Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

электронный

Толковый словарь

I прил.

1. соотн. с сущ. электрон I, связанный с ним

2. Свойственный электрону [электрон I], характерный для него.

3. Связанный с использованием свойств электронов [электрон I].

4. Состоящий из электронов [электрон I].

5. Основанный на использовании свойств электронов [электрон I].

II прил.

1. соотн. с сущ. электрон II, связанный с ним

2. Свойственный электрону [электрон II], характерный для него.

3. Сделанный из электрона [электрон II] или с использованием электрона.

III прил.

1. соотн. с сущ. электрон III, связанный с ним

2. Свойственный электрону [электрон III], характерный для него.

3. Сделанный с использованием электрона [электрон III].

IV прил.

1. соотн. с сущ. электроника I, связанный с ним

2. Разработанный на базе электроники [электроника I].

3. Осуществляемый через глобальную компьютерную сеть, существующий в глобальной компьютерной сети; сетевой.

V прил.

1. соотн. с сущ. электроника II, связанный с ним

2. Использующий электронику [электроника II].

ЭЛЕКТРО́ННЫЙ - прил., употр. сравн. часто

1. Электронным называется всё, что относится к свойствам, взаимодействию, влиянию и т. д. электронов, ионов и других микрочастиц.

Электронная оболочка атома. | Электронная сфера. | Электронный поток.

2. Электронная промышленность - это все предприятия, которые выпускают электронные приборы и устройства.

3. Если какой-то бытовой прибор связан с применением свойств электрона, основан на использовании свойств электронов, то его называют электронным.

Электронный переключатель.

4. Электронные часы - это часы с кварцевым генератором, которые помимо точного времени показывают дату и выполняют простые логические операции.

5. Электронная лампа, пушка, электронное зеркало - это приборы, в которых создаются и направляются потоки электронов и которые применяются для создания измерительных, лазерных и других устройств.

6. Электронный микроскоп - это микроскоп, в котором вместо светового луча используется поток электронов, благодаря чему достигается увеличение до полумиллиона раз.

7. Электронная вычислительная машина (ЭВМ) - это вычислительное устройство, в котором основные элементы (логические, запоминающие и т. д.) выполнены на электронных приборах.

= компьютер

8. Если какая-то информация хранится в памяти компьютера (в цифровой форме), то она называется электронной.

Электронный текст. | Электронный журнал, словарь, каталог. | Электронная библиотека. | Электронное изображение. | Медицинский электронный справочник содержит научную и практическую информацию о лекарствах российского фармацевтического рынка.

9. Электронная почта - это способ получения и отправки информации другому человеку с помощью компьютера и сетевых технологий.

Адрес электронной почты. | Электронная почта потеснила телефон как основное средство ведения бизнеса в современном мире.

10. Электронная музыка - это музыка, которую пишут с помощью электронно-акустической аппаратуры.

Важнейшей вехой в истории электронной музыки стал 1929 год, когда Е. А. Шолпо создал первый в мире электронный синтезатор звука.

11. Все виды коммерческой деятельности, которые осуществляются через Интернет, называются электронными.

Электронный магазин. | Электронный рынок, бизнес. | Развитие электронной торговли окажет позитивное влияние на структуру и функционирование российского рынка труда.

Толковый словарь Ожегова

ЭЛЕКТРО́ННЫЙ, -ая, -ое.

Энциклопедический словарь

ЭЛЕКТРО́ННЫЙ -ая, -ое.

1. к Электро́н. Э-ая оболочка атома. Э-ая сфера. Э. поток. Э-ая теория.

2. Связанный с применением свойств электрона, основанный на использовании свойств электронов. Э-ая лампа. Э-ая автоматика. Э-ые часы. Э-ая вычислительная машина Э. микроскоп (микроскоп, в котором вместо светового луча используется поток электронов, благодаря чему достигнуто увеличение до полумиллиона раз). Э. мозг; э. интеллект; э-ая память (публиц.; об электронной вычислительной машине).

Академический словарь

1)

-ая, -ое.

1. прил. к электрон 1.

Электронная оболочка атома. Электронная сфера.

2. Связанный с применением свойств электрона, основанный на использовании свойств электронов.

Электронная лампа. Электронная автоматика. Электронная вычислительная машина.

Электронный микроскоп - новейший микроскоп, в котором вместо светового луча используется поток электронов, благодаря чему достигнуто увеличение до полумиллиона раз. Ферсман, Занимательная геохимия.

2)

-ая, -ое.

Сделанный из электрона2, с электроном.

Электронная деталь.

Орфографический словарь

электро́нный

Формы слов для слова электронный

электро́нный, электро́нная, электро́нное, электро́нные, электро́нного, электро́нной, электро́нных, электро́нному, электро́нным, электро́нную, электро́нною, электро́нными, электро́нном, электро́нен, электро́нна, электро́нно, электро́нны, электро́ннее, поэлектро́ннее, электро́нней, поэлектро́нней

Синонимы к слову электронный

Омонимы к слову электронный

электронный I

связанный, соотносящийся по значению с существительным электрон; свойственный, характерный для него

связанный с применением свойств электрона, основанный на использовании свойств электронов

Электронный микроскоп.

связанный, соотносящийся по значению с существительным электроника

разработанный на базе электроники

такой, который представлен в форме, позволяющей быть переданным, обработанным и тому подобное посредством средств электроники

Всё, что публикуется в электронном виде, доступно для всех заинтересованных пользователей литературного Интернета (как, впрочем, и для случайных странников по бесконечным сетевым пространствам).

осуществляемый через глобальную компьютерную сеть, публикуемый, существующий в глобальной компьютерной сети; сетевой

Кроме отмеченной выше демонстрации архитектуры "клиент-сервер" на базе этой платформы можно развернуть работу различных приложений электронной коммерции.

По автодороге довольно длинная граница между Россией и Эстонией содержит только три международных погранперехода. На всех указанных автомобильных КПП действует электронная очередь для частных автомобилей.

электронный II

сделанный из электрона; сплава алюминия с магнием, литием и цинком

Морфемно-орфографический словарь

электр/о́н/н/ый.

Грамматический словарь

электро́нный п 1*a

Новый словарь иностранных слов

электро́нный

- относящийся к электронам; э-ная теория - теория, рассматривающая электрические явления как результат совокупного действия множества элементарных электрических зарядов - электронов; исходя из законов движения электронов, э-ная теория дает объяснение электрическим и магнитным свойствам вещества; э-ная эмиссия - испускание электронов твердыми или жидкими телами под влиянием внешних воздействий (нагревания и др.); э. парамагнитный резонанс - избирательное поглощение радиоволн твердыми телами, обусловленное переходами между уровнями энергии парамагнитных ионов, входящих в состав этих тел; используется в физике, химии и биологии для изучения структуры тел и хим. взаимодействий; э-ные приборы - приборы, в которых имеют место электронные явления; к электронным приборам относятся э-ные лампы, рентгеновские трубки, электронно-лучевые приборы, полупроводниковые приборы и др.; э-ная оптика - совокупность методов и устройств (электронных линз и др.) для создания сфокусированных электронных пучков и управления ими; примен., напр., в электронных микроскопах; э-ные вычислительные машины (эвм) - вычислительные машины, в которых арифметические, логические и др. операции выполняются автоматически соответствующими устройствами, содержащими в качестве активных элементов э-ные приборы; такие вычислительные машины позволяют решать различные задачи с объемом вычислений, исчисляемым миллиардами операций; делятся на аналоговые и цифровые вычислительные машины; находят применение во всех отраслях науки, техники и хозяйства; э-ная лампа - электровакуумный прибор, в котором поток электронов, вылетевших с поверхности катода, управляется электродами - анодом и сетками; примен. как усилитель, детектор, генератор, смеситель, выпрямитель (см. кенотрон); э-ная терапия - метод лечения нек-рых опухолей потоком электронов высокой энергии.

Полезные сервисы

электронный архитектор

Синонимы к слову электронный архитектор

сущ., кол-во синонимов: 2

Полезные сервисы

электронный вакуумный прибор (какой)

Идеография

электронные лампы: кенотрон. триод. тетрод. пентод. гексод. гептод.

механотрон.

магнетрон. платинотрон, амплитрон.

клистрон.

бареттер.

газоразрядные приборы: декатрон. тиратрон. тригатрон. стабилитрон. газотрон. характрон.

игнитрон.

динод.

Полезные сервисы

электронный закройщик

Синонимы к слову электронный закройщик

сущ., кол-во синонимов: 2

Полезные сервисы

электронный захват

Энциклопедический словарь

Электро́нный захва́т - радиоактивный распад атомных ядер (бета-распад), при котором ядро захватывает электрон с одной из внутренних оболочек атома (K, L, М и т. д.), чаще всего с ближайшей к ядру K-оболочки (K-захват), и одновременно испускает нейтрино. При этом ядро с атомным номером Z превращается в ядро с Z' = Z - 1, но с тем же массовым числом.

* * *

ЭЛЕКТРОННЫЙ ЗАХВАТ - ЭЛЕКТРО́ННЫЙ ЗАХВА́Т, радиоактивный распад атомных ядер (бета-распад), при котором ядро захватывает электрон с одной из внутренних оболочек атома (K, L, M и т. д.), чаще всего с ближайшей к ядру К-оболочки (К-захват (см. К-ЗАХВАТ)), и одновременно испускает нейтрино (см. НЕЙТРИНО). При этом ядро с атомным номером Z превращается в ядро с Z" = Z-1, но с тем же массовым числом.

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ ЗАХВАТ - радиоактивный распад атомных ядер (бета-распад), при котором ядро захватывает электрон с одной из внутренних оболочек атома (K, L, M и т. д.), чаще всего с ближайшей к ядру К-оболочки (К-захват), и одновременно испускает нейтрино. При этом ядро с атомным номером Z превращается в ядро с Z = Z-1, но с тем же массовым числом.

Полезные сервисы

электронный микроскоп

Энциклопедический словарь

Электро́нный микроско́п - прибор, в котором для получения увеличенного (до 106 раз) изображения объекта используется электронный пучок. Разрешающая способность электронного микроскопа в сотни раз превышает разрешающую способность оптического микроскопа.

* * *

ЭЛЕКТРОННЫЙ МИКРОСКОП - ЭЛЕКТРО́ННЫЙ МИКРОСКО́П, прибор, в котором для получения увеличенного изображения используется электронный пучок. Разрешающая способность электронного микроскопа в сотни раз превышает разрешающую способность оптического микроскопа. См. Электронная микроскопия (см. ЭЛЕКТРОННАЯ МИКРОСКОПИЯ).

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ МИКРОСКОП - прибор, в котором для получения увеличенного изображения используется электронный пучок. Разрешающая способность электронного микроскопа в сотни раз превышает разрешающую способность оптического микроскопа.

Энциклопедия Кольера

ЭЛЕКТРОННЫЙ МИКРОСКОП - прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. ЭМ - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела. Существуют три основных вида ЭМ. В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), в 1950-х годах - растровый (сканирующий) электронный микроскоп (РЭМ), а в 1980-х годах - растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.

ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

ОПЭМ во многом подобен световому микроскопу см. МИКРОСКОП, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор (см. ниже), ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка -100 000 В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором (см. ЭЛЕКТРОННАЯ ПУШКА). Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.

Электронная оптика. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое - оптическими линзами. Принцип действия магнитной линзы поясняется схемой (рис. 1). Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Поскольку оптическая сила такой линзы, т.е. способность фокусировать электроны, зависит от напряженности магнитного поля вблизи оси, для ее увеличения желательно сконцентрировать магнитное поле в минимально возможном объеме. Практически это достигается тем, что катушку почти полностью закрывают магнитной "броней" из специального никель-кобальтового сплава, оставляя лишь узкий зазор в ее внутренней части. Создаваемое таким образом магнитное поле может быть в 10-100 тыс. раз более сильным, чем магнитное поле Земли на земной поверхности.

Рис. 1. МАГНИТНАЯ ЛИНЗА. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок.

Рис. 1. МАГНИТНАЯ ЛИНЗА. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок.

Схема ОПЭМ представлена на рис. 2. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает неувеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец помещается в магнитном поле объективной линзы с большой оптической силой - самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объективная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей 1000. Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ЭЛЕКТРОННЫЙ МИКРОСКОП1 000 000. (При увеличении в миллион раз грейпфрут вырастает до размеров Земли.) Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо-влево.

Рис. 2. ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. В ОПЭМ можно получить увеличение до 1 млн. 1 - источник электронов; 2 - ускоряющая система; 3 - диафрагма; 4 -конденсорная линза; 5 - образец; 6 - объективная линза; 7 - диафрагма; 8 - проекционная линза; 9 - экран или пленка; 10 - увеличенное изображение.

Рис. 2. ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. В ОПЭМ можно получить увеличение до 1 млн. 1 - источник электронов; 2 - ускоряющая система; 3 - диафрагма; 4 -конденсорная линза; 5 - образец; 6 - объективная линза; 7 - диафрагма; 8 - проекционная линза; 9 - экран или пленка; 10 - увеличенное изображение.

Изображение. Контраст в ОПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Если образец достаточно тонок, то доля рассеянных электронов невелика. При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие - из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке. Электроны, выходящие из диафрагмы с угловым отклонением, превышающим некоторый предел, уже не могут вернуться в пучок, несущий изображение, а поэтому сильно рассеивающие участки повышенной плотности, увеличенной толщины, места расположения тяжелых атомов выглядят на изображении как темные зоны на светлом фоне. Такое изображение называется светлопольным, поскольку на нем окружающее поле светлее объекта. Но можно сделать так, чтобы электрическая отклоняющая система пропускала в диафрагму объектива только те или иные из рассеянных электронов. Тогда образец выглядит светлым на темном поле. Слабо рассеивающий объект часто бывает удобнее рассматривать в режиме темного поля. Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.

Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50-100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ок. 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ок. 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.

Рис. 3. РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (РЭМ/РПЭМ). Электроны, идущие от источника, ускоряются и фокусируются в узкий пучок на образце. Этот пучок перемещается по образцу отклоняющими катушками с током. Детекторы, расположенные выше образца, регистрируют рентгеновское излучение, вторичные и отраженные электроны. Электроны, прошедшие сквозь тонкий образец, регистрируются кольцевым детектором или, пройдя через энергетический анализатор, используются для формирования изображения на экране. 1 - источник электронов; 2 - ускоряющая система; 3 - магнитная линза; 4 - отклоняющие катушки; 5 - образец; 6 - детектор отраженных электронов; 7 - кольцевой детектор; 8 - анализатор.

Рис. 3. РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (РЭМ/РПЭМ). Электроны, идущие от источника, ускоряются и фокусируются в узкий пучок на образце. Этот пучок перемещается по образцу отклоняющими катушками с током. Детекторы, расположенные выше образца, регистрируют рентгеновское излучение, вторичные и отраженные электроны. Электроны, прошедшие сквозь тонкий образец, регистрируются кольцевым детектором или, пройдя через энергетический анализатор, используются для формирования изображения на экране. 1 - источник электронов; 2 - ускоряющая система; 3 - магнитная линза; 4 - отклоняющие катушки; 5 - образец; 6 - детектор отраженных электронов; 7 - кольцевой детектор; 8 - анализатор.

Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы.

Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной ЭЛЕКТРОННЫЙ МИКРОСКОП0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны. Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.

Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

РАСТРОВЫЙ ТУННЕЛЬНЫЙ МИКРОСКОП

В ЭМ, рассмотренных выше, для фокусировки электронов применяются магнитные линзы. Данный раздел посвящен ЭМ без линз. Но, прежде чем переходить к растровому туннельному микроскопу (РТМ), будет полезно кратко остановиться на двух старых видах безлинзового микроскопа, в которых формируется проецированное теневое изображение.

Автоэлектронный и автоионный проекторы. Автоэлектронный источник, применяемый в РПЭМ, с начала 1950-х годов применялся в теневых проекторах. В автоэлектронном проекторе электроны, испускаемые за счет автоэлектронной эмиссии острием очень малого диаметра, ускоряются в направлении люминесцентного экрана, расположенного на расстоянии нескольких сантиметров от острия. В результате на экране возникает проецированное изображение поверхности острия и находящихся на этой поверхности частиц с увеличением, равным отношению радиуса экрана к радиусу острия (порядка). Более высокое разрешение достигается в автоионном проекторе, в котором проецирование изображения осуществляется ионами гелия (или некоторых других элементов), эффективная длина волны которых меньше, чем у электронов. Это позволяет получать изображения, показывающие истинное расположение атомов в кристаллической решетке материала острия. Поэтому автоионные проекторы используются, в частности, для исследования кристаллической структуры и ее дефектов в материалах, из которых могут быть изготовлены такие острия.

Растровый туннельный микроскоп (РТМ). В этом микроскопе тоже используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом. РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Вибрации подавляются благодаря жесткой конструкции и малым размерам микроскопа (не более кулака), а также применению многослойных резиновых амортизаторов. Высокую точность обеспечивают пьезоэлектрические материалы, которые удлиняются и сокращаются под действием внешнего электрического поля. Подавая напряжение порядка 10-5 В, можно изменять размеры таких материалов на 0,1 нм и менее. Это дает возможность, закрепив острие на элементе из пьезоэлектрического материала, перемещать его в трех взаимно перпендикулярных направлениях с точностью порядка атомных размеров.

ТЕХНИКА ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов. Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2-200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки ок. 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1-0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100-200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см ок. 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи РЭМ и РПЭМ, в которых изображение регистрируется электронной системой и развертывается на телевизионном экране, может быть разрешено только ок. 1000 линий. Таким образом, при использовании телевизионного монитора минимально необходимое увеличение примерно в 10 раз больше, чем при фоторегистрации.

Биологические препараты. Электронная микроскопия широко применяется в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ и РПЭМ и методики фиксации для исследования объемных образцов в РЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких - криогенных - температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30-40 нм. Смонтированные гистологические препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.

МИКРОФОТОГРАФИЯ кристаллов холестерина в поляризованном свете.

МИКРОФОТОГРАФИЯ кристаллов холестерина в поляризованном свете.

Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла "оттеняет" образец, благодаря чему последний при наблюдении в ОПЭМ или РПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).

Небиологические материалы. ПЭМ применяется в исследованиях материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.

Высоковольтная микроскопия. В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ и РПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.

Низковольтная микроскопия. Выпускаются также РЭМ с ускоряющим напряжением, составляющим всего несколько сот вольт. Даже при столь низких напряжениях длина волны электронов меньше 0,1 нм, так что пространственное разрешение и здесь ограничивается аберрациями магнитных линз. Однако, поскольку электроны с такой низкой энергией проникают неглубоко под поверхность образца, почти все электроны, участвующие в формировании изображения, приходят из области, расположенной очень близко к поверхности, благодаря чему повышается разрешение поверхностного рельефа. С помощью низковольтных РЭМ были получены изображения на твердых поверхностях объектов размером менее 1 нм.

Радиационное повреждение. Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно подвергается его воздействию. (В результате этого воздействия возникают вторичные электроны, используемые в РЭМ.) Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100-1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений.

ИСТОРИЧЕСКАЯ СПРАВКА

История создания электронного микроскопа - замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры. В 1931 Р. Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного ОПЭМ. (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б.фон Боррис построили прототип промышленного ОПЭМ для фирмы "Сименс-Хальске" в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой "Сименс-Хальске" в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ'ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию по физике.

См. также

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ;

МОЛЕКУЛ СТРОЕНИЕ;

НУКЛЕИНОВЫЕ КИСЛОТЫ;

ФИЗИКА ТВЕРДОГО ТЕЛА;

ВИРУСЫ.

ЛИТЕРАТУРА

Полянкевич А.Н. Электронные микроскопы. Киев, 1976 Спенс Дж. Экспериментальная ионная микроскопия высокого разрешения. М., 1986

Иллюстрированный энциклопедический словарь

Электронный микроскоп (схема).

Электронный микроскоп (схема).

ЭЛЕКТРОННЫЙ МИКРОСКОП, вакуумный электронно-оптический прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий. Разрешающая способность электронного микроскопа в несколько тысяч раз больше, чем у обычного оптического микроскопа; предел разрешения электронного микроскопа составляет ~0,01-0,1 нм.

Полезные сервисы

электронный набор

Энциклопедический словарь

Электро́нный набо́р - автоматизированный процесс формирования копий полос печатных изданий в виде фотоформ с использованием средств вычислительной техники, входящих в системы автоматизированной совместно переработки текста и иллюстраций. Частный случай электронного набора - фотонабор.

* * *

ЭЛЕКТРОННЫЙ НАБОР - ЭЛЕКТРО́ННЫЙ НАБО́Р, автоматизированный процесс формирования копий полос печатных изданий в виде фотоформ с использованием средств вычислительной техники, входящих в системы автоматизированной совместной переработки текста и иллюстраций. Частный случай электронного набора - фотонабор.

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ НАБОР - автоматизированный процесс формирования копий полос печатных изданий в виде фотоформ с использованием средств вычислительной техники, входящих в системы автоматизированной совместной переработки текста и иллюстраций. Частный случай электронного набора - фотонабор.

Полезные сервисы

электронный парамагнитный резонанс

Энциклопедический словарь

Электро́нный парамагни́тный резона́нс (ЭПР), резонансное поглощение радиоволн, обусловленное квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (см. Зеемана эффект). Спектры ЭПР наблюдаются главным образом в диапазонах СВЧ, используются для исследования структуры твердого тела и в квантовых усилителях. Метод ЭПР используется также в химии, биологии (например, при исследовании свободных радикалов).

* * *

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС - ЭЛЕКТРО́ННЫЙ ПАРАМАГНИ́ТНЫЙ РЕЗОНА́НС (ЭПР), резонансное поглощение радиоволн, обусловленное квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (см. Зеемана эффект (см. ЗЕЕМАНА ЭФФЕКТ)). Спектры ЭПР наблюдаются главным образом в диапазонах сверхвысоких частот, используются для исследования структуры твердого тела и в квантовых усилителях. Метод ЭПР используется также в химии, биологии (напр., исследование свободных радикалов).

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР) - резонансное поглощение радиоволн, обусловленное квантовыми переходами между магнитными подуровнями парамагнитных атомов и ионов (см. Зеемана эффект). Спектры ЭПР наблюдаются главным образом в диапазонах сверхвысоких частот, используются для исследования структуры твердого тела и в квантовых усилителях. Метод ЭПР используется также в химии, биологии (напр., исследование свободных радикалов).

Иллюстрированный энциклопедический словарь

ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС (ЭПР), резонансные поглощения электромагнитного излучения парамагнитным веществом, помещенным в постоянное магнитное поле. Обусловлен квантовыми переходами между магнитными подуровнями (смотри Зеемана эффект). Спектры ЭПР наблюдаются главным образом в диапазоне сверхвысоких частот от 109 до 1012 Гц. Используется в физике, химии и биологии для изучения систем с нечетным числом электронов: точечных дефектов и центров окраски в твердых телах, атомов (например, водорода и азота), ионов переходных металлов, сложных органических молекул, свободных радикалов (например, CH3) и др. Открыт Е.К. Завойским в 1944.

Полезные сервисы

электронный переводчик

Методические термины

ЭЛЕКТРО́ННЫЙ ПЕРЕВО́ДЧИК.

Специальные программные средства, записанные на дисках или размещенные в Интернете, которые позволяют осуществлять автоматический перевод несложного текста с помощью электронных словарей.

Полезные сервисы

электронный проектор

Энциклопедический словарь

Электро́нный прое́ктор - безлинзовое устройство, создающее увеличенное изображение поверхности, эмитирующей электроны. Эмитированные катодом (в виде острия) электроны (автоэлектронная эмиссия) ускоряются сильным радиальным электрический полем и, попадая на внутреннюю поверхность камеры, покрытую флуоресцирующим слоем, создают увеличенное изображение острия.

* * *

ЭЛЕКТРОННЫЙ ПРОЕКТОР - ЭЛЕКТРО́ННЫЙ ПРОЕ́КТОР, безлинзовое устройство, создающее увеличенное изображение поверхности, эмиттирующей электроны. Эмиттированные катодом (в виде острия) электроны (автоэлектронная эмиссия) ускоряются сильным радиальным электрическим полем и, попадая на внутреннюю поверхность камеры, покрытую флуоресцирующим слоем, создают увеличенное изображение острия.

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ ПРОЕКТОР - безлинзовое устройство, создающее увеличенное изображение поверхности, эмиттирующей электроны. Эмиттированные катодом (в виде острия) электроны (автоэлектронная эмиссия) ускоряются сильным радиальным электрическим полем и, попадая на внутреннюю поверхность камеры, покрытую флуоресцирующим слоем, создают увеличенное изображение острия.

Полезные сервисы

электронный прожектор

Энциклопедический словарь

Электро́нный проже́ктор - см. Электронная пушка.

* * *

ЭЛЕКТРОННЫЙ ПРОЖЕКТОР - ЭЛЕКТРО́ННЫЙ ПРОЖЕ́КТОР, см. Электронная пушка (см. ЭЛЕКТРОННАЯ ПУШКА).

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ ПРОЖЕКТОР - см. Электронная пушка.

Полезные сервисы

электронный словарь

Методические термины

ЭЛЕКТРО́ННЫЙ СЛОВА́РЬ.

Электронная версия толкового или двуязычного словаря или специально созданный словарь, записанный на диске или размещенный в Интернете. Достоинством электронных словарей является удобная система поиска, огромный объем, возможность включения в систему компьютера для поддержки процесса чтения. Известны электронные словари фирм Lingvo, Promt, ABBY.

Полезные сервисы

электронный умножитель

Энциклопедический словарь

Электро́нный умножи́тель (ЭУ), электронное устройство для усиления тока первичных электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав некоторых электровакуумных приборов (например, фотоэлектронных умножителей), либо используется как самостоятельный прибор - приёмник УФ-излучения или частиц.

* * *

ЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ - ЭЛЕКТРО́ННЫЙ УМНОЖИ́ТЕЛЬ (ЭУ), электронное устройство для усиления тока первичных электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав некоторых электровакуумных приборов (напр., фотоэлектронных умножителей), либо используется как самостоятельный прибор - приемник ультрафиолетового излучения или частиц.

Большой энциклопедический словарь

ЭЛЕКТРОННЫЙ УМНОЖИТЕЛЬ (ЭУ) - электронное устройство для усиления тока первичных электронов на основе вторичной электронной эмиссии. ЭУ либо входит в состав некоторых электровакуумных приборов (напр., фотоэлектронных умножителей), либо используется как самостоятельный прибор - приемник ультрафиолетового излучения или частиц.

Полезные сервисы

электронный учебник

Методические термины

ЭЛЕКТРО́ННЫЙ УЧЕ́БНИК.

1. Электронная версия печатного учебника (сетевой вариант в Интернете и/или на СDROM), повторяющая печатный прототип, расширяя его возможности за счет гипертекстовой организации теоретической части, мультимедийных средств наглядности и встроенной обратной связи, позволяющей контролировать выполнение практических и контрольных заданий. Такой учебник может также представлять собой веб-приложение к имеющемуся учебнику на бумажном носителе.

2. Электронный учебник, не имеющий печатного прототипа (сетевой вариант в Интернете и/или на СD-ROM), включающий видеоиллюстрации, анимации, интерактивные задания и таблицы, практические задания с обратной связью. Э. у. должен иметь определенную структуру, основные его компоненты: печатный текст, мультимедийная составляющая (видео, анимация, звуковые файлы), практикум (упражнения, контрольные вопросы и тесты), статистика выполненных заданий и упражнений, времени обучения, электронный словарь, встроенные справочники, блок дистанционной поддержки.

Полезные сервисы

электронный учебный курс

Методические термины

ЭЛЕКТРО́ННЫЙ УЧЕ́БНЫЙ КУРС.

То же, что компьютерный учебный курс.

Полезные сервисы

электронный человек

Синонимы к слову электронный человек

сущ., кол-во синонимов: 2

Полезные сервисы