частиц сверхвысоких энергий, позволяющий изучать процессы взаимодействия элементарных частиц и их структуру. Многие элементарные частицы были открыты при исследовании космических лучей. Наряду с этим космические лучи дают возможность обнаруживать и изучать астрофизические процессы, происходящие в глубинах Вселенной.

* * *

КОСМИЧЕСКИЕ ЛУЧИ - КОСМИ́ЧЕСКИЕ ЛУЧИ́, поток стабильных частиц высоких энергий (приблизительно от 1 до 1012 ГэВ), приходящих на Землю из мирового пространства (первичное излучение), а также рожденное этими частицами при взаимодействиях с атомными ядрами атмосферы вторичное излучение, в состав которого входят все известные элементарные частицы. Первичное космическое излучение изотропно в пространстве и неизменно во времени; в его состав входят протоны (ок. 90%), альфа-частицы (см. АЛЬФА-ЧАСТИЦА) (ок. 7%) и другие атомные ядра вплоть до самых тяжелых, а также небольшое количество электронов, позитронов и гамма-квантов. Подавляющая часть первичных космических лучей приходит на Землю из Галактики (галактические космические лучи), и лишь небольшая их часть связана с активностью Солнца (солнечные космические лучи); космические лучи с энергией выше 108 ГэВ, возможно, приходят из Метагалактики. Наиболее вероятные источники галактических космических лучей - вспышки сверхновых звезд (см. СВЕРХНОВЫЕ ЗВЕЗДЫ) и образующиеся при этом пульсары (см. ПУЛЬСАРЫ). Заряженные частицы ускоряются, по-видимому, электромагнитными полями, возникающими в пульсарах или в окружающих их турбулентных плазменных оболочках. Сильные магнитные поля закручивают релятивистские электроны, что вызывает интенсивное синхротронное излучение из областей, где рождаются космические лучи. Ускоренные заряженные частицы рассеиваются межзвездными магнитными полями и достигают Земли в среднем через 20-100 млн. лет в виде изотропного излучения.

Космические лучи - уникальный естественный источник частиц сверхвысоких энергий, позволяющих изучать процессы взаимодействия элементарных частиц и их структуру. Многие элементарные частицы были открыты при исследовании космических лучей. Наряду с этим космические лучи дают возможность обнаруживать и изучать астрофизические процессы, происходящие в глубинах Вселенной.

Большой энциклопедический словарь

КОСМИЧЕСКИЕ ЛУЧИ - поток стабильных частиц высоких энергий (приблизительно от 1 до 1012 ГэВ), приходящих на Землю из мирового пространства (первичное излучение), а также рожденное этими частицами при взаимодействиях с атомными ядрами атмосферы вторичное излучение, в состав которого входят все известные элементарные частицы. Первичное космическое излучение изотропно в пространстве и неизменно во времени; в его состав входят протоны (ок. 90%), альфа-частицы (ок. 7%) и другие атомные ядра вплоть до самых тяжелых, а также небольшое количество электронов, позитронов и гамма-квантов. Подавляющая часть первичных космических лучей приходит на Землю из Галактики (галактические космические лучи), и лишь небольшая их часть связана с активностью Солнца (солнечные космические лучи); космические лучи с энергией выше 108 ГэВ, возможно, приходят из Метагалактики.

Наиболее вероятные источники галактических космических лучей - вспышки сверхновых звезд и образующиеся при этом пульсары. Заряженные частицы ускоряются, по-видимому, электромагнитными полями, возникающими в пульсарах или в окружающих их турбулентных плазменных оболочках. Сильные магнитные поля закручивают релятивистские электроны, что вызывает интенсивное синхротронное излучение из областей, где рождаются космические лучи. Ускоренные заряженные частицы рассеиваются межзвездными магнитными полями и достигают Земли в среднем через 20-100 млн. лет в виде изотропного излучения.Космические лучи - уникальный естественный источник частиц сверхвысоких энергий, позволяющих изучать процессы взаимодействия элементарных частиц и их структуру. Многие элементарные частицы были открыты при исследовании космических лучей. Наряду с этим космические лучи дают возможность обнаруживать и изучать астрофизические процессы, происходящие в глубинах Вселенной.

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКИЕ ЛУЧИ, потоки заряженных частиц высокой энергии (до ~1020 эВ), приходящих к Земле из космического пространства. Открыты австрийским физиком В. Гессом в 1912. По месту происхождения (ускорения) космические лучи разделяют на метагалактические (внегалактические), галактические и солнечные. Источники космических лучей: квазары, ядра галактик, сверхновые звезды, пульсары, межзвездная среда, вспышки на звездах (аналогичные солнечным вспышкам) и Солнце. Солнечные космические лучи (протоны) высоких энергий, оказывающие вредное воздействие на живые организмы, задерживаются магнитосферой и атмосферой Земли. Сталкиваясь с ядрами атомов в атмосфере Земли, космические лучи образуют множество вторичных частиц (протонов, электронов, мезонов и др.) - так называемые вторичные космические лучи. Потоки космических лучей - уникальный естественный источник частиц сверхвысоких энергий, позволяющих изучать структуру и процессы взаимодействия элементарных частиц.

Полезные сервисы

космические полеты пилотируемые

Энциклопедия Кольера

Пилотируемый космический полет - это передвижение людей в летательном аппарате за пределами земной атмосферы по орбите вокруг Земли или по траектории между Землей и другими небесными телами с целью исследования космического пространства или проведения экспериментов. В США космические путешественники называются астронавтами; в России их называют космонавтами. В этой статье обсуждаются первые американские и советские пилотируемые полеты, включая программы высадки на Луну и экспериментальный полет "Аполлон" - "Союз".

См. также КОСМИЧЕСКИЙ КОРАБЛЬ "ШАТТЛ"; КОСМИЧЕСКАЯ СТАНЦИЯ.

ПРИНЦИПИАЛЬНЫЕ ОСОБЕННОСТИ КОНСТРУКЦИИ И ЭКСПЛУАТАЦИИ

Конструкция, запуск и эксплуатация пилотируемых космических летательных аппаратов, называемых космическими кораблями, намного сложнее, чем беспилотных. Кроме двигательной установки, систем наведения, энергоснабжения и других, имеющихся на автоматических КА, для пилотируемых необходимы дополнительные системы - жизнеобеспечения, ручного управления полетом, бытовые помещения для экипажа и специальное оборудование - для обеспечения возможности нахождения экипажа в космосе и выполнения им необходимой работы. С помощью системы жизнеобеспечения внутри корабля создаются условия, подобные земным: атмосфера, пресная вода для питья, пища, утилизация отходов и комфортный тепло-влажностный режим. Помещения для экипажа требуют специальной планировки и оборудования, поскольку на корабле сохраняются условия невесомости, в которых предметы не удерживаются на своих местах силой тяжести, как это происходит в земных условиях. Все предметы на космическом корабле притягиваются друг к другу, поэтому должны быть предусмотрены специальные устройства крепления и тщательно продуманы правила обращения с жидкостями, начиная от пищевой воды и кончая отходами жизнедеятельности. Для обеспечения безопасности человека все системы КК должны обладать высокой надежностью. Обычно каждая система дублируется или выполняется в виде двух одинаковых подсистем, с тем чтобы выход из строя одной из них не угрожал жизни экипажа. Электронное оборудование корабля выполняется в виде двух или более комплектов или независимых наборов электронных блоков (модульное резервирование) для обеспечения безопасного возвращения экипажа в случае самых непредвиденных аварийных ситуаций.

ОСНОВНЫЕ СИСТЕМЫ ПИЛОТИРУЕМОГО КОСМИЧЕСКОГО ПОЛЕТА

Три основные системы необходимы для осуществления продолжительного полета космического корабля за пределами атмосферы и безопасного возвращения на Землю: 1) достаточно мощная ракета для выведения КК на орбиту вокруг Земли или траекторию полета к другим небесным телам; 2) тепловая защита корабля от аэродинамического нагрева во время возвращения на Землю; 3) система наведения и управления для обеспечения нужной траектории движения корабля. При разработке оружия в ходе Второй мировой войны были созданы необходимые технологии, а гонка ядерных вооружений в 1950-х годах способствовала их дальнейшему совершенствованию. Появление космических ракет-носителей было связано с разработкой межконтинентальных баллистических ракет (МБР) с достаточно большой забрасываемой массой, которые позволили выводить аппараты массой 1-2 т на низкую околоземную орбиту. Создание системы теплозащиты стало возможным после разработки абляционных материалов, которые испаряются вследствие трения о воздух при прохождении с высокой скоростью через атмосферу. И наконец, высокоточные и компактные инерциальные системы наведения были разработаны для баллистических ракет с мобильным стартом. Точность попадания этих ракет в цель с расстояния в несколько тысяч километров составляет всего несколько сотен метров.

См. также ИНЕРЦИАЛЬНАЯ НАВИГАЦИЯ; ВОЙНА ЯДЕРНАЯ.

ПЕРВЫЕ ПОЛЕТЫ

"Восток". После запуска первого спутника Советский Союз начал разрабатывать программу пилотируемых космических полетов. Советское правительство давало скупую информацию о планируемых полетах. Немногие на Западе воспринимали эти сообщения всерьез, пока 12 апреля 1961 не было объявлено о полете Юрия Гагарина вскоре после того, как он совершил один виток вокруг земного шара и возвратился на Землю. Гагарин совершил свой полет на корабле "Восток-1" - сферической капсуле диаметром 2,3 м, которая устанавливалась на трехступенчатую ракету А-1 (созданную на базе МБР СС-6), подобную той, которая выводила на орбиту "Спутник-1". В качестве теплозащитного материала использовался асботекстолит. Гагарин летал в катапультируемом кресле, которое должно было выстреливаться в случае аварии ракеты-носителя.

ПЕРВЫЙ КОСМОНАВТ планеты Ю.А.Гагарин

ПЕРВЫЙ КОСМОНАВТ планеты Ю.А.Гагарин

Корабль "Восток-2" (Г. С. Титов, 6-7 августа 1961) совершил 17 витков вокруг Земли (25,3 ч); за ним последовало два полета спаренных кораблей. "Восток-3" (А.Г.Николаев, 11-15 августа 1962) и "Восток-4" (П.Р.Попович, 12-15 августа 1962) летали в 5,0 км друг от друга на почти параллельных орбитах. "Восток-5" (В.Ф.Быковский, 14-19 июня 1963) и "Восток-6" (В.В.Терешкова, первая женщина в космосе, 16-19 июня 1963) повторили предыдущий полет.

"Меркурий". В августе 1958 президент Д.Эйзенхауэр возложил ответственность за осуществление пилотируемого полета на только что образованное Национальное управление по аэронавтике и исследованию космического пространства (НАСА), которое в качестве первой программы пилотируемого полета выбрало проект "Меркурий" - баллистическую капсулу. Были осуществлены два 15-минутных суборбитальных полета космонавтов в капсуле, выводимой баллистической ракетой средней дальности "Редстоун". А.Шепард и В.Гриссом совершили эти полеты 5 мая и 21 июля в капсулах типа "Меркурий", названных "Фридом-7" и "Либерти Белл-7". Оба полета прошли успешно, хотя неисправность привела к преждевременному отстрелу крышки люка на "Либерти Белл-7", из-за чего Гриссом едва не утонул. Вслед за этими двумя успешными суборбитальными полетами "Меркурий" - "Редстоун" НАСА провело четыре орбитальных полета корабля "Меркурий", выведенных более мощной МБР "Атлас". Первые два трехвитковых полета (Дж.Гленн, "Френдшип-7", 20 февраля 1962; и М.Карпентер, "Аврора-7", 24 мая 1962) длились около 4,9 ч. Третий полет (У.Ширра, "Сигма-7", 3 октября 1962) продолжался 6 витков (9,2 ч), а четвертый (Купер, "Фейт-7", 15-16 мая 1963) - 34,3 ч (22,9 витков). В ходе этих полетов был получен большой объем ценной информации, в том числе вывод, что члены экипажа должны быть пилотами, а не просто пассажирами. Несколько небольших неисправностей, случившихся в ходе полетов, в отсутствие специалиста на борту могли вызвать преждевременное прекращение полета или выход корабля из строя.

РЕШЕНИЕ ЛЕТЕТЬ НА ЛУНУ

"Меркурий" еще только готовился к своему первому полету, а руководство и специалисты НАСА планировали будущие космические программы. В 1960 они объявили о своих планах создания трехместного космического корабля "Аполлон", который мог бы совершать пилотируемые полеты продолжительностью до двух недель на околоземной орбите, а в 1970-х годах совершить облет Луны. Однако по политическим соображениям программу "Аполлон" пришлось радикально изменить еще до окончания этапа предварительного проектирования в 1961. Полет Гагарина произвел огромное впечатление во всем мире и дал Советскому Союзу преимущество в космической гонке. Президент Дж.Кеннеди поручил своим советникам определить такие области космической деятельности, в которых США смогут превзойти Советский Союз. Было решено, что только один проект - высадка человека на Луну - будет иметь более грандиозное значение, чем полет Гагарина. Этот полет, очевидно, был за пределами имевшихся на то время возможностей обеих стран, однако американские специалисты и военные считали, что задача может быть решена, если направить всю промышленную мощь страны на достижение такой цели. Кроме того, советники Кеннеди убедили его, что США обладают некоторыми ключевыми технологиями, которые могут быть использованы для осуществления полета. К этим технологиям относились система наведения баллистических ракет "Поларис", криогенная ракетная технология и большой опыт реализации крупномасштабных проектов. В силу этих причин, несмотря на то, что США имели на этот момент всего 15 минут опыта пилотируемых космических полетов, Кеннеди 25 мая 1961 заявил в Конгрессе, что Соединенные Штаты поставили цель полета человека на Луну в течение ближайших десяти лет. Из-за различия политических систем Советский Союз сначала не отнесся серьезно к этому заявлению Кеннеди. Советский премьер Н. С. Хрущев рассматривал космическую программу главным образом как важный пропагандистский ресурс, хотя квалификация и энтузиазм советских инженеров и ученых были не ниже, чем у их американских соперников. Лишь 3 августа 1964 ЦК КПСС утвердил план пилотируемого облета Луны. Отдельная программа посадки на Луну была одобрена 25 декабря 1964 - с отставанием более чем на три года от Соединенных Штатов.

ПОДГОТОВКА К ПОЛЕТУ НА ЛУНУ

Встреча на окололунной орбите. Чтобы достичь поставленной Кеннеди цели - полета человека на Луну и обратно, - руководству и специалистам НАСА необходимо было выбрать способ осуществления такого полета. Группа предварительного проектирования рассмотрела два варианта - прямой перелет с поверхности Земли на поверхность Луны и полет с промежуточной стыковкой на околоземной орбите. Прямой перелет потребовал бы разработки огромной ракеты, получившей предварительное название "Нова", для выведения лунного корабля на траекторию прямого перелета к Луне. Промежуточная стыковка на околоземной орбите потребовала бы запуска двух ракет меньшего масштаба ("Сатурн-5") - одной для выведения космического корабля на околоземную орбиту и другой для дозаправки его топливом перед полетом с орбиты к Луне. В обоих этих вариантах предусматривалась посадка 18-метрового космического корабля сразу на Луну. Поскольку руководство и специалисты НАСА считали эту задачу слишком рискованной, они в 1961-1962 разработали третий вариант - со встречей на окололунной орбите. При таком подходе ракета "Сатурн-5" выводила на орбиту два космических аппарата меньших размеров: основной блок, который должен был доставить трех космонавтов на окололунную орбиту и обратно, и двухступенчатую лунную кабину, которая должна была доставить двух из них с орбиты на поверхность Луны и обратно для встречи и стыковки с остающимся на окололунной орбите основным блоком. Этот вариант был выбран в конце 1962.

Проект "Джемини". НАСА опробовало различные способы встречи и стыковки, которые предполагалось использовать на окололунной орбите, в ходе осуществления программы "Джемини" ("Близнецы") - серии полетов возрастающей сложности на двухместных космических кораблях, оборудованных для сближения с КА-мишенью (беспилотная верхняя ступень ракеты "Аджена") на околоземной орбите. КК "Джемини" состоял из трех конструктивных блоков: спускаемого модуля (отсека экипажа), рассчитанного на двух космонавтов и напоминающего капсулу "Меркурия", тормозной двигательной установки и агрегатного отсека, в котором располагались источники электроэнергии и топливные баки. Поскольку "Джемини" должен был запускаться ракетой "Титан-2", в которой использовалось менее взрывоопасное топливо, чем в ракете "Атлас", на корабле отсутствовала система аварийного спасения, имевшаяся на "Меркурии". В случае возникновения аварийной ситуации спасение экипажа обеспечивалось катапультируемыми креслами.

ДЖЕМИНИ-10 на околоземной орбите (июль 1966).

"ДЖЕМИНИ-10" на околоземной орбите (июль 1966).

Корабль "Восход". Однако еще до начала полетов "Джемини" Советский Союз осуществил два довольно рискованных полета. Не желая уступать США приоритет запуска первого многоместного космического корабля, Хрущев распорядился срочно подготовить к полету трехместный корабль "Восход-1". Выполняя распоряжение Хрущева, советские конструкторы модифицировали "Восток", чтобы он мог нести трех космонавтов. Инженеры отказались от катапультируемых кресел, которые спасали экипаж в случае неудачного запуска, и расположили центральное кресло немного впереди двух других. Корабль "Восход-1" с экипажем в составе В.М.Комарова, К.П.Феоктистова и Б.Б.Егорова (первый врач в космосе) совершил 16-витковый полет 12-13 октября 1964. Советский Союз осуществил и другой приоритетный полет на корабле "Восход-2" (18-19 марта 1965), в котором левое кресло было снято, чтобы освободить место для надувной шлюзовой камеры. В то время как П.И.Беляев оставался внутри корабля, А.А.Леонов вышел из корабля через этот шлюз на 20 мин и стал первым человеком, осуществившим выход в открытый космос.

Полеты по программе "Джемини". Проект "Джемини" можно разделить на три основных этапа: летно-конструкторские испытания, длительный полет и полет со сближением и стыковкой с кораблем-мишенью. Первый этап начался с беспилотных полетов "Джемини" 1 и 2 (8 апреля 1964 и 19 января 1965) и трехвиткового полета В.Гриссома и Дж.Янга на борту "Джемини" 3 (23 марта 1965). В полетах "Джемини" 4 (Дж.Макдивитт и Э.Уайт мл., 3-7 июня 1965), 5 (Л.Купер и Ч.Конрад-мл., 21-29 августа 1965) и 7 (Ф.Борман и Дж.Ловелл-мл., 4-18 декабря 1965) исследовалась возможность длительного пребывания человека в космосе путем постепенного увеличения продолжительности полета до двух недель - максимальной длительности полета к Луне по программе "Аполлон". Полеты "Джемини" 6 (У.Ширра и Т.Стаффорд, 15-16 декабря 1965), 8 (Н.Армстронг и Д.Скотт, 16 марта 1966), 9 (Т.Стаффорд и Ю.Сернан, 3-6 июня 1966), 10 (Дж.Янг и М.Коллинз, 18-21 июля 1966), 11 (Ч.Конрад и Р.Гордон-мл., 12-15 сентября 1966) и 12 (Дж.Ловелл и Э.Олдрин-мл., 11-15 ноября 1966) первоначально планировались для стыковки с кораблем-мишенью "Аджена". Частная неудача вынудила НАСА осуществить один из наиболее драматических орбитальных экспериментов 1960-х годов. Когда ракета "Аджена", корабль-мишень для КК "Джемини" 6, взорвалась на старте 25 октября 1965, он остался без мишени. Тогда руководство НАСА решило вместо этого осуществить сближение в космосе двух кораблей "Джемини". По этому плану нужно было сначала запустить "Джемини" 7 (в его двухнедельный полет), а затем, быстро проведя ремонт стартового стола, запустить "Джемини" 6. В ходе совместного полета был снят красочный фильм, показывающий сближение кораблей вплоть до касания и их совместное маневрирование. "Джемини" 8 осуществил стыковку с кораблем-мишенью "Аджена". Это была первая успешная стыковка двух кораблей на орбите, но полет был прерван менее чем через сутки, когда не выключился один из двигателей системы ориентации, в результате чего корабль получил такое быстрое вращение, что экипаж едва не потерял контроль над ситуацией. Однако, используя тормозной двигатель, Н.Армстронг и Д.Скотт восстановили контроль и осуществили экстренное приводнение в Тихом океане. Когда его мишень "Аджена" не вышла на орбиту, корабль "Джемини" 9 попытался осуществить стыковку с дооборудованным стыковочным агрегатом мишени (стыковочной мишенью "Аджены", установленной на небольшом спутнике, запущенном ракетой "Атлас"). Однако, поскольку используемый при выведении обтекатель не раскрылся, его не удалось сбросить, что сделало стыковку невозможной. В последних трех полетах корабли "Джемини" успешно стыковались со своими мишенями. Во время полета "Джемини" 4 Э.Уайт стал первым американцем, осуществившим выход в открытый космос. Следующие выходы в открытый космос (Ю. Сернан, М. Коллинз, Р. Гордон и Э. Олдрин, "Джемини" 9-12) показали, что космонавты должны тщательно продумывать и контролировать свои движения. Вследствие невесомости отсутствует сила трения, которая дает точку опоры; даже просто стоять становится трудной задачей. При осуществлении программы "Джемини" было проверено также новое оборудование (например, топливные элементы для получения электричества за счет химической реакции между водородом и кислородом), которое впоследствии сыграло важную роль при выполнении программы "Аполлон".

"Дайна-Сор" и MOL. В то время как НАСА реализовывало проекты "Меркурий" и "Джемини", ВВС США занимались проектами воздушно-космического самолета X-20 "Дайна-Сор" и пилотируемой орбитальной лаборатории MOL в рамках более обширной программы создания пилотируемого космического корабля. Эти проекты были в конце концов отменены (не по техническим причинам, а из-за изменения требований к космическим полетам).

ПОЛЕТ НА ЛУНУ

Основной блок КК "Аполлон". Как у кораблей "Меркурий" и "Джемини", отсек экипажа КК "Аполлон" имеет форму конуса с теплозащитным экраном из абляционного материала. Парашюты и оборудование для посадки располагаются в носовой части конуса. Три космонавта занимают места рядом друг с другом в специальных креслах, прикрепленных к основанию капсулы. Перед ними находится панель управления. В вершине конуса предусмотрен небольшой тоннель к выходному люку. На противоположной стороне имеется штырь стыковочного узла, который входит в стыковочное отверстие лунной кабины и плотно стягивает их так, чтобы захваты могли обеспечить герметичное соединение двух кораблей. На самом верху корабля установлена система аварийного спасения (более мощная, чем на ракете "Редстоун"), с помощью которой отсек экипажа может быть уведен на безопасное расстояние в случае аварии на старте. 27 января 1967 во время имитационного отсчета времени перед первым пилотируемым полетом случился пожар, в котором погибли три космонавта (В. Гриссом, Э. Уайт и Р. Чаффи). Основные изменения в конструкции отсека экипажа после пожара заключались в следующем: 1) были введены ограничения на использование горючих материалов; 2) изменен состав атмосферы внутри отсека перед стартом на смесь 60% кислорода и 40% азота (в воздухе при нормальных условиях 20% кислорода и 80% азота), после запуска кабина продувалась, и атмосфера в ней заменялась на чисто кислородную при пониженном давлении (экипаж при этом, находясь в скафандрах, все время пользовался чистым кислородом); 3) добавлен быстро открывающийся аварийный люк, который позволял экипажу покинуть корабль менее чем за 30 с. Отсек экипажа соединен с цилиндрическим двигательным отсеком, в котором находится маршевая двигательная установка (ДУ), двигатели системы ориентации (СО) и система электропитания (СЭП). ДУ состоит из маршевого ракетного двигателя, двух пар баков горючего и окислителя. Этот двигатель должен использоваться для торможения корабля при переходе на окололунную орбиту и разгона для возвращения на Землю; кроме того, он включается для промежуточных коррекций траектории полета. СО позволяет контролировать положение корабля и маневрировать при стыковке. СЭП обеспечивает корабль электроэнергией и водой (которая образуется при химической реакции между водородом и кислородом в топливных элементах).

Лунная кабина. В то время как основной блок корабля спроектирован с расчетом на вход в атмосферу, лунная кабина рассчитана только на полет в безвоздушном пространстве. Поскольку на Луне нет атмосферы и ускорение силы тяжести на ее поверхности в шесть раз меньше земного, посадка и взлет на Луне требуют значительно меньше энергетических затрат, чем на Земле. Посадочная ступень лунной кабины имеет форму восьмигранника, внутри которого располагаются четыре бака с топливом и двигатель с регулируемой тягой. Четыре телескопические стойки посадочного шасси оканчиваются тарельчатыми опорами, чтобы кабина не провалилась в лунную пыль. Для амортизации удара при прилунении стойки посадочного шасси заполнены сминаемым сотовым заполнителем из алюминия. Экспериментальное оборудование размещается в специальных отсеках между стойками. Взлетная ступень снабжена небольшим двигателем и двумя топливными баками. Из-за того что испытываемые космонавтами перегрузки сравнительно невелики (одно лунное g при работе двигателя и около пяти g при посадке), а ноги человека хорошо амортизируют умеренные ударные нагрузки, конструкторы лунной кабины не стали ставить кресла для космонавтов. Стоя в кабине, космонавты находятся близко к иллюминаторам и имеют хороший обзор; поэтому отпала необходимость в больших и тяжелых иллюминаторах. Иллюминаторы лунной кабины немногим больше размеров человеческого лица.

Ракета-носитель "Сатурн-5". КК "Аполлон" запускался ракетой "Сатурн-5", самой большой и мощной из успешно испытанных в полете. Она построена на основе проекта, разрабатанного группой В. фон Брауна в управлении баллистических ракет армии США в Хантсвилле (шт. Алабама). Были построены и летали три модификации ракеты - "Сатурн-1", "Сатурн-1В" и "Сатурн-5". Первые две ракеты были построены для проверки совместной работы нескольких двигателей в космосе и для экспериментальных запусков корабля "Аполлон" (одного беспилотного и одного пилотируемого) на околоземную орбиту.

РАКЕТНО-КОСМИЧЕСКАЯ СИСТЕМА Сатурн-5 -Аполлон (слева: ракета Сатурн-5, высота 111 м) и связка лунная кабина - основной блок (вверху).

РАКЕТНО-КОСМИЧЕСКАЯ СИСТЕМА "Сатурн-5" -"Аполлон" (слева: ракета "Сатурн-5", высота 111 м) и связка лунная кабина - основной блок (вверху).

Самая мощная из них - ракета-носитель "Сатурн-5" - имеет три ступени S-IC, S-II и S-IVB и приборный отсек, к которому крепится КК "Аполлон". На первой ступени S-IC установлено пять двигателей F-1, работающих на жидком кислороде и керосине. Каждый двигатель во время старта развивает тягу 6,67 МН. Вторая ступень S-II имеет пять кислородо-водородных двигателей J-2 тягой 1 МН каждый; на третьей ступени S-IVB установлен один такой двигатель. В приборном отсеке находится оборудование системы наведения, обеспечивающей навигацию и управление полетом вплоть до отделения корабля "Аполлон".

Общая схема полета. КК "Аполлон" запускался с космодрома им. Кеннеди, расположенного на о. Мерритт (шт. Флорида). Лунная кабина при этом располагалась внутри специального кожуха над третьей ступенью ракеты "Сатурн-5", а основной блок крепился к верхней части кожуха. Три ступени ракеты "Сатурн" выводили космический корабль на низкую околоземную орбиту, где экипаж в течение трех витков проверял все системы перед повторным включением двигателей третьей ступени для выведения корабля на траекторию полета к Луне. Вскоре после выключения двигателей третьей ступени экипаж отстыковывал основной блок, разворачивал его и пристыковывал к лунной кабине. После этого связка основного блока и лунной кабины отделялась от третьей ступени и корабль в течение следующих 60 ч совершал полет к Луне. Вблизи Луны связка основной блок - лунная кабина описывала напоминающую восьмерку траекторию. Находясь над обратной стороной Луны, космонавты включали маршевый двигатель основного блока для торможения и перевода корабля на окололунную орбиту. На следующий день два космонавта переходили в лунную кабину и начинали пологий спуск к поверхности Луны. Сначала аппарат летит посадочными стойками вперед, а двигатель посадочной ступени тормозит его движение. При приближении к месту посадки кабина разворачивается вертикально (посадочными стойками вниз), чтобы космонавты могли видеть поверхность Луны и осуществлять ручное управление процессом посадки. Для исследования Луны космонавты, находясь в скафандрах, должны были разгерметизировать кабину, открыть люк и спуститься на поверхность по лестнице, расположенной на передней стойке посадочного шасси. Их скафандры обеспечивали автономную жизнедеятельность и связь на поверхности продолжительностью до 8 ч. После окончания исследований космонавты поднимались во взлетную ступень и, стартуя с посадочной ступени, возвращались на окололунную орбиту. Затем они должны были сблизиться и состыковаться с основным блоком, покинуть взлетную ступень и присоединиться к третьему космонавту, дожидавшемуся их в отсеке экипажа. Во время последнего витка, находясь с обратной стороны Луны, они включали маршевый двигатель, чтобы завершить восьмерку и вернуться на Землю. Обратное путешествие (также продолжительностью около 60 ч) заканчивалось огненным прохождением через земную атмосферу, плавным спуском на парашютах и приводнением в Тихом океане.

Подготовительные полеты. Чрезвычайная сложность высадки на Луну вынудила НАСА перед первой посадкой совершить серию из четырех предварительных полетов. Кроме того, НАСА решилось на два весьма рискованных мероприятия, которые сделали возможной высадку в 1969. Первым из них было решение провести два испытательных полета (9 ноября 1967 и 8 апреля 1968) ракеты "Сатурн-5" как общие приемо-сдаточные испытания. Вместо того чтобы проводить отдельные приемочные полеты каждой ступени, инженеры НАСА испытали сразу три ступени вместе с переделанным кораблем "Аполлон". Другое рискованное мероприятие явилось результатом задержек в изготовлении лунной кабины. Первый пилотируемый полет основного блока КК "Аполлон" ("Аполлон" 7, У.Ширра, Д.Эйзеле и У.Каннингем, 11-22 октября 1968), запущенного ракетой "Сатурн-1В" на околоземную орбиту, показал, что основной блок готов к полету к Луне. Далее следовало испытать основной блок с лунной кабиной на околоземной орбите. Однако в связи с задержкой изготовления лунной кабины и слухами, что Советский Союз может попытаться отправить человека в полет вокруг Луны и одержать победу в космической гонке, руководство НАСА решило, что "Аполлон" 8 (Ф.Борман, Дж.Ловелл и У.Андерс, 21-27 декабря 1968) совершит полет к Луне в основном блоке, проведет сутки на окололунной орбите и затем вернется на Землю. Полет прошел успешно; экипаж передавал на Землю захватывающие видеорепортажи с лунной орбиты в канун Рождества. В полете "Аполлон" 9 (Дж. Макдивитт, Д. Скотт и Р. Швейкарт, 3-13 марта 1969) основной блок и лунная кабина испытывались на околоземной орбите. Полет "Аполлон" 10 (Т. Стаффорд, Дж. Янг и Ю. Сернан, 18-26 мая 1969) проходил почти по полной программе, за исключением посадки лунной кабины. Советская программа пилотируемых полетов на Луну. Вслед за "Востоком" советские ученые и инженеры создали "Союз" - космический корабль, который занимает промежуточное место между "Джемини" и "Аполлоном" по своей сложности и возможностям. Спускаемый отсек располагается над агрегатным отсеком, а над ним находится бытовой отсек. Во время старта или спуска в спускаемом отсеке могут находится два или три космонавта. Двигательная установка, системы электроснабжения и связи находятся в агрегатном отсеке. "Союз" выводился на орбиту ракетой-носителем А-2, которая была разработана на смену носителю А-1, использовавшемуся для вывода кораблей "Восток". Согласно первоначальному плану полета человека вокруг Луны, сначала должен был запускаться беспилотный разгонный блок "Союз-Б", а затем - четыре грузовых корабля "Союз-А" для заправки его топливом. После этого спускаемый отсек "Союза-А" с экипажем из трех человек стыковался с разгонным блоком и направлялся к Луне. Вместо этого довольно сложного плана в конце концов было решено использовать более мощную ракету "Протон" для запуска к Луне модифицированного "Союза", названного "Зонд". Состоялись два беспилотных полета к Луне ("Зонд" 5 и 6, 15-21 сентября и 10-17 ноября 1968), которые включали возвращение аппаратов на Землю, однако запуск 8 января внепланового "Зонда" оказался неудачным (вторая ступень ракеты-носителя взорвалась). Схема полета к Луне была примерно такой же, как в программе "Аполлон". Трехместный корабль "Союз" и одноместный спускаемый аппарат должны были выводиться на траекторию полета к Луне ракетой-носителем Н-1, имевшей несколько большие размеры и мощность, чем "Сатурн-5". Специальная двигательная установка должна была затормозить связку для перехода на окололунную орбиту и обеспечить торможение спускаемого аппарата. Заключительный этап посадки спускаемый аппарат должен был осуществлять самостоятельно. Слабым местом этого проекта было то, что лунный модуль имел один двигатель, который использовался и для спуска, и для взлета (баки с топливом для каждого этапа были раздельными), поэтому положение космонавтов становилось безвыходным в случае отказа двигателя на спуске. После кратковременного пребывания на поверхности Луны космонавты возвращались на окололунную орбиту и присоединялись к своему товарищу. Возвращение на Землю в корабле "Союз" происходило подобно тому, как было описано выше для КК "Аполлон". Однако проблемы - как с кораблем "Союз", так и с носителем Н-1 - не позволили Советскому Союзу осуществить программу высадки человека на Луну. Первый полет корабля "Союз" (В.М.Комаров, 23-24 апреля 1967) закончился гибелью космонавта. При полете "Союза-1" появились проблемы с солнечными батареями и системой ориентации, поэтому полет было решено прервать. После первоначально нормального спуска капсула начала кувыркаться и запуталась в стропах тормозного парашюта, спускаемый аппарат с большой скоростью врезался в землю, и Комаров погиб. После 18-месячного перерыва запуски по программе "Союз" возобновились полетами кораблей "Союз-2" (беспилотный, 25-28 октября 1968) и "Союз-3" (Г.Т.Береговой, 26-30 октября 1968). Береговой осуществлял маневры и сближался с кораблем "Союз-2" до расстояния 200 м. В полетах "Союза-4" (В.А.Шаталов, 14-17 января 1969) и "Союза-5" (Б.В.Волынов, Е.В.Хрунов и А.С.Елисеев, 15-18 января 1969) был достигнут дальнейший прогресс; Хрунов и Елисеев перешли в "Союз-4" через открытый космос после стыковки кораблей. (Стыковочный механизм советских кораблей не позволял переходить из корабля в корабль непосредственно.) Кроме того, между различными конструкторскими бюро существовало острое соперничество, которое не позволяло многим талантливым ученым и инженерам не только работать над лунной программой, но даже использовать необходимое оборудование. В результате на первой ступени ракеты Н-1 было установлено 30 двигателей (24 по периметру и 6 в центре) средней мощности, а не пять больших двигателей, как на первой ступени ракеты "Сатурн-5" (такие двигатели в стране имелись), и ступени не проходили огневых испытаний перед полетом. Первая ракета Н-1, запущенная 20 февраля 1969, загорелась на 55-й секунде после старта и упала в 50 км от места запуска. Вторая ракета Н-1 взорвалась на стартовом столе 3 июля 1969.

Экспедиции на Луну. Успех подготовительных полетов по программе "Аполлон" ("Аполлон" 7-10) позволил кораблю "Аполлон"11 (Н.Армстронг, Э.Олдрин и М.Коллинз, 16-24 июля 1969) совершить исторический первый полет с высадкой человека на Луне. Полет проходил исключительно успешно в почти поминутном соответствии с программой.

НА ЛУНУ И ОБРАТНО. Схема полета КК Аполлон 11

НА ЛУНУ И ОБРАТНО. Схема полета КК "Аполлон 11"

Однако три существенных события во время спуска Армстронга и Олдрина в лунной кабине "Игл" ("Орел") 20 июля подтвердили важную роль присутствия человека и выдвинутого первыми американскими космонавтами требования, чтобы они имели возможность управлять кораблем. На высоте ок. 12 000 м компьютер "Игл" начал выдавать звуковой сигнал тревоги (как впоследствии выяснилось, в результате работы посадочного радара). Олдрин решил, что это результат перегрузки компьютера, и экипаж проигнорировал сигнал тревоги. Затем в последние минуты спуска, после того как "Игл" развернулся в вертикальное положение, Армстронг и Олдрин увидели, что кабина приземляется прямо в нагромождение каменных глыб - небольшие аномалии гравитационного поля Луны отклонили их от курса. Армстронг взял управление кабиной на себя и пролетел несколько дальше к более ровной площадке. В это же время бульканье топлива в баках показало, что топлива осталось мало. Центр управления полетом сообщил экипажу, что у них есть запас времени, однако Армстронг осуществил мягкую посадку на четыре опоры стоек шасси приблизительно в 6,4 км от намеченной точки, причем топлива оставалось еще лишь на 20 с полета. Несколько часов спустя Армстронг вышел из кабины и спустился на лунную поверхность. В соответствии с планом полета, предусматривавшим максимальную осторожность, они вместе с Олдрином провели всего лишь 2 ч 31 мин вне кабины на поверхности Луны. На следующий день после 21 ч 36 мин пребывания на Луне они стартовали с ее поверхности и присоединились к Коллинзу, находившемуся в основном блоке "Колумбия", в котором и возвратились на Землю. Следующие полеты по программе "Аполлон" значительно расширили знания человека о Луне. Во время полета КК "Аполлон" 12 (Ч.Конрад, А.Бин и Р.Гордон, 14-24 ноября 1969) Гордон и Бин посадили свою лунную кабину "Интрепид" ("Отважный") в 180 м от автоматического космического зонда "Сервейор-3" и забрали его узлы для возвращения на Землю во время одного из двух своих выходов на поверхность, каждый из которых продолжался около четырех часов. Запуск и переход на траекторию полета к Луне корабля "Аполлон" 13 (11-17 апреля 1970) прошли нормально. Однако приблизительно через 56 ч после старта центр управления полетом попросил экипаж (Дж.Ловелл, Ф.Хейзе-мл. и Дж.Швайгерт-мл.) включить все мешалки и нагреватели баков, после чего последовал громкий хлопок, полная потеря кислорода из одного бака и утечка из другого. (Как было позже выяснено аварийной комиссией НАСА, взрыв бака произошел в результате производственных дефектов и повреждений, полученных в предстартовых испытаниях.) Через несколько минут экипаж и центр управления полетом поняли, что основной блок "Одиссей" вскоре потеряет весь кислород и останется без электроэнергии и что лунную кабину "Аквариус" ("Водолей") придется использовать как спасательную шлюпку при облете космического корабля вокруг Луны и на обратном пути к Земле. В течение почти пяти с половиной суток экипаж вынужден был находиться при температуре, близкой к нулевой, обходясь ограниченным запасом воды и отключив почти все служебные системы корабля для экономии электроэнергии. Космонавты трижды включали двигатели "Аквариуса" для коррекции траектории. Перед входом в атмосферу Земли экипаж включил системы корабля "Одиссей", используя предназначенные для посадки химические источники тока, и отделился от "Аквариуса". После нормального спуска в атмосфере "Одиссей" благополучно приводнился в Тихом океане. После этой аварии специалисты НАСА установили дополнительные аварийные химические батареи и кислородный бак в отдельный отсек основного блока и изменили конструкцию кислородных баков. Пилотируемые лунные экспедиции возобновились с полетом КК "Аполлон" 14 (А.Шепард, Э.Митчелл и С.Руза, 31 января - 9 февраля 1971). Шепард и Митчелл пробыли на поверхности Луны 33 ч и совершили два выхода на поверхность. Последние три экспедиции КК "Аполлон" 15 (Д.Скотт, Дж.Ирвин и А.Уорден, 26 июля - 7 августа 1971), 16 (Дж.Янг, Ч.Дьюк-мл. и К.Маттингли II, 16-27 апреля 1972) и 17 (Ю.Сернан, Г.Шмитт и Р.Эванс, 1-19 декабря 1972) были наиболее плодотворными с научной точки зрения. Каждая лунная кабина имела в своем составе лунный вездеход (луноход) на электрических батареях, который позволял космонавтам удаляться на расстояние до 8 км от кабины в каждом из трех выходов на поверхность; кроме того, каждый основной блок имел телевизионные камеры и другие измерительные инструменты в одном из отсеков оборудования.

АПОЛЛОН-17 возвращается с Луны.

"АПОЛЛОН-17" возвращается с Луны.

Доставленные экспедициями "Аполлон" образцы для научных исследований составили более 379,5 кг камней и грунта, которые изменили и расширили представление человека о происхождении Солнечной системы. Последние полеты советской программы пилотируемых полетов к Луне. После успеха первых полетов по программе "Аполлон" Советский Союз произвел лишь несколько запусков кораблей "Союз", космических аппаратов "Зонд" и ракеты-носителя Н-1 в рамках программы пилотируемых полетов к Луне и высадки на Луну. Космический корабль "Союз" с 1971 использовался как транспортный корабль в рамках программы полетов космических станций "Салют" и "Мир".

ЭКСПЕРИМЕНТАЛЬНЫЙ ПОЛЕТ "АПОЛЛОН" - "СОЮЗ"

То, что началось как соперничество, закончилось совместной программой экспериментального полета "Аполлон"-"Союз" (ЭПАС). В этом полете участвовали Д. Слейтон, Т. Стаффорд и В. Брандт в основном блоке корабля "Аполлон" (15-24 июля 1975) и А. А. Леонов и В. Н. Кубасов на корабле "Союз-19" (15-21 июля 1975). Программа возникла из желания двух государств разработать сов

Полезные сервисы

космические скорости

Энциклопедический словарь

Косми́ческие ско́рости - см. Первая космическая скорость, Третья космическая скорость, Параболическая скорость.

* * *

КОСМИЧЕСКИЕ СКОРОСТИ - КОСМИ́ЧЕСКИЕ СКО́РОСТИ, см. Первая космическая скорость (см. ПЕРВАЯ КОСМИЧЕСКАЯ СКОРОСТЬ), Третья космическая скорость (см. ТРЕТЬЯ КОСМИЧЕСКАЯ СКОРОСТЬ), Параболическая скорость (см. ПАРАБОЛИЧЕСКАЯ СКОРОСТЬ).

Большой энциклопедический словарь

КОСМИЧЕСКИЕ СКОРОСТИ - см. Первая космическая скорость, Третья космическая скорость, Параболическая скорость.

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКИЕ СКОРОСТИ. В астрономии и динамике космического полета употребляются понятия трех космических скоростей. Первой космической скоростью (круговой скоростью) называется наименьшая начальная скорость, которую нужно сообщить телу, чтобы оно стало искусственным спутником планеты; для поверхностей Земли, Марса и Луны первые космические скорости соответствуют приблизительно 7,9 км/с, 3,6 км/с и 1,7 км/с. Второй космической скоростью (параболической скоростью) называется наименьшая начальная скорость, которую нужно сообщить телу, чтобы оно, начав движение у поверхности планеты, преодолело ее притяжение; для Земли, Марса и Луны вторые космические скорости соответственно равны приблизительно 11,2 км/с, 5 км/с и 2,4 км/с. Третьей космической скоростью называется наименьшая начальная скорость, обладая которой тело преодолевает притяжение Земли, Солнца и покидает Солнечную систему; равна приблизительно 16,7 км/с.

Полезные сервисы

космические струны

Практический толковый словарь

сверхтонкие трубки (проволочки) из симметричного высокоэнергетического вакуума. Первая работа о них была написана в 1976 году Т.Кибблом из Имперского колледжа науки и техники в Лондоне. Позже советский академик Я.Зельдович из Института Физических проблем использовал теорию космических струн для объяснения неравномерности распределения вещество во Вселенной. Толщина космических струн ничтожна (примерно 10 в минус тридцатой степени сантиметра), а вес одного сантиметра огромен (около 10 в шестнадцатой степени тонн). Если такая струна пересечет человека в поясе, его голова и ноги схлопнутся со скоростью 6 километров в секунду. По счастью ближайшая струна, вероятнее всего, находится на расстоянии 300 миллионов световых лет от Земли.

Полезные сервисы

космические суеверия

Практический толковый словарь

мист. большое количество предрассудков и поверий, существующих среди космонавтов, ракетчиков и космических специалистов, возникновение которых связано не столько с идеалистическими настроениями, сколько с малопредсказуемым поведением сложнейшей космической техники. В СССР наиболее известны суеверные привычки команды С.П.Королева, причины которых малоизвестны, но возможно связаны с биографией самого Главного конструктора. Созданные на базе знаменитой "семерки" космические носители "Спутник", "Восток", "Молния" и "Восход" при жизни Сергея Павловича стартовали с космодрома Байконур 119 раз. Пусками 79-ти ракет-носителей руководил сам Главный конструктор. На семи пусках, требовавших его руководства, он просто присутствовал, остальные 33 ракеты, которые научил летать Королев, были запущены службами космодрома самостоятельно. Главный конструктор "на людях" не был суеверным человеком, однако не любил запусков по понедельникам. Первые три года космической эры это правило соблюдалось неукоснительно: ни один пуск, а их было за это время 16 не был произведен в понедельник. Первый запуск в этот роковой день состоялся 10 октября 1960 года. Новая ракета-носитель "Молния" должна была вывести к Марсу автоматическую станцию. Понедельник сыграл свою зловещую роль - носитель взорвался... После этого более года избегали назначение даты старта на понедельник, но первая попытка запуска фоторазведчика "Зенит" была предпринята 11 декабря 1961 года. Понедельник, взрыв ракеты... Снова более года понедельник был "нестартовым" днем. Однако восьмой "Зенит" стартовал в понедельник, на сей раз - успешно. Было 22 апреля 1963 года. Спутник объявили как "Космос-15". Через полгода запускали очередную станцию к Венере. Понедельник, 11 ноября 1963 года. На околоземную орбиту станция была доставлена успешно, но стартовать оттуда к Венере не смогла - не сработал разгонный блок. Станцию назвали "Космос-21". 20 апреля 1964 года была предпринята пятая попытка запустить станцию, предназначенную для мягкой посадки на Луну. Взорвалась ракета-носитель. Пятая подряд неудача могла быть "объяснена" тем, что пуск пришелся на понедельник. Похоже, что только наши фоторазведчики получили "иммунитет" на понедельники - очередной пуск (18 апреля 1964 года) "Космос-30" прошел успешно. Приближался запуск на орбиту первого в мире трехместного корабля "Восход", как и фоторазведчики созданного на базе гагаринского "Востока". Чтобы поместить в "шарике" трех человек, пришлось отказаться от катапультируемых кресел. Системы аварийного спасения не было. В случае аварии ракеты-носителя в течение первых 40 секунд полета спасти экипаж было невозможно. Однако старт назначили на понедельник, 12 октября 1964 года. К счастью, опасения оказались напрасными и полет прошел успешно. 30 октября 1964 года при запуске одной из очередных станций к Марсу разгонный блок сработал. На межпланетную траекторию был выведен "Зонд-2". Исследования Марса ему провести не удалось... Следующая ракета-носитель, пуск которой был назначен на понедельник, вновь предназначался для "Зенита". 11 января 1965 года начал свою успешную вахту "Космос-52". Фоторазведчикам нипочем понедельники! 22 февраля 1965 года был запущен беспилотный "Восход-2" (под именем "Космос-57"). Полет начался успешно, корабль вышел на орбиту, но из-за ошибки оператора уже на первом витке взорвался... Последний, при жизни С.П.Королева пуск "семерки" пришедшийся на понедельник, был произведен 4 октября 1965 года - точно в день 8-ой годовщины запуска знаменитого "ПС". На борту - десятая уже (!) станция, которая должна была впервые мягко опуститься на Луну. Но и эта попытка, естественно, стала неудачной - станция "Луна-7" разбилась при посадке. Как видим, только четыре пуска из 11 (корабль "Восход" и 3 "Зенита"), произведенные по понедельникам закончились успешно. 65% говорят сами за себя... Печальная традиция понедельничных отказов продолжается на станции "Мир", у которой в 1997 году произошло сразу несколько довольно серьезных аварий. Все три аварийных отключения бортового компьютера произошли, конечно-же, по понедельникам... Помимо "несчастливых дней недели" есть и "несчастливые даты", запускать в которые космические корабли опасно для жизни. Для Байконура это день 24 октября. Именно в этот день в 1960 году Байконуре произошел взрыв ракетоносителя МБР Р-16, унесшего жизни большого числа человек... С тех пор по этим дням на Байконуре не проводится никаких стартов и значимых работ на стартовых площадках. Тем более, что спустя ровно 3 года на этом космодроме вновь произошла катастрофа - 24 октября 1963 года во время подготовки к пуску учебной ракеты Р-9А по неосторожности пролилось горючее. При замене перегоревшей электролампочки из-за искры произошла вспышка; в пожаре погибло 8 ракетчиков-испытателей... Ракетчики - люди конечно же материалисты по натуре. Но происходящие на практике более чем странные совпадения убеждают их лучше всякой теории.

Полезные сервисы

космический

Толковый словарь

прил.

1. соотн. с сущ. космос, связанный с ним

2. Свойственный космосу, характерный для него.

3. Происходящий, находящийся в космосе, исходящий из космоса.

отт. Выполняемый в космосе.

4. Связанный с изучением и освоением космоса.

5. Предназначенный для полёта в космос, для пребывания в космосе.

6. Всемирный, мировой.

отт. Межзвёздный, межпланетный.

7. перен.

Чрезвычайно большой по величине, размеру, широте охвата, силе, степени проявления.

КОСМИ́ЧЕСКИЙ - прил., употр. сравн. часто

1. Космическим называют то, что имеет отношение к космосу.

Космическое пространство. | Потоки космической энергии.

2. Масштаб, степень проявления чего-либо называют космическими, если они огромные, сильные.

У него любопытство космического масштаба. | Дефицит бюджета взлетел до космических высот.

Толковый словарь Ушакова

КОСМИ́ЧЕСКИЙ, космическая, космическое (книжн.).

1. прил. к космос; мировой. Космические причины, вызвавшие ледниковый период.

|| Междупланетный (астр.). Космическая пыль (см. пыль). Космические лучи. Космическое излучение.

2. перен. Громадный, колоссальных масштабов. Это движение возросло до космических размеров.

Толковый словарь Ожегова

КОСМИ́ЧЕСКИЙ, -ая, -ое.

1. см. космос.

2. перен. Грандиозный, громадный. Космические масштабы.

Энциклопедический словарь

КОСМИ́ЧЕСКИЙ -ая, -ое.

1. к Ко́смос. К-ие источники излучения. К-ое пространство. К-ая связь. Запуск космического спутника. К. полёт. К-ая техника. К-ая ракета. К. корабль. К-ая станция. К-ие лучи (поток атомных ядер и электронов высокой энергии, приходящих на Землю из мирового пространства). К-ая пыль (мелкие твёрдые частицы в межпланетном и межзвёздном пространстве).

2. Чрезвычайный по силе, степени проявления. К-ие масштабы. Вести дело с космическим размахом. Дни несутся с космической быстротой.

Академический словарь

-ая, -ое.

1. Относящийся к космосу, к мировому пространству.

Космические источники излучения.

||

Связанный с изучением, освоением космоса.

Космический полет. Космическая техника.

||

Предназначенный для полета в космос, для пребывания в космосе.

Космическая ракета. Космический корабль. Космическая станция.

2. перен.

Чрезвычайный по силе, степени проявления.

На подготовку к экзамену по литературе нам дали много - целых шесть дней. Понеслись они с космической быстротой. Устьянцев, Почему море соленое.

космические лучи

поток атомных ядер и электронов высокой энергии, приходящих на Землю из мирового пространства.

космическая пыль

мелкие твердые частицы в межпланетном и межзвездном пространстве.

Орфографический словарь

косми́ческий

Словарь ударений

косми́ческий

Формы слов для слова космический

косми́ческий, косми́ческая, косми́ческое, косми́ческие, косми́ческого, косми́ческой, косми́ческих, косми́ческому, косми́ческим, косми́ческую, косми́ческою, косми́ческими, косми́ческом, косми́ческ, косми́ческа, косми́ческо, косми́чески

Синонимы к слову космический

мировой, вселенский, громадный, грандиозный

прил.

мировой

вселенский

Идиоматика

космический масштаб

Морфемно-орфографический словарь

косм/и́ческ/ий.

Грамматический словарь

косми́ческий п 3a✕~

Словарь галлицизмов русского языка

КОСМИЧЕСКИЙ ая, ое. cosmique adj. <гр. kosmikos мировой

1. Мировой. Космические причины, вызвавшие ледниковый период. Уш. 1934. Отн. к космосу, мировой. БАС-1. Она <Елена Сикорская> была твердого убеждения, которого держалась и большинство людей ее воспитания, теперь уже вымерших, что задушевные движения, в особенности глубокие религиозные, должны безвыносно содержаться в глубине души, отчасти от того, что du mystérieux au ridicule il n'y a qu'un pas (или, как ее брат любил говорить, между космическим и комическим разница в один свистящий звук), а ridicule в ее кругу было принято сторониться гораздо большею чем возможности прослыть сухим, скрытным или даже неглубоким человеком. Г. Барбатарло Окно с видом на комнату. // Звезда 2001 5 139. || астр. Междупланетный. Космическая пыль. Космические лучи. Космическое излучение. Уш. 1934. Полученные результаты несомненно дают повод для реанимации представлений о возможности возникновения жизни на земле путем заноса ее из космического пространства, т. е. идеи панспермии. Природа 1997 8 6. || Связанный с освоением, изучением космоса. Космический полет. Космическая техника. МАС-2. || Предназначенный для полета в космос, для пребывания в космосе. Космическая ракета. Космический корабль. Космическая станция. МАС-2.

2. перен. Громадный, колоссальных масштабов. Это движение возросло до космических размеров. Уш. 1934. Космически, нареч. БАС-1. - Лекс. Ян. 1804: космический; САН 1847: косми/ческий; Мак. 1908: косми/чески.

Словарь иностранных слов

КОСМИЧЕСКИЙ (греч. kosmikos, от kosmos - вселенная). Мировой, относящийся вообще к миру или к земле, как к небесному телу.

Полезные сервисы

космический аппарат

Энциклопедический словарь

Косми́ческий аппара́т (КА), аппарат для полёта в космос или в космосе, например ИСЗ, космический корабль, орбитальная станция. КА подразделяются на околоземные, движущиеся по геоцентрическим орбитам, не выходя за пределы гравитационного поля Земли, и межпланетные; автоматические и пилотируемые. Первый КА - советский ИСЗ (1957).

* * *

КОСМИЧЕСКИЙ АППАРАТ - КОСМИ́ЧЕСКИЙ АППАРА́Т (КА), аппарат для полета в космос или в космосе, напр. искусственный спутник Земли, космический корабль, орбитальная станция. КА подразделяются на околоземные, орбитальные и межпланетные; автоматические и пилотируемые. Первый КА - современный искусственный спутник Земли (1957).

Большой энциклопедический словарь

КОСМИЧЕСКИЙ аппарат (КА) - аппарат для полета в космос или в космосе, напр. искусственный спутник Земли, космический корабль, орбитальная станция. КА подразделяются на околоземные, орбитальные и межпланетные; автоматические и пилотируемые. Первый КА - современный искусственный спутник Земли (1957).

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКИЙ АППАРАТ, общее название различных технических автоматических или пилотируемых устройств, предназначенных для выполнения целевых задач в космосе (искусственные спутники, космические корабли, станции). Делятся на 2 основные группы: околоземные орбитальные и межпланетные. Первый космический аппарат - искусственный спутник Земли (1957, СССР).

Полезные сервисы

космический аппарат космос-2133

Практический толковый словарь

мист. искусственный спутник Земли советского производства, вокруг которого разгорелись споры среди независимых исследователей по поводу его возможного использования в уфологических целях. В конце 1990-х годов украинские контактеры стали утверждать, что истинное назначение суперсекретного аппарата - не просто наблюдать за околоземным пространством, а фиксировать появление НЛО. Возможно даже - предупреждать россиян о возможном вторжении из космоса инопланетных армад. Что же официально известно о таинственном аппарате? Выведен на орбиту 14 февраля 1991 года ракетоносителем "Протон-Д". Спутник "Космос-2133" в международных реестрах проходит под официальным N 1991-01-ОА. Масса спутника 2150 кг. Параметры практически круговой геостационарной орбиты таковы: апогей=35795 км, перигей=35777 км, наклонение=0,5 градусов, период обращения P=1436,1 мин (24 часа). Официальное назначение спутника значится как "изучение космического пространства", однако, специалисты считают, что спутник на самом деле предназначен для предупреждения о ракетном нападении на Россию со стороны вероятного противника, прежде всего стран из блока НАТО.

Полезные сервисы

космический артефакт

Практический толковый словарь

объект попавший на землю из космоса и имеющий признаки искусственного происхождения. Среди подобных загадок известен Канадский метеорит весом 150 килограммов, обнаруженный в 1960 году. Он представляет собой неизвестный науке металлический сплав с высоким содержанием магния. Находку не удалось связать ни с военной, ни с космической техникой земного происхождения, так как поверхность метеорита имеет следы длительного пребывания в космосе. В 1964 году в Чехословакии на глазах у очевидцев с неба упал 200-граммовый метеорит из сплава, не встречающегося в природе в естественном виде. Не смотря на легкое оплавление поверхности, она сохранила явственные следы механической обработки. В 1981 году над Тунисом прошел метеоритный "дождь" где среди прочих упавших камней был найден идеальный каменный куб с длиной ребра 20 сантиметров... Об истинной природе этих и других космических артефактов сегодня можно только догадываться.

Полезные сервисы

космический дозорный

Поговорки

Публ. Устар. Патет. Спутник, входящий в космическую систему спасения терпящих бедствие судов и самолетов. Новиков, 56.

Полезные сервисы

космический злой рок мира

Практический толковый словарь

мист. странная череда аварий и серьезных происшествий, случившихся на космической станции "Мир" в 1997 году. В 1986 году в космос ушла новая станция "Салют-8". Название это помнят лишь те, кто проектировал и строил эту космический дом нового поколения, так как едва только станция вышла на орбиту, весь мир узнал ее как "Мир". Скорая перемена имени "Салюта" - вовсе не только политический перестроечный шаг (якобы приписывают эту инициативу Горбачеву), на самом деле имя космического аппарата во многом определяло судьбу не только полета, но и экипажа. Хорошо, почти без поломок отработали корабли с именами "Луна", "Венера", "Вега", в то же время ни один аппарат с именами "Н", "Марс", "Фобос" не выполнил до конца своей программы. В 1994 предлагали переименовать аппарат "Марс-9" в какой-либо другой, но предложенное имя "Марс-94", затем измененное из-за задержки старта в "Марс-96", не оказалось спасительным - в ноябре 1996-го "Марс-96" благополучно утонул в Тихом океане. Что касается имени "Салют", то злой рок с небольшими перерывами преследовал эти станции с самого начала, самая массовая в советской истории гибель космонавтов (экипаж Добровольского, Волкова, Пацаева) произошла сразу при возвращении первой экспедиции с первого "Салюта". Станция "Мир" ("Салют-8") была усовершенствованным вариантом всех гражданских вариантов "Салюта" (в том числе и погибшего "Салюта-2"), но судьба ее коренным образом отличалась от предыдущих. С именем "Миру" повезло. В том смысле, что приключений и злоключений на "Мире" было больше, чем за всю предыдущую историю космонавтики, но все они закончились мирно. В 1987 году на апрельский день космонавтики впервые в истории удалось состыковать корабли в буквальном смысле руками: космонавтам пришлось вытаскивать посторонний мешок из стыковочного узла, для чего понадобилось просовывать руку в 20-сантиметровую щель, рискуя быть зажатыми между двумя 20-тонными громадами. Так с огромным трудом удалось присоединить к "Миру" модуль-З "Квант". Как оказалось, имя "Квант" также относилось к разряду не очень удачливых, спустя короткое время модуль-Д "Квант-2" также испытывает те-же трудности при сближении с базовым блоком, и опять героизм космонавтов спасает модуль от предложения ЦУПа затопить непокорный модуль в океане. Когда готовился для старта третий модуль, в весьма нервной атмосфере ожидания кто-то вовремя предложил избавиться от скомпрометированного названия и модуль-Т "Квант-3" подлетел для стыковки уже будучи известным всему миру как "Кристалл". Стыковка прошла великолепно! Но старое "девичье" название все же дало о себе знать. В январе 1994 года экипаж "Союза ТМ-17" облетая станцию для визуального осмотра и находясь вблизи того самого модуля "Кристалл", неожиданно почувствовал, как их корабль стал закручиваться по углу тангажа. Почему автоматическое управление дало сбой и почему это произошло именно в такой наиболее опасный момент - установить до сих пор не удалось. Возможно, техника вышла из-под контроля и какую-то оплошность допустил космонавт Василий ЦИБЛИЕВ, во всяком случае достоянием гласности стала сделанная в тот момент запись переговоров между ним и сидящем за лазерным дальномером Александром СЕРЕБРОВЫМ. В момент аварии служебный диалог изобилует русскими непечатными выражениями и сводится в общем-то к одному вопросу: "...Куда ... ты, ..., рулишь...?" Но тогда рассуждать было некогда и экипаж едва только смог, перешел на ручное управление. Конечно же, мгновение было потеряно и "Союз" все-же ударился о "Кристалл" самой уязвимой своей частью - спускаемым аппаратом. Задержись космонавт еще на мгновение - и удар был бы сильнее. А дальше - либо произошла бы разгерметизация (правда, космонавты уже были наготове в скафандрах), либо повредилась бы теплоизоляционная обшивка СА, которая безусловно не выдержала бы тогда огненного спуска в атмосфере и превратила бы обоих членов экипажа в горстку пепла. Это происшествие навсегда вошло в историю как первое в мире столкновение в космосе двух аппаратов. Лиха беда начало. Первый в мире серьезный пожар в космосе произошел на "Мире" спустя 3 года, в феврале 1997-го. Точнее, горел не центральный блок "Мира", а все тот-же злополучный первый "Квант". И на это раз русские парни в космосе не растерялись и пустили (впервые!) в дело огнетушители. Задымление было не слишком большим, но из-за того, что воздух на станции находится в замкнутом объеме, пришлось целый день ходить (т.е. летать) в респираторах, а запах гари держался даже спустя несколько недель. Космонавты - люди благодарные, и они безусловно помянули добрым словом покойного конструктора Королева, который является полноправным их спасителем. Когда-то на заре космонавтики, когда только прорисовывались основные контуры пилотируемых кораблей, Сергей Павлович категорически выступал за усложнение системы жизнеобеспечения, хотя был большой соблазн создавать в кабинах всех аппаратов кислородную атмосферу - и проще, и по массе легче, и в эксплуатации надежнее, и давление в кабине позволяло снизить до минимума. Американцы выбрали именно такую, хотя прекрасно знали единственный минус такого решения - в чистом кислороде пожар мог возникнуть от любой искры. Он и возник при первом удобном случае, унеся жизни трех членов экипажа "Аполлона" (астронавты не успели даже дотянуться до бесполезных огнетушителей). Чуть позже возгорание было и на "Салюте", космонавты в панике хотели покинуть станцию, но академик Мишин тогда правильно настоял - вернулись, устранили аварию и продолжили работать. Если бы на "Мире" была не кислородо-азотная "земная" смесь газов, а чистый кислород, то станция мгновенно превратилась бы в первый в мире крематорий на орбите, затушить пожар на котором невозможно в принципе. Разве что путем разгерметизации... И первая в мире разгерметизация обитаемого отсека произошла тоже на "Мире". Во второй половине дня 25 июня 1997 года случилось второе в мире столкновение в космосе, второй раз за штурвалом корабля-тарана находился один и тот же космонавт - Василий ЦИБЛИЕВ. Случай вдвойне редкий - из сотен русских пилотов-таранов лишь единицы пережили 2 тарана, из сотен японских камикадзе - вообще никто, а здесь - 2 тарана в вакууме - и отделаться только легкими испугами, выговорами и временным отстранением от работы!.. Но началась авария задолго до этого - она была запланирована тогда, когда стали рушиться союзные связи между Россией и самостийной Украиной, где ранее производились некоторые детали системы "Курс" - той самой, которая обеспечивала до сих пор сближение и стыковку кораблей в космосе. "Первый звонок" прозвучал 4 марта, когда не удалась повторная стыковка "Прогресса М-33". Привезший припасы с Земли "Прогресс" отстыковали и отвели от станции, чтобы временно освободить стыковочный узел для "Союза ТМ-25", но вернуть с двух попыток обратно грузовик не смогли, помучившись с ним вдоволь, просто утопили его в океане вместе со столь нужными для космонавтов запасами свежей воды... Причину неудач с тридцать третьим "Прогрессом" решили найти с помощью тридцать четвертого "Прогресса" и ...вновь неудачно! Грузовик отвели от станции, выдержали в отдалении полутора сотен метров и вновь разогнали в сторону комплекса. Думали, что разгоняют на экспериментально-тренировочную стыковку, а оказалось - разгоняли на таран! Задача состояла в том, чтобы попасть стыковочной штангой "Прогресса" в стыковочную воронку диаметром менее метра, на таких скоростях - задача ювелирная, но многократно повторявшаяся на практике. На несколько сот случаев успешных стыковок было всего несколько промахов, но всегда электроника заранее предупреждала об ошибке, и корабли успевали затормозить до того, как врубиться в боковую стенку или торец стыковочного узла. Пилотировавший грузовик дистанционно Циблиев понял, что промахивается и отдал команду на торможение... Однако, понял он это чуть позже, чем если бы это смогла бы понять стоявшая на "Прогрессах" система "Курс". "Тридцать четвертый" мог тормозить еще около 30 метров, но ...не сделал этого... возможно потому, что антенна, на которую передавалась команда с "Мира" к торможению была в тот момент возможно уже экранирована корпусом самого "Мира". "Прогресс М-34" врезался в модуль "Спектр" (бывший "Квант-4") на относительно малой скорости. Антенна грузовика задела за кремниевые элементы СБ, грузовик отлетел в сторону, ударил радиатор охлаждения, вновь задел солнечную батарею и только затем отфутболился в сторону. Американский член экипажа "Мира" Майкл ФОЭЛ даже не почувствовал толчка (по его словам). Однако, удар пришелся на одно из самых уязвимых мест - на ферму солнечных батарей, потянув за которую словно за большой мощный рычаг, можно было вывернуть все что угодно "с мясом". Влекомая массой корабля-тарана панель солнечных батарей выворотила из обечайки корпуса модуля свой собственный узел крепления. Пробоина!!! В образовавшуюся трещину площадью не более 4 кв.см немедленно хлынул воздух, Циблиев и Лазуткин услышали свист (за шумом вентиляторов это было непросто) и бросились к отсеку! Требовались самые срочные действия, счет шел на секунды. Так как заткнуть дыру не представлялось возможным в жертву космосу был принесен целый отсек - один из 6 модулей орбитального комплекса. Захлопнуть герметический люк быстро на старой станции почти невозможно (через люки проходят накинутые поверх временные провода и шланги), но оба российских члена команды действовали слаженно - и закрыли люк вовремя, потому как еще не успели они до конца загерметизироваться, как в отделенном модуле была уже космический холод и вакуум. Отдышавшись, космонавты поплелись докладывать на Землю о произошедшем. Помимо потери 1/6 объема станции, она разом потеряла и треть или даже половину всей энергии - кабели от СБ "Спектра" в спешке отключили при задраивании люка... ...Несмотря на старый корпус (местами - тоньше картона) и всем случайностям вопреки "Мир" продолжает вахту. Все больше и больше времени требуется на поддержание его в рабочем состоянии. Космонавты вынуждены управлять станцией вручную по причине периодических (строго по-понедельникам) поломок бортового компьютера, пролезать ужом в самые мелкие щели, ликвидируя течи в системе терморегулирования блока "Квант", а пока они это до конца не сделали, температура все в том же "Кванте" остается как в бане. Только не с водяным паром, а со спиртовым - из пробоин СТР в атмосферу станции улетучивается не что иное, как технический спирт. Проводить ремонт в такой дурманящей и сбивающей с ног горячей и одновременно горячительной атмосфере может только русская часть экипажа...

Полезные сервисы

космический зонд

Энциклопедия Кольера

КОСМИЧЕСКИЙ ЗОНД - автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников.

См. также

АСТРОНОМИЯ И АСТРОФИЗИКА;

РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ;

РАДИОАСТРОНОМИЯ;

ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ. Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования. В этой статье рассказано о развитии техники космического зондирования, а научные результаты описаны в статьях:

СОЛНЕЧНАЯ СИСТЕМА;

АСТЕРОИД;

КОМЕТА.

ПРЕДЫСТОРИЯ КОСМИЧЕСКИХ ПОЛЕТОВ

Начиная с Луциана Самосатского (ок. 120-180) (Икаро-Мениппус и Правдивая история) люди мечтали добраться до Луны и узнать ее тайну. Что же касается планет, то сама мысль об экспедиции к ним могла возникнуть лишь после того, как стало ясно, что это не божества и не просто движущиеся огоньки на ночном небе, а тела, подобно Земле обращающиеся вокруг Солнца. Окончательно это выяснилось в эпоху И.Ньютона (1643-1727), объяснившего характер движения планет в Солнечной системе и указавшего принципиальную возможность путешествия от одной планеты к другой. Однако до середины 20 в. не было технической возможности овладеть гигантской энергией, необходимой для преодоления земного тяготения.

После произведений И.Кеплера "Сон, или Посмертное сочинение об астрономии Луны" (1634), Ф. Годвина "Человек на Луне" (1638) и С. де "Бержерака Иной свет, или Государства и империи Луны" (1657), экспедиции к Луне и планетам стали популярной литературной темой. К середине 20 в. тема космических путешествий прочно заняла место в беллетристике, на радио и в кино, вызывая у публики большой интерес. Однако вплоть до этого времени все фантазии о космических путешествиях имели одну общую деталь - во всех экспедициях присутствовал человек. Сама идея об автоматических механизмах, способных исследовать Луну и планеты, просто не приходила никому в голову. Толчок воображению мог дать только соответствующий уровень техники, который в те годы еще не позволял мечтать о беспилотных космических аппаратах. К концу Второй мировой войны многие ученые и инженеры поняли, что эра космических полетов приближается. Разработка мощных ракетных двигателей, легких и прочных материалов и конструкций, миниатюрных приборов и особенно развитие электроники сделали возможным практическое осуществление полетов вокруг Земли, к Луне и планетам.

СОЗДАНИЕ КОСМИЧЕСКОЙ ТЕХНИКИ

Удивительно, но для запуска полезной нагрузки на бесконечное расстояние от Земли (т.е. для ее разгона до второй космической скорости) нужно сообщить ей всего лишь вдвое большую энергию, чем для ее вывода на низкую околоземную орбиту. Поэтому первые космические зонды были запущены вскоре после первых искусственных спутников Земли.

См. также ОРБИТА. Все же необходимая для запуска зонда дополнительная энергия требует более мощной ракеты-носителя при той же полезной нагрузке либо меньшей нагрузки при той же ракете. Ограничение веса полезной нагрузки всегда довлеет над разработчиками космических зондов. Обычно для достижения необходимой зонду скорости ракету снабжают дополнительной ступенью. Разработка мощных и надежных многоступенчатых ракет - это долгое и дорогое дело. Носители для космических зондов должны быть особенно надежными, поскольку для запуска обычно отводится небольшое временное окно, когда взаимное положение Земли и намеченной цели таково, что перелет требует минимальных затрат энергии. В другое время затраты энергии возрастают настолько, что экспедиция становится практически невозможной. При полетах на Луну оптимальная ситуация возникает раз в месяц, но при полетах к далеким планетам ее нужно ждать многие месяцы и даже годы. Другой важный фактор - время перелета. Экспедиции к планетам длятся месяцы и годы. Поэтому все приборы зонда должны быть очень надежными, чтобы вблизи цели выполнить сложный комплекс исследований. Это создает нелегкие технические проблемы. Длительный перелет означает, что для питания бортовых систем электричеством нельзя использовать аккумуляторные батареи - необходим генератор, работающий без ограничений по времени. С этой целью при полетах к Луне и внутренним планетам - Меркурию, Венере и Марсу - применяют солнечные элементы. Но за орбитой Марса, вдали от Солнца, его свет слаб. Поэтому при полетах к Юпитеру и дальше используют изотопный генератор, вырабатывающий ток с помощью термоэлектрического преобразователя из тепла, выделяющегося при распаде радиоактивных изотопов, например плутония-238. Слежение за космическими зондами и управление ими значительно сложнее, чем спутниками. Для определения точного положения аппарата и передачи на борт команд управления, а также для приема с его борта данных необходимы мощные передатчики и большие антенны на Земле и на самом зонде. Для этих целей были созданы глобальные системы космического радиосопровождения. Например, Сеть дальней космической связи Национального управления по аэронавтике и исследованию космического пространства (НАСА) США, разработанная в Лаборатории реактивного движения (Пасадена, шт. Калифорния), служит для управления космическими зондами и объединяет станции в Голдстоуне (Калифорния), Тидбинбелла (вблизи Канберры, Австралия) и Робледо де Чевела (вблизи Мадрида, Испания). Для связи с космическими зондами используют также станции в Дармштадте (Германия), Усюде (Япония) и Евпатории (Украина).

СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.

СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.

Ограниченность скорости света приводит к временной задержке при обмене сигналами между центрами управления на Земле и космическими зондами, достигающей нескольких часов при полетах во внешние области Солнечной системы и делающей невозможным управление зондом в реальном времени. Поэтому команды передаются заранее, и при возникновении неожиданной ситуации уже бывает поздно что-либо изменить. На этот случай зонд должен быть снабжен мощным бортовым компьютером, сравнивающим реальную ситуацию с ожидаемой и вносящим коррективы в команды. В то же время в процессе перелета зонды находятся в более мягких условиях, чем спутники Земли, которые регулярно переходят с освещенной Солнцем на теневую сторону орбиты, испытывая при этом сильные колебания температуры и тепловые деформации, снижающие надежность работы аппаратуры.

ПОЛЕТЫ К ЛУНЕ

"Пионер". Разработка первых пяти космических зондов США для пролета мимо Луны и для выхода на окололунную орбиту велась в Управлении перспективных исследований Министерства обороны, а затем была передана в только что образованное НАСА. Скромные возможности носителей того времени (баллистические ракеты среднего радиуса действия "Тор" и "Юпитер") ограничивали полезный груз для полетов к Луне массой от 6 до 40 кг. Постоянная ориентация продольной оси зондов в пространстве относительно звезд поддерживалась их вращением вокруг этой оси. Первая попытка ("Пионер-0", запущен 17 августа 1958) закончилась взрывом носителя на 77-й секунде полета. Первым зондом США, достигшим второй космической скорости, был "Пионер-4", запущенный 3 марта 1959 и прошедший мимо Луны на расстоянии 60 тыс. км - слишком далеко для получения хороших фотографий. Однако он помог уточнить протяженность открытых незадолго до этого радиационных поясов Ван Аллена, окружающих Землю.

"Луна". Советский Союз тоже стремился направить зонд к Луне. После четырех неудачных попыток в 1958 2 января 1959 состоялся запуск "Луны-1", впервые достигшей второй космической скорости и прошедшей мимо Луны всего в 6000 км. 13 сентября 1959 "Луна-2" попала в Луну, ознаменовав первый прямой контакт человечества с иным небесным телом. Запущенный 4 октября 1959 зонд "Луна-3" передал по радио первые фотографии обратной стороны Луны, которая никогда не видна с Земли. В процессе фотографирования "Луна-3" очень точно сориентировалась по звездам. Как и "Пионеры", первые зонды "Луна" питались электричеством от аккумуляторных батарей, что ограничивало срок их активной жизни. Но одним качеством они существенно отличались от "Пионеров". Мощные советские носители, выводящие на орбиту значительно больший вес, позволили советским инженерам разместить приборы зонда в герметичной оболочке, заполненной нормальным атмосферным воздухом. При этом, правда, небольшая утечка воздуха могла стать гибельной для аппарата. Оборудование на борту "Пионеров" функционировало в условиях вакуума. Чтобы добиться этого, пришлось решить сложные инженерные проблемы, но зато был сэкономлен вес и созданы приборы для работы в открытом космосе.

"Рейнджер". Американские исследования Луны автоматическими станциями активизировались, когда президент Дж.Кеннеди объявил, что высадка человека на Луну состоится до 1970. Для изучения поверхности, на которую должен был опуститься корабль "Аполлон", НАСА предприняло трехэтапную программу. Первыми представителями нового поколения американских лунных зондов стали аппараты "Рейнджер". Два первых "Рейнджера" были выведены для испытания на высокую околоземную орбиту. Следующие три зонда предназначались для доставки на лунную поверхность сейсмографов; при этом с помощью твердотопливных тормозных двигателей скорость сближения зонда с поверхностью должна была уменьшиться до нескольких сотен км/ч. Последние зонды предназначались для получения детальных изображений поверхности перед тем, как они врежутся в нее на большой скорости. Таким образом, зонды "Рейнджер" имели различную конструкцию, но все они питались от солнечных батарей, были стабилизированы по трем осям и способны осуществлять тонкую коррекцию ориентации и траектории полета. Способность зонда выполнять необходимые операции, кроме прочего, зависит от возможности поддерживать заданную ориентацию. У спутников на околоземной орбите для этого датчики могут фиксировать земной горизонт и определять по нему вертикальное и горизонтальное направления. Но зонд в открытом космосе для ориентации может использовать только небесные светила, как минимум - два, причем желательно, чтобы угол на небе между ними был ок. 90°. Для "Рейнджеров" и многих последующих американских зондов основным светилом для ориентации было выбрано Солнце, а вторым - Канопус, звезда южного неба, невидимая на наших северных широтах. Ее избрали потому, что это вторая по яркости звезда небосвода, и к тому же расположенная вблизи полюса эклиптики. Для поддержания или изменения ориентации использовались маленькие сопла, выбрасывающие строго контролируемое количество газообразного азота и действующие как миниатюрные ракетные двигатели. Во время маневра, когда датчики Солнца и Канопуса теряли свои светила из виду, специальные гироскопы сохраняли нужную ориентацию и указывали необходимую коррекцию, что значительно упрощало затем поиск двух опорных светил. Поскольку "Рейнджеры" могли сохранять ориентацию, они имели остронаправленную антенну, позволявшую эффективно передавать данные на Землю. Такая способность особенно важна для зондов, исследующих далекие области Солнечной системы. Первые шесть "Рейнджеров" постигла неудача из-за отказов носителя или самого аппарата. Но седьмой, восьмой и девятый сработали нормально, попав в Луну 31 июля 1964, 20 февраля 1965 и 24 марта 1965 и передав на Землю изображения лунной поверхности, в тысячи раз превосходящие то, что прежде было получено с помощью наземных телескопов. На них не обнаружилось ничего такого, что сделало бы невозможным прилунение человека.

"Сервейор". Следующим шагом НАСА по изучению Луны стала программа "Сервейор", первоначально включавшая два типа экспериментов: мягкую посадку зонда на поверхность Луны и ее детальное фотографирование с окололунной орбиты. Для управляемого спуска аппарат "Сервейор", приближаясь к Луне, переходил от ориентации по Солнцу и Канопусу к ориентации по лунной поверхности. Бортовой радар непрерывно измерял высоту и скорость спуска, чтобы перед самым касанием включить мощный твердотопливный двигатель, который почти полностью гасил скорость. В заключение небольшие регулируемые жидкостные двигатели обеспечивали мягкую посадку на грунт. "Сервейор-1" мягко опустился в Океане Бурь 2 июня 1966 и передал фотографии и результаты измерений на Землю. Четыре (3-й, 5-й, 6-й и 7-й) из шести следующих "Сервейоров" также успешно опустились (20 апреля, 11 сентября, 10 ноября 1967 и 10 января 1968) и окончательно доказали, что для посадок на Луну экспедиций "Аполлонов" путь открыт.

СЕРВЕЙОР - МАРС-98

"СЕРВЕЙОР - МАРС-98"

"Лунар орбитер". Для выбора мест посадки кораблей "Аполлон" НАСА срочно нуждалось в качественных изображениях больших областей лунной поверхности. Когда орбитальная программа "Сервейор" по разным причинам остановилась, НАСА начало программу с прозаическим названием "Лунар орбитер", зонды которой должны были фотографировать поверхность Луны на пленку и проявляли ее на борту. Затем негативы сканировались лучом света, и по радио изображение передавалось на Землю. Все пять аппаратов "Лунар орбитер" (запущены 10 августа и 6 ноября 1966, 5 февраля, 4 мая и 1 августа 1967) сработали нормально, дав первое детальное изображение почти всей поверхности Луны.

Другие полеты к Луне. После нескольких неудачных попыток Советский Союз посадил на Луну 3 февраля 1966 "Луну-9" и передал (за четыре месяца до "Сервейора-1") несколько панорам ее поверхности. Однако "Луна-9" представляла собой жестко садящийся аппарат с малым ресурсом и меньшими возможностями, чем "Сервейор". "Луна-10" 3 апреля 1966 стала первым спутником Луны. Затем еще множество посадочных и орбитальных аппаратов было направлено к Луне в период с 1966 по 1976. Для подготовки пилотируемых полетов на Луну Советский Союз запустил серию беспилотных кораблей ("Зонд-5, -6, -7 и -8", запущены 14 сентября и 10 ноября 1968, 8 августа 1969 и 20 октября 1970), облетевших Луну и благополучно вернувшихся на Землю. Затем были доставлены на Луну автоматические движущиеся аппараты ("Луноход-1 и -2", сели 17 ноября 1970 и 15 января 1973) и станции ("Луна-16, -20 и -24", сели 20 сентября 1970, 21 февраля 1972 и 18 августа 1976) для доставки образцов лунного грунта на Землю. Однако эти достижения померкли перед пилотируемыми полетами на Луну "Аполлонов" (1969-1972).

См. также КОСМИЧЕСКИЕ ПОЛЕТЫ ПИЛОТИРУЕМЫЕ.

"Клементина". В совместном проекте "Клементина" НАСА и Организация стратегической оборонной инициативы (СОИ) использовали оставшуюся со времен холодной войны ракету "Титан" и не находившее применения оборудование. Запущенный 25 января 1994 аппарат несколько месяцев работал на орбите вокруг Луны, получая с помощью четырех фотокамер изображения ее поверхности в различных диапазонах спектра, от ультрафиолетового до инфракрасного.

"Лунар проспектор". Для исследования состава поверхности Луны, а также ее магнитного и гравитационного полей 7 января 1998 США вывели на окололунную орбиту легкий спутник "Лунар проспектор", который в середине 1999 упал на Луну.

МЕРКУРИЙ

Единственным зондом, исследовавшим ближайшую к Солнцу планету Меркурий, был "Маринер-10", совершивший три полета (29 марта 1974, 21 сентября 1974 и 16 марта 1975) к этой планете. Вначале зонд прошел мимо Венеры, впервые совершив гравитационный маневр, т.е. использовал ее притяжение, чтобы изменить свою орбиту и достичь Меркурия. Меркурий оказался безвоздушным, покрытым кратерами телом, очень похожим на Луну. Исследование ближайшей к Солнцу планеты было технически сложным: тепловой поток там в 6 раз больше, чем у Земли, поэтому температура на Меркурии достаточна для плавления олова, свинца и цинка. Зонд был прикрыт от Солнца экраном, а панели солнечных батарей были наклонены под косым углом к солнечным лучам. Меркурий делает три оборота вокруг оси в течение двух орбитальных периодов, а каждый его оборот вокруг Солнца длится 88 сут. Поэтому одни солнечные сутки на нем продолжаются два меркурианских года, или 176 земных суток. К сожалению, "Маринер-10" совершал подлеты к Меркурию точно через такие же интервалы времени и каждый раз мог фотографировать лишь одно и то же освещенное Солнцем полушарие планеты. Недавние исследования поверхности Меркурия с помощью наземных радаров показали, что в его полярных областях на дне глубоких кратеров, куда никогда не попадает солнечный свет, могут быть залежи льда, точь-в-точь как на Луне. Это еще одна причина, требующая новых экспедиций к Меркурию.

ВЕНЕРА

Венера, ближайшая от Земли планета по направлению к Солнцу, была очевидной целью для первых космических зондов. Привлекали сравнительно небольшое расстояние и время перелета всего в несколько месяцев. К тому же покрытая облаками планета хранила от астрономов множество секретов.

Пролеты. Из-за трудностей с разработкой последней ступени носителя первые планетные зонды НАСА были простыми и легкими, основанными на лунном зонде "Рейнджер"; их выводила ракета "Атлас-Аджена". Зонд "Маринер-2" 14 декабря 1962 впервые прошел мимо Венеры и с помощью бортовой радиоаппаратуры подтвердил высокую температуру поверхности планеты, на что ранее указывали наземные радионаблюдения. "Маринер-5" прошел мимо Венеры 19 октября 1967, а "Маринер-10" - 5 февраля 1974.

Вход в атмосферу и посадка. Мягкая посадка на Венеру проходит в несколько этапов. Обычно влетающий в атмосферу планеты аппарат защищен тепловым экраном. Когда от торможения в атмосфере его скорость снижается до нескольких сотен километров в час, экран сбрасывается как лишний груз и раскрывается парашют. Вблизи поверхности парашют также сбрасывается, поскольку в очень плотных нижних слоях атмосферы для торможения уже достаточно небольшого аэродинамического щитка. Сохранить работоспособность аппарата на поверхности Венеры даже в течение одного часа не так-то просто, поскольку температура там ок. 500° С, а давление почти в 100 раз выше, чем у поверхности Земли. Поэтому приборы должны быть защищены прочной теплоизоляционной оболочкой. Советский зонд "Венера-3", осуществив первый в мире перелет на другую планету, попал на Венеру 1 марта 1966, но радиоконтакт с ним был потерян незадолго до встречи с планетой. "Венера-4" достигла планеты 18 октября 1967 и была раздавлена ее атмосферой еще до касания поверхности, подтвердив измерениями высокие температуру и давление у поверхности. "Венера-7" достигла поверхности Венеры 15 декабря 1970 и еще 23 мин посылала данные на Землю, пока не наступил перегрев. Зонды "Венера-9 и -10" состояли из посадочного и орбитального аппаратов. Их посадочные аппараты опустились на поверхность 22 и 25 октября 1975 и передали изображения пустынного и каменистого окружающего ландшафта. Следующие "Венеры" также передавали панорамы мест посадки, а "Венера-13 и -14" впервые произвели анализ образцов грунта. Американский зонд "Пионер - Венера-2" достиг планеты 9 декабря 1978, опустив в разных ее местах 4 посадочных аппарата, один из которых передавал данные с поверхности более часа. Затем были советские зонды "Вега-1 и -2", в первую очередь предназначенные для исследования кометы Галлея, приблизиться к которой они смогли после гравитационного маневра в окрестности Венеры. При прохождении мимо планеты (11 и 15 июня 1985) они сбросили на Венеру спускаемые аппараты, севшие на поверхность и проанализировавшие пробы грунта. К тому же каждый из аппаратов выпустил в атмосферу Венеры французский аэростатный зонд с баллоном, наполненным гелием; плавая в воздушных течениях Венеры несколько дней, они передавали на Землю данные об облаках, скорости ветра и параметрах атмосферы.

Радиолокационные исследования с орбиты. Поскольку Венера полностью закрыта облаками, наблюдения в оптический телескоп не дают возможности изучать ее поверхность. Однако с начала 1960-х годов наземные радарные исследования указывали, что поверхность Венеры весьма разнообразна. Поскольку спускаемые аппараты передают изображение лишь небольшого участка вокруг места посадки, возникла идея радиолокационного исследовании всей планеты с низкой орбиты. Их начал американский зонд "Пионер - Венера-1", вышедший на орбиту вокруг Венеры 4 декабря 1978 и с помощью бортового радара получивший карту части поверхности с разрешением (размер мельчайших деталей) ок. 80 км. Затем советские орбитальные зонды "Венера-15 и -16" начали 10 и 14 октября 1983 радарное изучение больших областей Венеры; на полученных ими с разрешением 1,5 км картах видны сложные структуры поверхности, многие из которых не известны на Земле. Зонд США "Магеллан", выйдя на орбиту вокруг Венеры 10 августа 1990, получил радарные карты почти всей ее поверхности с разрешением, доходящим до 100 м.

МАРС

Полет к Марсу более сложен, чем к Венере: перелет длится дольше, большее расстояние усложняет связь, а удаленность от Солнца требует большей площади солнечных батарей.

Пролеты. Как и в случае с Венерой, из-за трудностей с созданием носителей НАСА вынуждено было начать изучение Марса легкими зондами. "Маринер-4" впервые пролетел вблизи Марса 15 июля 1965, передав изображения, на которых покрытая кратерами поверхность Марса больше напоминала Луну, чем Землю. Похожие изображения передали "Маринер-6 и -7", пролетевшие вблизи Марса 31 июля и 5 августа 1969.

Исследования с орбиты и посадки. "Маринер-9", имевший мощную видеосистему, прибыл к Марсу 14 ноября 1971 и впервые стал спутником другой планеты. Почти за год наблюдений он кардинально изменил наши знания о Марсе, обнаружив на нем гигантские каньоны, огромные потухшие вулканы и следы эрозии от водяных потоков, существовавших там в далеком прошлом. Еще до открытий "Маринера-9" НАСА взялось за подготовку более сложных зондов "Викинг", способных не только выйти на орбиту вокруг Марса, но и доставить на его поверхность приборы для поиска жизни. Поскольку атмосфера Марса весьма разрежена, мягкая посадка на поверхность требует иных решений, чем на Луне или Венере. Тепловой экран и парашют использовать можно, но этого недостаточно, чтобы полностью погасить скорость. Необходим еще реактивный двигатель, управляемый компьютером, который получает от радара данные о расстоянии до поверхности и о скорости спуска. Этот последний этап посадки напоминает работу "Сервейора", однако из-за большой временной задержки все операции должны быть закончены, пока сигналы достигнут Земли. Два "Викинга" прибыли к Марсу в июле и августе 1976. Орбитальные блоки с помощью научных приборов обследовали возможные места посадки, а после отделения спускаемых аппаратов ретранслировали их сигналы на Землю. Спускаемые аппараты, снабженные радиоизотопными термоэлектрическими установками, имели по три сложных прибора для поиска жизни, но, увы, не обнаружили ее признаков. Советский Союз также в 1960-х и начале 1970-х годов предпринял исследование Марса с помощью пролетных, орбитальных и посадочных зондов. Однако многие полеты оказались не вполне удачными, вероятно, из-за трудностей в создании легких и надежных компонентов и систем, рассчитанных на длительную автономную работу.

Неудачные полеты. После экспедиций "Викингов" интерес к Марсу резко снизился. В СССР 12 и 17 июля 1988 запустили "Фобос-1 и -2" для изучения спутника Марса, но радиоконтакт с зондами был потерян перед их подлетом к Фобосу. В США 25 сентября 1992 запустили "Марс обсервер", но его радиосигналы пропали перед самым подлетом к Марсу. В результате неудачного старта 16 ноября 1996 не вышел на орбиту и погиб российский зонд "Марс-96", оснащенный аппаратурой нескольких стран для исследований Марса с орбиты и на поверхности. Исследования Марса продолжаются. Запущенный 7 ноября 1996 зонд "Марс глобал сервейор" (США) вышел 12 сентября 1997 на околомарсианскую орбиту и передает подробные изображения поверхности планеты. После серии неудач с космическими зондами НАСА перешло к программе по созданию недорогих аппаратов для выполнения конкретных задач. Первым стал зонд NEAR стоимостью 150 млн. долл., предназначенный для исследования астероидов (см. ниже). Вторым был запущенный 4 декабря 1996 зонд "Марс пасфайндер", совершивший 4 июля 1997 мягкую посадку на Марс и доставивший первый автоматический самоходный аппарат "Соджорнер", который несколько месяцев исследовал состав поверхности планеты. Для исследования атмосферы и водных ресурсов Марса 11 декабря 1998 к нему отправлен небольшой аппарат "Марс клаймит орбитер" (США - ЕКА - Россия), который должен выйти на околомарсианскую орбиту в сентябре 1999. В конце 1999 планировалась посадка в район южного полюса Марса аппарата "Марс полдар лэндер" (США), запущенного 3 января 1999.

ВНЕШНИЕ ОБЛАСТИ СОЛНЕЧНОЙ СИСТЕМЫ

За орбитой Марса масштабы расстояний в Солнечной системе значительно возрастают, поэтому посылка зонда к внешним планетам представляет трудную задачу, требующую мощных носителей и надежных приборов, способных работать годы и даже десятилетия. Планирование подобных полетов затруднено тем, что зонд неизбежно должен пройти сквозь пояс астероидов между орбитами Марса и Юпитера. Возможность столкновения зонда с известными астероидами не очень беспокоит, ибо крупных астероидов размером более километра всего несколько десятков тысяч, а рассеяны они по такому гигантскому объему пространства, что вероятность столкновения с ними ничтожно мала. Однако быстро летящему зонду может причинить вред даже столкновение с песчинкой, которых в поясе астероидов должно быть бесчисленное множество. Пролететь же над или под поясом астероидов (который, подобно планетам, располагается вблизи плоскости эклиптики) невозможно, т.к. для этого требуются огромные затраты энергии.

"Пионер-10 и -11". Единственный способ узнать, можно ли преодолеть пояс астероидов, заключался в том, чтобы попробовать это сделать. Первыми зондами НАСА к внешним планетам стали два стабилизированных вращением "Пионера" с радиоизотопными генераторами. "Пионер-10" был выведен 3 марта 1972 со скоростью 51 670 км/ч, став самым быстрым объектом, созданным руками человека, и через 11 ч после запуска пересек орбиту Луны. Он пересек пояс астероидов без повреждений и 3 декабря 1973 прошел в 130 тыс. км над облачным слоем Юпитера, передав множество данных, включая посредственные изображения, которые все же оказались значительно более детальными, чем до этого получали с Земли. Разведывательный полет "Пионера-10" продемонстрировал также, что зонд может безопасно преодолеть радиационные пояса Юпитера, которые намного интенсивнее земных. Пройдя мимо Юпитера, "Пионер-10" был выброшен его притяжением на траекторию, уводящую за пределы Солнечной системы; он стал первым рукотворным объектом, вырвавшимся из притяжения Солнца. Связь с "Пионером-10" поддерживалась до марта 1997. Теперь путь был свободен для "Пионера-11", запущенного 6 апреля 1973 и имевшего более сложную программу. Его траекторию выбрали так, чтобы после пролета 2 декабря 1974 в 43 тыс. км над облаками Юпитера он развернулся для встречи с Сатурном. Пролетев 1 сентября 1979 в 21 тыс. км над облаками Сатурна, "Пионер-11", как и его предшественник, отправился "к звездам".

"Вояджер". Следующий этап исследования внешних планет начался, когда выяснилось, что в конце 1970-х и начале 1980-х годов взаимное положение планет-гигантов Юпитера, Сатурна, Урана и Нептуна будет таким, что один зонд с помощью гравитационных маневров сможет посетить их все по очереди. Чтобы использовать эту редкую возможность, которая случается только раз в 179 лет, НАСА предложило грандиозную программу "Большого тура" к внешним планетам. Для этого предполагалось создать очень сложный зонд, способный работать не менее 12 лет, необходимых для полного облета планет. Но проект оказался непомерно дорогим. Тогда инженеры НАСА обратились к идее модернизированной версии "Маринера", ограничив задачу пролетом мимо Юпитера и Сатурна, но не оставляя надежду на визит к более далеким планетам.

ВОЯДЖЕР-1 И ВОЯДЖЕР-2 использовали принцип гравитационного маневра для пролета мимо всех планет-гигантов. На рисунке показаны траектории зондов и даты пролетов.

"ВОЯДЖЕР-1" И "ВОЯДЖЕР-2" использовали принцип гравитационного маневра для пролета мимо всех планет-гигантов. На рисунке показаны траектории зондов и даты пролетов.

В отличие от "Пионера-10 и -11", новые зонды "Вояджер-1 и -2" были стабилизированы по всем трем осям, что позволяло приборам и особенно видеосистеме ориентироваться в любом заданном направлении. Как и предшествующие аппараты, они питались от радиоизотопных источников и для связи имели большую радиоантенну, направленную на Землю. Аппараты "Вояджер-1 и -2" были запущены 20 августа и 5 сентября 1977. Двигаясь по более быстрой траектории, "Вояджер-1" должен был преодолеть магнитосферу Юпитера, пролететь как можно ближе к планете, чтобы получить качественные изображения атмосферы и особенно Большого Красного Пятна, пройти на небольшом расстоянии от четырех крупнейших (галилеевых) спутников Юпитера, пролететь за кольцами Сатурна и вблизи нескольких его спутников, включая крупнейший, покрытый облаками Титан, с которым он сблизился на 4000 км. Выполнив эту изумительную программу и встретившись с Юпитером 5 марта 1979 и с Сатурном 12 ноября 1980, зонд отправился в межзвездное пространство. После этого "Вояджеру-2" можно было ставить более сложную задачу. Пролетев Юпитер 9 июля 1979 и Сатурн 25 августа 1981, он встретился затем с Ураном 24 января 1986 и Нептуном 24 августа 1989, также отправившись затем к звездам. "Вояджеры" получили прекрасные изображения планет-гигантов и сделали множество открытий в отношении самих планет, их колец и спутников. Они продемонстрировали высокую надежность зондов и безупречное искусство наземного персонала управления.

"Галилео". Мысль послать к Юпитеру зонд "Галилео" появилась в НАСА в 1970-х годах. Его задачей была доставка спускаемого аппарата в атмосферу Юпитера и выход зонда на орбиту вокруг планеты для детального исследования ее магнитосферы, облачного покрова и спутников. Полагали, что "Галилео" станет первым планетным зондом, который будет выведен на орбиту космической транспортной системой "Шаттл", но запуск пришлось отложить более чем на 7 лет из-за задержки с разработкой разгонной ступени, а потом из-за ее аварии. После запуска "Галилео" 18 октября 1989 "зонтик" его остронаправленной антенны не смог полностью раскрыться, поэтому связь с Землей он поддерживал с помощью всенаправленной антенны, что существенно замедляет передачу изображений. "Галилео" сначала прошел мимо Венеры и два раза мимо Земли, увеличивая с помощью гравитационного маневра свою скорость, затем 29 октября 1991 встретился с астероидом Гаспра, а 28 августа 1993 - с астероидом Ида, 13 июля 1995 отделил от себя атмосферный зонд, и оба они 7 декабря 1995 прибыли к Юпитеру. Зонд вошел в атмосферу планеты, исследовал ее при спуске на парашюте и погиб, а орбитальный аппарат занялся внешним изучением планеты и ее спутников. В 1999 он еще активно действовал.

ВСТРЕЧА КОСМИЧЕСКОГО ЗОНДА ГАЛИЛЕО с Ио при полете к Юпитеру (декабрь 1995).

ВСТРЕЧА КОСМИЧЕСКОГО ЗОНДА "ГАЛИЛЕО" с Ио при полете к Юпитеру (декабрь 1995).

Кроме попутных встреч с астероидами планируются и специальные полеты к ним. NASA 17 февраля 1996 вывело на орбиту аппарат NEAR (Near Earth Asteroid Rendezvous - Рандеву с околоземным астероидом), который 27 июня 1997 с пролетной траектории исследовал астероид Матильда, а 9 января 1999 сблизился с малой планетой Эрос и вышел на орбиту вокруг нее с минимальной высотой 24 км над поверхностью.

КОМЕТЫ

В марте 1986, когда комета Галлея приблизилась к Солнцу, с ней встретилась международная флотилия космических аппаратов: 7 января и 18 августа 1985 японский Институт космических исследований запустил зонды "Сакигаке" и "Суйсей", пролетевшие довольно далеко от ядра кометы и не подвергавшиеся серьезному риску; Советский Союз запустил 15 и 21 декабря 1984 зонды "Вега-1 и -2", а Европейское космическое агентство (ЕКА) запустило 2 июля 1985 зонд "Джотто" - наиболее совершенный из всех, приблизившийся к ядру на 605 км и передавший изображения этой темной, фонтанирующей газопылевой глыбы. Полет международной флотилии выразительно продемонстрировал конец монополии США и СССР в запуске космических зондов, поскольку Япония и Западная Европа создали свои мощные носители. Тем не менее США стали первыми, кто послал зонд к комете. Запущенный в 1978 зонд ISEE-3 изучал взаимодействие солнечного ветра с Землей на орбите, удаленной на 1,5 млн. км от Земли, а затем с помощью гравитационного маневра и оставшегося на борту запаса ракетного топлива изменил орбиту и прошел через хвост кометы Джакобини - Циннера 11 сентября 1985.

СОЛНЕЧНЫЕ ЗОНДЫ

Полет зонда к Солнцу требует решения многих инженерных проблем, связанных с поддержанием в нем температуры, при которой могут работать электронные приборы.

"Гелиос". Два западногерманских зонда "Гелиос" были запущены американскими ракетами "Титан-Центавр" 10 декабря 1974 и 15 января 1976 на орбиту вокруг Солнца для его изучения с относительно близкого расстояния. Это был совместный проект НАСА и ЕКА; каждое из них установило на зондах по 11 приборов для всестороннего изучения Солнца.

"Улисс". Особым солнечным зондом стал "Улисс", также совместно созданный НАСА и ЕКА. Этот аппарат, запущенный 6 октября 1990, предназначен для изучения Солнца и межпланетной среды над и под солнечными полюсами. Для этого его орбита должна существенно выходить из плоскости эклиптики, что требует гораздо больших затрат энергии. Эта дополнительная энергия была получена путем гравитационного маневра при сближении с Юпитером в феврале 1992. При первом облете Солнца "Улисс" прошел в 80,2° к югу и к северу от солнечного экватора, соответственно 13 сентября 1994 и 31 июля 1995, и получил уникальную информацию, поскольку с Земли невозможно исследовать эти области.

SOHO (Solar and Heliospheric Observatory). Запущенный 2 декабря 1995 совместно НАСА и ЕКА на околосолнечную орбиту в точку Лагранжа L1 системы Земля - Солнце, этот зонд получает великолепные изображения Солнца в различных диапазонах спектра, а также изучает солнечную корону, используя внезатменный коронограф (с помощью которого уже было открыто несколько комет, влетевших в атмосферу Солнца).

В МЕЖПЛАНЕТНОМ ПРОСТРАНСТВЕ

Пространство между большими планетами Солнечной системы почти пусто, но и оно может немало рассказать о метеороидах, солнечном магнитном поле и заряженных частицах - электронах и протонах. Первым зондом для исследования этих областей был американский "Пионер-5", запущенный 11 марта 1960. Он двигался по орбите между Землей и Венерой, передавая данные об условиях в межпланетном пространстве, пока не удалился от Земли на рекордное для тех лет расстояние в 36,2 млн. км. В начале 1960-х годов в НАСА разработали простые и легкие (63 кг), стабилизированные вращением зонды для исследования межпланетного пространства, которые выводились относительно дешевой ракетой "Дельта". На орбиту вокруг Солнца вывели четыре аппарата: "Пионер-6, -7, -8 и -9" (запущены 16 декабря 1965, 17 августа 1966, 13 декабря 1967 и 8 ноября 1968), причем два между орбитами Венеры и Земли и два между Землей и Марсом. Связь с ними была прекращена лишь в марте 1997. Кроме научных исследований, эти зонды решали важную практическую задачу, предупреждая о мощных солнечных вспышках, которые могли быть опасны для астронавтов "Аполлона".

Полезные сервисы

космический корабль

Синонимы к слову космический корабль

сущ., кол-во синонимов: 3

звездолёт

Полезные сервисы

космический лифт

Практический толковый словарь

космическая транспортная система, связывающая поверхность планеты и околопланетные орбиты. Считается башней, на самом деле - тросовая система. Основой является спутник, находящийся на такой круговой экваториальной орбите, на которой угловая скорость совпадает с угловой скоростью вращения планеты. При этом спутник постоянно (без учета возмущений) находится над одной точкой поверхности планеты. С него на поверхность спускается трос (лифтовая система), а в противоположную сторону выводится противовес, так, чтобы центр масс системы продолжал двигаться по той же орбите. Идея предложена в начале 60-х годов советским изобретателем Ю.Арцютановым, в художественной форме изложена А.Кларком в фантастическом романе "Фонтаны рая". Нагрузки в процессе строительства и в меньшей степени - в ходе эксплуатации требуют применения алмазных, сапфировых или иных сверпрочных монокристаллических волокон, но главной проблемой такого лифта будет необходимость отказа от всех остальных средств выхода в космос, как и от спутников на неэкваториальных орбитах в пределах высоты этой "башни".

Полезные сервисы

космический лифт ожерелье

Практический толковый словарь

несколько космических лифтов, объединенных кольцевой конструкцией. Обычно в проектах горизонтальные стяжки предполагалось пропустить на большой высоте над Землей вдоль стационарной орбиты. Может быть спроектирована как самостоятельная конструкция и как дальнейшее развитие единичного космического лифта. Скорей всего, никогда не будет создана на Земле ввиду большой стоимости и опасности столкновения лифта с обычными свободнолетающими спутниками.

космический лифт

Полезные сервисы

космический мост

Практический толковый словарь

неракетный способ выведения грузов на орбиту с помощью жесткого или полужесткого кольца, обезвешивающегося за счет вращения вокруг земного экватора. Может быть реализована в двух вариантах. 1) По экватору, сколько возможно горизонтально, монтируется система из двух кольцевых роторов одинаковой массы и статора. Один из роторов раскручивается до такой скорости, чтобы его центробежная сила полностью уравновесила массу системы с подвешенными на внешней поверхности статора грузами. После этого вся кольцевая конструкция удлиняется (примерно на 15-20 %), в результате чего кольцо поднимается выше плотных слоев атмосферы. После этого, при помощи второго ротора, кольцу придается местная орбитальная скорость, и оно превращается в гигантский искусственный спутник. После отделения полезных грузов и стыковки возвращаемых, процесс повторяется в обратном порядке. Важно, что при всех этих перемещениях центр масс системы остается неподвижным и совпадающим с центром масс Земли. 2) На плавучих платформах в океане сооружаются эстакады в виде более или менее крупных сегментов вышеописанного кольца, состоящие из двух параллельных статор-роторов и узлов разворота на платформах. Эстакады используются для разгона КК, а также для транспортировки на Землю энергии, вырабатываемой в космосе. Известно, что сила тяжести вынуждает свободные тела падать к Земле в направлении ее центра. Очевидно, что предотвратить падение можно, поместив под тело подставку. Именно на таких подставках и можно собирать вокруг земного шара сплошные кольца космического моста. Если после сборки убрать подставки, то кольцо повиснет в воздухе, т.к. падать ему некуда - его центр тяжести уже находится в центре Земли. Если это кольцо раскрутить, как велосипедное колесо, то получим новое, независимое от вращения земли, движение. Очевидно, что такое кольцо удобно использовать в качестве транспортного средства. Для перемещения пассажиров и груза достаточно попасть в кольцо, а в нужном месте - выскочить из него. К сожалению, только при расположении вдоль экватора, когда ось вращения кольца совпадает с земной, все так просто. Но и передвигаться в этом случае можно также только вдоль экватора. При любом другом расположении плоскости кольца она, вращаясь вместе с Землей, меняет свое положение в пространстве, а, как известно, вращающиеся тела стремятся сохранять плоскость своего вращения. Поэтому прежде, чем раскручивать кольцо, нужно как-то сориентировать его плоскость по отношению к неподвижным звездам. Наиболее удобные с точки зрения доступности этого транспортного средства для большинства землян расположение плоскости кольца должно составлять угол 30-40 градусов по отношению к земной оси. Но, поскольку, Земля вращается вместе со своей атмосферой, то трение о воздух будет дестабилизировать положение плоскости кольца, вызывая ее прецессию. С целью ослабления этого трения, а также, чтобы такое, близкое к меридианальному, кольцо не цеплялось земными пиками - Эверестом и Килиманджаро, диаметр кольца должен быть больше экваториального диаметра Земли километров на 20. Уменьшить прецессию можно также быстрым вращением кольца. При этом одновременно уменьшается вес кольца и грузов на нем. Это можно использовать, например, для лечения болезней позвоночника и опорно-двигательного аппарата. Технические, а главное - организационно-финансовые трудности реализации этого проекта очевидны, но не являются непреодолимыми.

Полезные сервисы

космический пришелец

Синонимы к слову космический пришелец

сущ., кол-во синонимов: 2

метеорит, метеор

Полезные сервисы

космический уотергейт

Практический толковый словарь

преступное утаивание правительствами фактов, подтверждающих существование НЛО и посещения Земли пришельцами. Впервые это выражение применительно к правительству США использовал физик-ядерщик Стэнтон ФРИДМАН сразу же после как стал известен скандал Ватергейт (факт вторжения республиканцев в штаб Демократической партии в Ватергейтском комплексе города Вашингтон) и слово Ватергейт стало нарицательным. В настоящее время факт сокрытия вещественных доказательств и обломков НЛО доказан американскими уфологами в суде.

Полезные сервисы

космических исследований институт

Энциклопедический словарь

Косми́ческих Иссле́дований Институ́т (ИКИ) РАН, создан в 1965 в Москве. Исследования Луны и планет, межпланетной среды, физики Солнца и других с помощью космических аппаратов. Изучение возможностей использования космической техники для нужд экономики.

* * *

КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ ИНСТИТУТ - КОСМИ́ЧЕСКИХ ИССЛЕ́ДОВАНИЙ ИНСТИТУ́Т (ИКИ) РАН, создан в 1965 в Москве. Исследования Луны и планет, межпланетной среды, физики Солнца и др. с помощью космических аппаратов. Изучение возможностей использования космической техники для решения народнохозяйственных задач.

Полезные сервисы

космических исследований институт ран

Большой энциклопедический словарь

КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ ИНСТИТУТ (ИКИ) РАН - создан в 1965 в Москве. Исследования Луны и планет, межпланетной среды, физики Солнца и др. с помощью космических аппаратов. Изучение возможностей использования космической техники для решения народнохозяйственных задач.

Полезные сервисы

космическое восхождение и захождение звезды

Словарь иностранных слов

Называется в том случае, когда звезда восходит одновременно с солнцем.

Полезные сервисы

космическое землеведение

Энциклопедический словарь

Косми́ческое землеве́дение - совокупность иностранных и визуальных исследований Земли из космоса. Развитие космического землеведения обусловлено значительной обзорностью космических снимков и хорошим отражением на них взаимосвязей между компонентами природной среды, возможностью оперативно исследовать многие природные процессы и явления в их динамике, создавать достоверные обзорные и тематические карты. Результаты работ по космическому землеведению применяются в научных и практических целях (метеорологические прогнозы, рыболовство, сельское и лесное хозяйство, поиски ископаемых и др.).

* * *

КОСМИЧЕСКОЕ ЗЕМЛЕВЕДЕНИЕ - КОСМИ́ЧЕСКОЕ ЗЕМЛЕВЕ́ДЕНИЕ, совокупность инструментальных и визуальных исследований Земли из космоса. Быстрое развитие космического землеведения обусловлено значительной обзорностью космических снимков и хорошим отражением на них взаимосвязей между компонентами природной среды, возможностью оперативно исследовать многие природные процессы и явления в их динамике, создавать достоверные обзорные и тематические карты. Результаты работ по космическому землеведению применяются в научных и практических целях (метеорологические прогнозы, рыболовство, сельское и лесное хозяйство, поиски ископаемых и др.).

Большой энциклопедический словарь

КОСМИЧЕСКОЕ ЗЕМЛЕВЕДЕНИЕ - совокупность инструментальных и визуальных исследований Земли из космоса. Быстрое развитие космического землеведения обусловлено значительной обзорностью космических снимков и хорошим отражением на них взаимосвязей между компонентами природной среды, возможностью оперативно исследовать многие природные процессы и явления в их динамике, создавать достоверные обзорные и тематические карты. Результаты работ по космическому землеведению применяются в научных и практических целях (метеорологические прогнозы, рыболовство, сельское и лесное хозяйство, поиски ископаемых и др.).

Полезные сервисы

космическое ожерелье

Практический толковый словарь

несколько космических лифтов, объединенных кольцевой конструкцией. Обычно в проектах горизонтальные стяжки предполагалось пропустить на большой высоте над Землей вдоль стационарной орбиты. Может быть спроектирована как самостоятельная конструкция и как дальнейшее развитие единичного космического лифта. Скорей всего, никогда не будет создана на Земле ввиду большой стоимости и опасности столкновения лифта с обычными свободнолетающими спутниками.

космический лифт

Полезные сервисы

космическое право

Энциклопедический словарь

Косми́ческое пра́во - совокупность норм международного права, регулирующих отношения между его субъектами (прежде всего государствами) в связи с осуществлением космической деятельности по исследованию и использованию космического пространства и устанавливающих международно-правовой режим космического пространства. Основной документ в области космического права - Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (1967). Предусматривает свободу исследования космического пространства и небесных тел, мирного использования Луны и других небесных тел, запрещение размещать в космосе любые объекты с ядерным оружием или любыми другими видами оружия массового уничтожения.

* * *

КОСМИЧЕСКОЕ ПРАВО - КОСМИ́ЧЕСКОЕ ПРА́ВО, совокупность норм международного права, регулирующих отношения между его субъектами (прежде всего государствами) в связи с осуществлением космической деятельности по исследованию и использованию космического пространства и устанавливающих международно-правовой режим космического пространства. Основной документ в области космического пространства - Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (1967). Предусматривает свободу исследования космического пространства и небесных тел, мирного использования Луны и других небесных тел, запрещение размещать в космосе любые объекты с ядерным оружием или любыми другими видами оружия массового уничтожения.

Большой энциклопедический словарь

КОСМИЧЕСКОЕ ПРАВО - совокупность норм международного права, регулирующих отношения между его субъектами (прежде всего государствами) в связи с осуществлением космической деятельности по исследованию и использованию космического пространства и устанавливающих международно-правовой режим космического пространства. Основной документ в области космического пространства - Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (1967). Предусматривает свободу исследования космического пространства и небесных тел, мирного использования Луны и других небесных тел, запрещение размещать в космосе любые объекты с ядерным оружием или любыми другими видами оружия массового уничтожения.

Иллюстрированный энциклопедический словарь

КОСМИЧЕСКОЕ ПРАВО, совокупность норм международного права, регулирующих отношения между его субъектами (прежде всего государствами), в связи с осуществлением космической деятельности по исследованию и использованию космического пространства и устанавливающих его международно-правовой режим. Основной документ в области космического права - Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (1967). Предусматривает свободу исследования, мирного использования космического пространства и небесных тел, запрещение размещать в космосе любые объекты с ядерным оружием или любыми другими видами оружия массового уничтожения.

Полезные сервисы

космическое пространство

Синонимы к слову космическое пространство

сущ., кол-во синонимов: 1

Тезаурус русской деловой лексики

Syn: космос

Полезные сервисы

космическое телевидение

Энциклопедический словарь

Косми́ческое телеви́дение (космовидение), передача изображений с борта и на борт космического аппарата, находящегося в космическом пространстве или на поверхности другой планеты.

* * *

КОСМИЧЕСКОЕ ТЕЛЕВИДЕНИЕ - КОСМИ́ЧЕСКОЕ ТЕЛЕВИ́ДЕНИЕ (космовидение), передача изображений с борта и на борт космического аппарата, находящегося в космическом пространстве или на поверхности др. планеты.

Большой энциклопедический словарь

КОСМИЧЕСКОЕ ТЕЛЕВИДЕНИЕ (космовидение) - передача изображений с борта и на борт космического аппарата, находящегося в космическом пространстве или на поверхности др. планеты.

Полезные сервисы

космической

Словарь иностранных слов

КОСМИЧЕСКОЙ - мировой.

Полезные сервисы