Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

белки (органические соединения)

Энциклопедический словарь

БЕЛКИ (органические соединения) - БЕЛКИ́, высокомолекулярные органические соединения, биополимеры, построенные из 20 видов L-a-аминокислотных остатков, соединенных в определенной последовательности в длинные цепи. Молекулярная масса белков варьируется от 5 тыс. до 1 млн. Название «белки» впервые было дано веществу птичьих яиц, свертывающемуся при нагревании в белую нерастворимую массу. Позднее этот термин был распространен на другие вещества с подобными свойствами, выделенные из животных и растений. Белки преобладают над всеми другими присутствующими в живых организмах соединениями, составляя, как правило, более половины их сухого веса. Предполагается, что в природе существует несколько миллиардов индивидуальных белков (например, только в бактерии кишечной палочки (см. КИШЕЧНАЯ ПАЛОЧКА) присутствует более 3 тыс. различных белков). Белки играют ключевую роль в процессах жизнедеятельности любого организма. К числу белков относятся ферменты (см. ФЕРМЕНТЫ), при участии которых протекают все химические превращения в клетке (обмен веществ); они управляют действием генов; при их участии реализуется действие гормонов (см. ГОРМОНЫ), осуществляется трансмембранный транспорт, в том числе генерация нервных импульсов (см. НЕРВНЫЙ ИМПУЛЬС). Они являются неотъемлемой частью иммунной системы (иммуноглобулины (см. ИММУНОГЛОБУЛИНЫ)) и системы свертывания крови (см. СВЕРТЫВАНИЕ КРОВИ), составляют основу костной и соединительной ткани, участвуют в преобразовании и утилизации энергии.

История исследования белков

Первые попытки выделить белки были предприняты еще в 18 веке. К началу 19 века появляются первые работы по химическому изучению белков. Французские ученые Ж.Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) и Л.Ж. Тенар (см. ТЕНАР Луи Жак) попытались установить элементный состав белков из разных источников, что положило начало систематическим аналитическим исследованиям, благодаря которым был сделан вывод о том, что все белки сходны по набору элементов, входящих в их состав. В 1836 голландский химик Г. Я. Мульдер предложил первую теорию строения белковых веществ, согласно которой все белки имеют некий гипотетический радикал (С40H62N10O12), связанный в различных пропорциях с атомами серы и фосфора. Он назвал этот радикал «протеином» (от греч. protein - первый, главный). Теория Мульдера способствовала увеличению интереса к изучению белков и совершенствованию методов белковой химии. Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме (гемоглобин (см. ГЕМОГЛОБИН), некоторые белки растений). Для анализа белков стали использовать их предварительное расщепление с помощью кислот и щелочей.

Одновременно все большее внимание стало уделяться изучению функции белков. Й. Я. Берцелиус (см. БЕРЦЕЛИУС Йенс Якоб)в 1835 первым высказал предположение о том, что они играют роль биокатализаторов. Вскоре были открыты протеолитические ферменты (см. ПРОТЕОЛИТИЧЕСКИЕ ФЕРМЕНТЫ)- пепсин (см. ПЕПСИН) (Т. Шванн, 1836) и трипсин (см. ТРИПСИН) (Л. Корвизар, 1856), что привлекло внимание к физиологии пищеварения (см. ПИЩЕВАРЕНИЕ)и анализу продуктов, образующихся в ходе расщепления пищевых веществ. Дальнейшие исследования структуры белка, работы по химическому синтезу пептидов (см. ПЕПТИДЫ) завершились появлением пептидной гипотезы, согласно которой все белки построены из аминокислот. К концу 19 века было изучено большинство аминокислот, входящих в состав белков. В начале 20 века немецкий химик Э. Г. Фишер (см. ФИШЕР Эмиль Герман) впервые применил методы органической химии для изучения белков и доказал, что белки состоят из a-аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков (см. ГЛОБУЛЯРНЫЕ БЕЛКИ), проведен рентгеноструктурный анализ аминокислот и пептидов (см. ПЕПТИДЫ), разработаны методы хроматографического анализа (см. Хроматография (см. ХРОМАТОГРАФИЯ)). Был выделен первый белковый гормон - инсулин (см. ИНСУЛИН) (Ф. Г. Бантинг (см. БАНТИНГ Фредерик Грант), Дж. Дж. Маклеод (см. МАКЛЕОД Джон Джеймс Рикард), 1922), доказано присутствие гамма -глобулиновв антителах (см. АНТИТЕЛА), описана ферментативная функция мышечного белка миозина (В. А. Энгельгардт (см. ЭНГЕЛЬГАРДТ Владимир Александрович), М. Н. Любимова, 1939). Впервые в кристаллическом виде были получены ферменты - уреаза (см. УРЕАЗА) (Дж. Б. Салинер, 1926), пепсин (см. ПЕПСИН) (Дж. Х. Нортрон, 1929), лизоцим (см. ЛИЗОЦИМ) (Э. П. Абрахам, Р. Робинсон (см. РОБИНСОН Роберт), 1937).

В 1950-х гг. была доказана трехуровневая организация белковых молекул - наличие у них первичной, вторичной и третичной структуры; создается автоматический анализатор аминокислот (С. Мур (см. МУР Станфорд), У. Х. Стайн (см. СТАЙН Уильям Хауард), 1950). В 60-х гг. предпринимаются попытки химического синтеза белков (инсулин, рибонуклеаза (см. РИБОНУКЛЕАЗЫ)). Существенно усовершенствовались методы рентгеноструктурного анализа; был создан прибор - секвенатор (П. Эдман, Г. Бэгг, 1967), позволявший определять последовательность аминокислот в полипептидной цепи. Следствием этого явилось установление структуры нескольких сотен белков из самых разных источников. Среди них протеолитические ферменты (пепсин, трипсин, химотрипсин (см. ХИМОТРИПСИН), субтилизин, карбоксипептидазы (см. КАРБОКСИПЕПТИДАЗЫ)), миоглобины (см. МИОГЛОБИН), гемоглобины (см. ГЕМОГЛОБИН), цитохромы (см. ЦИТОХРОМЫ), лизоцимы (см. ЛИЗОЦИМ), иммуноглобулины, гистоны (см. ГИСТОНЫ), нейротоксины, белки вирусных оболочек, белково-пептидные гормоны (см. Регуляторные пептиды (см. РЕГУЛЯТОРНЫЕ ПЕПТИДЫ)). В результате появились предпосылки для решения актуальных проблем энзимологии, иммунологии, эндокринологии и других областей биологической химии.

В конце 20 века значительные успехи были достигнуты в изучении роли белков в ходе матричного синтеза биополимеров, понимания механизмов их действия в различных процессах жизнедеятельности организмов, установления связи между их структурой и функцией. Огромное значение при этом имело совершенствование методов исследования, появление новых способов для разделения белков и пептидов. Разработка эффективного метода анализа последовательности расположения нуклеотидов (см. НУКЛЕОТИДЫ)в нуклеиновых кислотах (см. НУКЛЕИНОВЫЕ КИСЛОТЫ) позволила значительно облегчить и ускорить определение аминокислотной последовательности в белках. Это оказалось возможным потому, что порядок расположения аминокислот в белке определяется последовательностью нуклеотидов в кодирующем этот белок гене (см. ГЕН (наследственный фактор)) (фрагменте ДНК). Следовательно, зная расстановку нуклеотидов в этом гене и генетический код (см. КОД ГЕНЕТИЧЕСКИЙ), можно безошибочно предсказать, в каком порядке располагаются аминокислоты в полипептидной цепи белка. Наряду с успехами в структурном анализе белков значительные результаты были достигнуты в изучении их пространственной организации, механизмов образования и действия надмолекулярных комплексов, в том числе рибосом (см. РИБОСОМЫ)и других клеточных органелл (см. ОРГАНЕЛЛЫ), хроматина (см. ХРОМАТИН), вирусов (см. ВИРУСЫ) и т. д.

Строение белков

Практически все белки построены из 20 a-аминокислот, принадлежащих к L-ряду, и одинаковых практически у всех организмов. Аминокислоты в белках соединены между собой пептидной связью (см. ПЕПТИДНАЯ СВЯЗЬ)-СО-NH-, которая образуется карбоксильной и a-аминогруппой соседних аминокислотных остатков: две аминокислоты образуют дипептид, в котором остаются свободными концевые карбоксильная (-СООН) и аминогруппа (H2N-), к которым могут присоединяться новые аминокислоты, образуя полипептидную цепь.

Участок цепи, на котором находится концевая Н2N-группа, называют N-концевым, а противоположный ему - С-концевым. Огромное разнообразие белков определяется последовательностью расположения и количеством входящих в них аминокислотных остатков. Хотя четкого разграничения не существует, короткие цепи принято называть пептидами (см. ПЕПТИДЫ) или олигопептидами (от олиго (см. ОЛИГО... (часть сложных слов))...), а под полипептидами (белками) понимают обычно цепи, состоящие из 50 и более аминокислот. Наиболее часто встречаются белки, включающие 100-400 аминокислотных остатков, но известны и такие, молекула которых образована 1000 и более остатками. Белки могут состоять из нескольких полипептидных цепей. В таких белках каждая полипептидная цепь носит название субъединицы.

Пространственная структура белков

Полипептидная цепь способна самопроизвольно формировать и удерживать особую пространственную структуру. Исходя из формы белковых молекул белки делят на фибриллярные и глобулярные. В глобулярных белках одна или несколько полипептидных цепей свернуты в компактную структуру сферической формы, или глобулу. Обычно эти белки хорошо растворимы в воде. К их числу относятся почти все ферменты, транспортные белки крови и многие запасные белки. Фибриллярные белки представляют собой нитевидные молекулы, скрепленные друг с другом поперечными связями и образующие длинные волокна или слоистые структуры. Они обладают высокой механической прочностью, нерастворимы в воде и выполняют главным образом структурные и защитные функции. Типичными представителями таких белков являются кератины (см. КЕРАТИНЫ) волос и шерсти, фиброин (см. ФИБРОИН) шелка, коллаген (см. КОЛЛАГЕН) сухожилий.

Порядок расположения ковалентно связанных аминокислот в полипептидной цепи называют аминокислотной последовательностью, или первичной структурой белков. Первичная структура каждого белка, кодируемая соответствующим геном, постоянна и несет в себе всю информацию, необходимую для формирования структур более высокого уровня. Потенциально возможное число белков, которые могут образоваться из 20 аминокислот, практически не ограничено.

В результате взаимодействия боковых групп аминокислотных остатков отдельные относительно небольшие участки полипептидной цепи принимают ту или иную конформацию (см. КОНФОРМАЦИИ МОЛЕКУЛЫ) (тип укладки), известную как вторичная структура белков. Наиболее характерными элементами ее являются периодически повторяющиеся a-спираль и b-структура. Вторичная структура весьма стабильна. Так как она в значительной мере определяется аминокислотной последовательностью соответствующего участка белка, становится возможным ее предсказание с определенной степенью вероятности. Термин «a -спираль» был введен американским биохимиком Л. Полингом (см. ПОЛИНГ Лайнус), описавшим укладку полипептидной цепи в белке a -кератине в виде правосторонней спирали (a -спираль можно сравнить со шнуром от телефонной трубки). На каждый виток такой спирали в белке приходится 3,6 аминокислотных остатков. Это означает, что группа -С= О одной пептидной связи образует водородную связь (см. ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ) с группой -NH другой пептидной связи, отстоящей от первой на четыре аминокислотных остатка. В среднем каждый a -спиральный участок включает до 15 аминокислот, что соответствует 3-4 оборотам спирали. Но в каждом отдельном белке длина спирали может сильно отличаться от этой величины. В поперечном сечении a -спираль имеет вид диска, от которого наружу направлены боковые цепи аминокислот.

b-структура, или b -складчатый слой, может быть образована несколькими участками полипептидной цепи. Эти участки растянуты и уложены параллельно друг другу, связываясь между собой водородными связями, которые возникают между пептидными связями. Они могут быть ориентированы в одном и том же или в противоположных направлениях (направление движения вдоль полипептидной цепи принято считать от N-конца к С-концу). В первом случае складчатый слой называют параллельным, во втором - антипараллельным. Последний образуется, когда пептидная цепь делает резкий поворот вспять, образуя изгиб (b -изгиб). Боковые цепи аминокислот ориентированы перпендикулярно плоскости b -слоя.

Относительное содержание a -спиральных участков и b -структур может широко варьироваться в разных белках. Существуют белки с преобладанием a-спиралей (около 75% аминокислот в миоглобине и гемоглобине), а основным типом укладки цепи во многих фибриллярных белках (в том числе фиброин шелка, b-кератин) является b -структура. Участки полипептидной цепи, которые нельзя отнести ни к одной из вышеописанных конформаций, называют соединительными петлями. Их структура определяется главным образом взаимодействиями между боковыми цепями аминокислот, и в молекуле любого белка она укладывается строго определенным образом.

Третичной структурой называют пространственное строение глобулярных белков. Но часто это понятие относят к характерному для каждого конкретного белка способу сворачивания полипептидной цепи в пространстве. Третичная структура формируется полипептидной цепью белка самопроизвольно, по-видимому, по определенному пути (путям) свертывания с предварительным образованием элементов вторичной структуры. Если стабильность вторичной структуры обусловлена водородными связями, то третичная структура фиксируется разнообразной системой нековалентных взаимодействий: водородными, ионными (см. ИОННАЯ СВЯЗЬ), межмолекулярными взаимодействиями (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ), а также гидрофобными контактами между боковыми цепями неполярных аминокислотных остатков. В некоторых белках третичная структура дополнительно стабилизируется за счет образования дисульфидных связей (-S-S--связей) между остатками цистеина (см. ЦИСТЕИН). Как правило, внутри белковой глобулы расположены боковые цепи гидрофобных аминокислот, собранные в ядро (их перенос внутрь глобулы белка выгоден термодинамически), а на периферии находятся гидрофильные остатки и часть гидрофобных. Белковую глобулу окружает несколько сотен молекул гидратной воды, необходимой для стабильности молекулы белка и нередко участвующей в его функционировании. Третичная структура подвижна, отдельные ее участки могут смещаться, что приводит к конформационным переходам, которые играют значительную роль во взаимодействии белка с другими молекулами. Третичная структура является основой функциональных свойств белка. Она определяет образование в белке ансамблей функциональных групп - активных центров (см. АКТИВНЫЙ ЦЕНТР) и зон связывания, придает им необходимую геометрию, позволяет создать внутреннюю среду, являющуюся предпосылкой протекания многих реакций, обеспечивает взаимодействие с другими белками.

Третичная структура белков однозначно соответствует его первичной структуре; вероятно, существует еще нерасшифрованный стереохимический код, определяющий характер свертывания белка. Однако один и тот же способ укладки в пространстве обычно соответствует не единственной первичной структуре, а целому семейству структур, в которых совпадать может лишь небольшая доля (до 20-30%) аминокислотных остатков, но при этом в определенных местах цепи сходство аминокислотных остатков сохраняется. Результатом является образование обширных семейств белков, характеризующихся близкой третичной и более или менее сходной первичной структурой и, как правило, общностью функции. Таковы, например, белки организмов разных видов, несущие одинаковую функцию и эволюционно родственные: миоглобины и гемоглобины, трипсин, химотрипсин, эластаза и другие протеиназы животных.

Нередко, особенно в крупных белках, сворачивание полипептидной цепи проходит через формирование отдельными участками цепи более или менее автономных элементов пространственной структуры - доменов, которые могут обладать функциональной автономией, будучи ответственными за ту или иную биологическую активность белка. Так, N-концевые домены белков системы свертывания крови обеспечивают их присоединение к клеточной мембране.

Существует много белков, молекулы которых представляют собой ансамбль из глобул (субъединиц), удерживаемых вместе за счет гидрофобных взаимодействий, водородных или ионных связей. Такие комплексы называют олигомерными, мультимерными или субъединичными белками. Укладку субъединиц в функционально активном белковом комплексе называют четвертичной структурой белка. Некоторые белки способны образовывать структуры более высоких порядков, например, полиферментные комплексы, протяженные структуры (белки оболочек бактериофагов (см. БАКТЕРИОФАГИ)), надмолекулярные комплексы, функционирующие как единое целое (например, рибосомы или компоненты дыхательной цепи митохондрий (см. МИТОХОНДРИИ)). Четвертичная структура позволяет создать молекулы необычной геометрии. Так, у ферритина (см. ФЕРРИТИН), образованного 24 субъединицами, имеется внутренняя полость, благодаря которой белку удается связать до 3000 ионов железа. Кроме того, четвертичная структура позволяет в одной молекуле выполнять несколько различных функций. В триптофансинтетазе совмещены ферменты, ответственные за несколько последовательных стадий синтеза аминокислоты триптофана.

Методы исследования структуры белков

Первичная структура белков определяет все остальные уровни организации белковой молекулы. Поэтому при изучении биологической функции различных белков важно знание этой структуры. Первым белком, для которого была установлена аминокислотная последовательность, был гормон поджелудочной железы - инсулин. Эта работа, потребовавшая 11 лет, была выполнена английским биохимиком Ф. Сенгером (см. СЕНГЕР Фредерик) (1954). Он определил расположение 51 аминокислоты в молекуле гормона и показал, что она состоит из 2-х цепей, соединенных дисульфидными связями. Позже большая часть работ по установлению первичной структуры белков была автоматизирована. С развитием методов генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ)появилась возможность еще более ускорить этот процесс, определяя первичную структуру белков в соответствии с результатами анализа нуклеотидной последовательности в генах, кодирующих эти белки. Вторичную и третичную структуру белков исследуют с помощью достаточно сложных физических методов, например, кругового дихроизма или рентгеноструктурного анализа белковых кристаллов. Третичная структура была впервые установлена английским биохимиком Дж. К. Кендрю (см. КЕНДРЮ Джон Коудери) (1957) для белка мышц - миоглобина.

Денатурация белков

Сравнительно слабые связи, ответственные за стабилизацию вторичной, третичной и четвертичной структур белка, легко разрушаются, что сопровождается потерей его биологической активности. Разрушение исходной (нативной) структуры белка, называемое денатурацией, происходит в присутствии кислот и оснований, при нагревании, изменении ионной силы и других воздействиях. Как правило, денатурированные белки плохо или совсем не растворяются в воде. При непродолжительном действии и быстром устранении денатурирующих факторов возможна ренатурация (см. РЕНАТУРАЦИЯ) белка с полным или частичным восстановлением исходной структуры и биологических свойств.

Классификация белков

Сложность строения белковых молекул, чрезвычайное разнообразие выполняемых ими функций затрудняют создание единой и четкой их классификации, хотя попытки сделать это предпринимались неоднократно, начиная с конца 19 века. Исходя из химического состава белки делят на простые и сложные (иногда их называют протеидами (см. ПРОТЕИДЫ) ). Молекулы первых состоят только из аминокислот. В составе же сложных белков помимо собственно полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды (см. ГЛИКОПРОТЕИДЫ)), липидами (липопротеиды (см. ЛИПОПРОТЕИДЫ)), нуклеиновыми кислоты (нуклеопротеиды (см. НУКЛЕОПРОТЕИДЫ)), ионами металла (металлопротеиды (см. МЕТАЛЛОПРОТЕИДЫ)), фосфатной группой (фосфопротеиды (см. ФОСФОПРОТЕИДЫ)), пигментами (хромопротеиды (см. ХРОМОПРОТЕИДЫ)) и т. д.

В зависимости от выполняемых функций различают несколько классов белков. Самый многообразный и наиболее специализированный класс составляют белки с каталитической функцией - ферменты, обладающие способностью ускорять химические реакции, протекающие в живых организмах. В этом качестве белки участвуют во всех процессах синтеза и распада различных соединении в ходе обмена веществ, в биосинтезе белков и нуклеиновых кислот, регуляции развития и дифференцировки клеток. Транспортные белки обладают способностью избирательно связывать жирные кислоты, гормоны и другие органические и неорганические соединения и ионы, а затем переносить их с током крови и лимфы в нужное место (например, гемоглобин участвует в переносе кислорода от легких ко всем клеткам организма). Транспортные белки осуществляют также активный транспорт через биологические мембраны (см. БИОЛОГИЧЕСКИЕ МЕМБРАНЫ)ионов, липидов, сахаров и аминокислот. Структурные белки выполняют опорную или защитную функцию; они участвуют в формировании клеточного скелета. Наиболее распространены среди них коллаген соединительной ткани, кератин волос, ногтей и перьев, эластин клеток сосудов и многие другие. В комплексе с липидами они являются структурной основой клеточных и внутриклеточных мембран. Ряд белков выполняет защитную функцию. Например, иммуноглобулины (антитела) позвоночных, обладая способностью связывать чужеродные патогенные микроорганизмы и вещества, нейтрализуют их болезнетворное воздействие на организм, препятствует размножению раковых клеток. Фибриноген и тромбин участвуют в процессе свертывания крови. Многие вещества белковой природы, выделяемые бактериями, а также компоненты ядов змей и некоторых беспозвоночных относятся к числу токсинов (см. ТОКСИНЫ). Некоторые белки (регуляторные) участвуют в регуляции физиологической активности организма в целом, отдельных органов, клеток или процессов. Они контролируют транскрипцию (см. ТРАНСКРИПЦИЯ (в биологии))генов и синтез белка; к их числу относятся пептидно-белковые гормоны, секретируемые эндокринными железами. Запасные белки семян обеспечивают питательными веществами начальные этапы развития зародыша. К ним относят также казеин (см. КАЗЕИН)молока, альбумин (см. АЛЬБУМИНЫ)яичного белка (овальбумин) и многие другие. Благодаря белкам мышечные клетки приобретают способность сокращаться и в конечном итоге обеспечивать движения организма. Примером таких сократительных белков могут служить актин (см. АКТИН)и миозин (см. МИОЗИН)скелетных мышц, а также тубулин, являющиеся компонентом ресничек (см. РЕСНИЧКИ)и жгутиков (см. ЖГУТИКИ)одноклеточных организмов; они же обеспечивают расхождение хромосом при делении клеток. Белки-рецепторы являются мишенью действия гормонов и других биологически активных соединений. С их помощью клеткой воспринимается информация о состоянии внешней среды. Они играют важную роль в передаче нервного возбуждения и в ориентированном движении клетки (хемотаксисе (см. ХЕМОТАКСИС)). Преобразование и утилизация энергии, поступающей в организм с пищей, а также энергии солнечного излучения тоже происходит при участии белков биоэнергетической системы (например, зрительного пигмента родопсина (см. РОДОПСИН), цитохромов дыхательной цепи; см. Биоэнергетика (см. БИОЭНЕРГЕТИКА)). Существует также множество белков с другими, порой довольно необычными функциями (например, в плазме крови некоторых антарктических рыб содержатся белки, обладающие свойствами антифриза (см. АНТИФРИЗЫ)).

Биосинтез белка

Вся информация о структуре того или иного белка «хранится» в соответствующих генах в виде последовательности нуклеотидов и реализуется в процессе матричного синтеза. Сначала информация с помощью фермента ДНК-зависимой РНК-полимеразы передается (считывается) с молекулы ДНК на матричную РНК (мРНК), а затем в рибосоме на мРНК, как на матрице в соответствии с генетическим кодом при участии транспортных РНК, доставляющих аминокислоты, происходит формирование полипептидной цепи (см. Трансляция (см. ТРАНСЛЯЦИЯ (в биологии))). Выходящие из рибоcoмы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают свойственную данному белку конформацию и могут подвергаться посттрансляционной модификации. Модификациям могут подвергаться боковые цепи отдельных аминокислот (гидроксилированию, фосфорилированию и т. д.). Именно поэтому в коллагене, например, встречается гидроксипролин и гидроксилизин (см. Аминокислоты (см. АМИНОКИСЛОТЫ)). Модификация может сопровождаться и разрывом полипептидных связей. Таким путем, например, происходит образование активной молекулы инсулина, состоящего из двух цепей, соединенных дисульфидными связями.

Значение белков в питании

Белки являются важнейшими компонентами пищи животных и человека. Пищевая ценность белков определяется содержанием в них незаменимых аминокислот, которые в самом организме не образуются. В этом отношении растительные белки менее ценны, чем животные: они беднее лизином, метионином и триптофаном, труднее перевариваются в желудочно-кишечном тракте. Отсутствие незаменимых аминокислот в пище приводит к тяжелым нарушениям азотистого обмена. В процессе пищеварения белки расщепляются до свободных аминокислот, которые после всасывания (см. ВСАСЫВАНИЕ) в кишечнике поступают в кровь и разносятся ко всем клеткам. Часть из них распадается до простых соединений с выделением энергии, используемой на разные нужды клеткой, а часть идет на синтез новых белков, свойственных данному организму.

Полезные сервисы

гормоны

Энциклопедический словарь

ГОРМО́НЫ -ов; мн. (ед. гормо́н, -а; м.). [от греч. hormaō - двигаю, возбуждаю].

1. Физиол. Биологически активные вещества, вырабатываемые в организме и влияющие на все жизненно важные процессы. Г. гипофиза. Половые г.

2. Синтетические препараты, оказывающие такое же воздействие на организм.

Гормо́нный, -ая, -ое (разг.).

* * *

гормо́ны (от греч. hormáō - возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других органов и тканей. Позвоночные животные и человек имеют развитую систему таких желёз (гипофиз, надпочечники, половые, щитовидная и др.), которые посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. Развитые эндокринные железы есть и у высокоорганизованных беспозвоночных - головоногих моллюсков, насекомых, ракообразных. Секретируемые ими гормоны контролируют рост, линьку, метаморфоз, половое размножение и др. Каждый из гормонов влияет на организм в сложном взаимодействии с другими гормонами; в целом гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из соответствующих органов животных. О гормонах растений см. Фитогормоны.

* * *

ГОРМОНЫ - ГОРМО́НЫ (от греч. hormao - возбуждаю, привожу в движение), биологически активные вещества, вырабатываемые в организме специализированными клетками или органами (железами внутренней секреции) и оказывающие целенаправленное влияние на деятельность других органов и тканей. Позвоночные животные и человек имеют развитую систему таких желез (гипофиз, надпочечники, половые, щитовидная и др.), которые посредством гормонов, выделяемых в кровь, участвуют в регуляции всех жизненно важных процессов - роста, развития, размножения, обмена веществ. Развитые эндокринные железы есть и у высокоорганизованных беспозвоночных - головоногих моллюсков, насекомых, ракообразных. Секретируемые ими гормоны контролируют рост, линьку, метаморфоз, половое размножение и др. Каждый из гормонов влияет на организм в сложном взаимодействии с другими гормонами; в целом гормональная система совместно с нервной системой обеспечивает деятельность организма как единого целого. Химическая природа гормонов различна - белки, пептиды, производные аминокислот, стероиды. Гормоны, используемые в медицине, получают химическим синтезом или выделяют из соответствующих органов животных. О гормонах растений см. Фитогормоны (см. ФИТОГОРМОНЫ).

* * *

ГОРМО́НЫ животных (от греч. hormao - привожу в движение, побуждаю), биологически активные вещества, вырабатываемые железами внутренней секреции и скоплениями специализированных клеток. Важнейшие регуляторы физиологических процессов. Термин «гормоны» предложен в 1905 английским физиологом Э. Старлингом (см. СТАРЛИНГ Эрнест Генри).

Железы, секретирующие гормоны, имеются у позвоночных животных (в том числе у человека) и у высокоразвитых беспозвоночных - головоногих моллюсков, ракообразных, насекомых. Выделяемые ими гормоны поступают в кровь (или гемолимфу (см. ГЕМОЛИМФА)) и оказывают свое действие на определенные ткани-мишени, расположенные на значительном расстоянии от той железы, где они образуются. Отдельные группы клеток выделяют гормоны местного действия. Их часто называют гормоноидами, тканевыми гормонами, или парагормонами. К их числу относят гистамин (см. ГИСТАМИН), серотонин (см. СЕРОТОНИН), брадикинин (см. БРАДИКИНИН), простагландины (см. ПРОСТАГЛАНДИНЫ) и др. Гормоны, вырабатываемые нейросекреторными клетками нервной ткани, называют нейрогормонами (см. НЕЙРОГОРМОНЫ). По месту образования различают гипофизарные, гипоталамические, половые гормоны, кортикостероиды (см. КОРТИКОСТЕРОИДЫ) (гормоны коры надпочечников), гормоны щитовидной железы (тиреоидные гормоны) и т. д. Все гормоны отличает высокая биологическая активность (они оказывают воздействие в очень низких концентрациях - 10-6-10-10 М) и специфичность (даже очень близкие по химической структуре аналоги гормонов не дают нужного эффекта).

Химическая структура

Исходя из химического строения, гормоны делят на три группы. К первой группе относят пептидные и белковые гормоны. Пептидами являются, например, окситоцин (см. ОКСИТОЦИН), вазопрессин (см. ВАЗОПРЕССИН). Среди белковых гормонов имеются как простые белки (инсулин (см. ИНСУЛИН), глюкагон (см. ГЛЮКАГОН), соматотропин (см. РОСТОВОЙ ГОРМОН), пролактин (см. ПРОЛАКТИН) и др.), так и сложные - гликопротеины (фоллитропин, лютропин). Вторая группа - амины - объединяет гормоны, близкие по структуре аминокислотам - тирозину (см. ТИРОЗИН) и триптофану (см. ТРИПТОФАН) (тиреоидные гормоны, адреналин (см. АДРЕНАЛИН), норадреналин (см. НОРАДРЕНАЛИН)). Третью группу составляют стероидные гормоны, которые являются производными холестерина (см. ХОЛЕСТЕРИН). Среди стероидных гормонов - все половые гормоны (см. ПОЛОВЫЕ ГОРМОНЫ) и гормоны коры надпочечников - кортикостероиды.

Механизм действия гормонов

Гормоны служат химическими посредниками, переносящими соответствующую информацию (сигнал) в определенное место - клеткам соответствующей ткани-мишени; что обеспечивается наличием у этих клеток высокоспецифических рецепторов - особых белков, с которыми связывается гормон (у каждого гормона свой рецептор). Ответ клеток на действие гормонов различной химической природы осуществляется по-разному. Тиреоидные и стероидные гормоны проникают внутрь клетки и связываются со специфическими рецепторами с образованием гормон-рецепторного комплекса. Этот комплекс взаимодействует непосредственно с геном, контролирующим синтез того или иного белка. Остальные гормоны взаимодействуют с рецепторами, находящимися на цитоплазматической мембране. После этого включается цепь реакций, приводящих к повышению внутри клетки концентрации так называемого вторичного посредника (например, ионов кальция или аденозинмонофосфата циклического (см. АДЕНОЗИНТРИФОСФАТ)), что, в свою очередь, сопровождается изменением активности определенных ферментов.

Биологическая роль гормонов

Гормоны контролируют основные процессы жизнедеятельности организма на всех этапах его развития с момента зарождения. Они влияют на все виды обмена веществ в организме, активность генов, рост и дифференцировку тканей, формирование пола и размножение, адаптацию к меняющимся условиям среды, поддержание постоянства внутренней среды организма (гомеостаз (см. ГОМЕОСТАЗ)), поведение и многие другие процессы. Совокупность регулирующего воздействия различных гормонов на функции организма называется гормональной регуляцией (см. также Гуморальная регуляция (см. ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ)).

У млекопитающих гормоны, как и выделяющие их железы внутренней секреции (эндокринные железы (см. ЭНДОКРИННЫЕ ЖЕЛЕЗЫ)), составляют единую эндокринную систему. Она построена по иерархическому принципу и в целом контролируется нервной системой (см. НЕРВНЫЕ БОЛЕЗНИ). Роль связующего звена между нервной и эндокринной системами выполняет гипоталамус (см. ГИПОТАЛАМУС), выделяющий нейрогормоны (см. НЕЙРОГОРМОНЫ) (рилизинг-факторы). Они регулируют (усиливают или тормозят) выделение гормонов гипофизом (см. ГИПОФИЗ) (тропных гормонов), которые в свою очередь контролируют образование гормонов периферическими железами. Например, тиреотропинрилизинг-фактор гипоталамуса стимулирует выделение тиреотропного гормона (см. ТИРЕОТРОПНЫЙ ГОРМОН) гипофизом, а он - выделение тиреоидных гормонов клетками щитовидной железы. Избыточное содержание какого-либо гормона в крови сопровождается остановкой его образования соответствующей железой, а недостаточное количество - усилением его выделения (механизм обратной связи).

Избыточное образование или недостаток того или иного гормона в организме человека приводит к эндокринным заболеваниям (см. ЭНДОКРИНОЛОГИЯ). Например, следствием недостатка гормонов щитовидной железы в организме являются кретинизм (см. КРЕТИНИЗМ), микседема (см. МИКСЕДЕМА), а их избытка - базедова болезнь (см. БАЗЕДОВА БОЛЕЗНЬ) и тиреотоксикоз (см. ТИРЕОТОКСИКОЗ); нарушение функций поджелудочной железы может сопровождаться дефицитом гормона инсулина и, как следствие, сахарным диабетом (см. ДИАБЕТ САХАРНЫЙ).

Применение гормонов

Гормоны широко используются при заболеваниях, связанных с нарушением эндокринной системы: при недостатке или отсутствии в организме того или иного гормона (например, инсулина) или для усиления или подавления функции той или иной железы. Так, гормоны гипофиза адренокортикотропин и тиреотропин могут быть использованы для того, чтобы стимулировать работу периферических желез - собственно коры надпочечников и щитовидной железы. А так как гормоны периферических желез подавляют секрецию гормонов гипофиза, то кортикотропин, например, будет препятствовать образованию адренокортикотропного гормона.

Гормоны нашли широкое применение в акушерстве и гинекологии. Хорионический гонадотропин (см. ХОРИОНИЧЕСКИЙ ГОНАДОТРОПИН) помогает при лечении бесплодия, окситоцин (см. ОКСИТОЦИН) используется для усиления родовой деятельности, пролактин стимулирует секрецию молока после родов. Стероидные половые гормоны или их аналоги применяют при нарушениях в половой сфере, в качестве противозачаточных средств и т. д. При воспалительных процессах, аллергических заболеваниях, ревматоидном артрите и ряде других используются гормоны коры надпочечников. Гормоны, вырабатываемые вилочковой железой (см. ВИЛОЧКОВАЯ ЖЕЛЕЗА) (тимусом) и стимулирующие созревание Т-лимфоцитов (см. ЛИМФОЦИТЫ), применяют для лечения онкологических заболеваний, при нарушениях иммунитета.

Получение гормонов

Многие непептидные гормоны и низкомолекулярные пептидные гормоны получают с помощью химического синтеза. Полипептидные и белковые гормоны выделяют путем экстракции из желез домашнего скота с последующей очисткой. Разработана процедура получения некоторых гормонов (в том числе инсулина и гормона роста) с помощью методов генетической инженерии (см. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ). Для этого ген, ответственный за синтез того или иного гормона, включают в геном бактерий, которые после этого приобретают способность синтезировать нужный гормон. Так как бактерии активно размножаются, за короткое время оказывается возможным наработать довольно значительные его количества.

Полезные сервисы

лейкоциты

Энциклопедический словарь

ЛЕЙКОЦИ́ТЫ -ов; мн. (ед. лейкоци́т, -а; м.) [от греч. leukos - белый и kytos - клетка] Физиол. Бесцветные клетки крови человека и животных.

* * *

лейкоци́ты (от лейко... и ...цит), бесцветные клетки крови человека и животных. Все типы лейкоцитов (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) имеют ядро и способны к активному амёбоидному движению. В организме поглощают бактерии и отмершие клетки, вырабатывают антитела. В 1 мм3 крови здорового человека лейкоцитов содержится 4-9 тыс.

* * *

ЛЕЙКОЦИТЫ - ЛЕЙКОЦИ́ТЫ (белые кровяные клетки; от лейко (см. ЛЕЙКО... (часть сложных слов))... и греч. kytos - вместилище, здесь - клетка), бесцветные клетки крови человека и животных. Все типы лейкоцитов (лимфоциты (см. ЛИМФОЦИТЫ), моноциты (см. МОНОЦИТЫ), базофилы (см. БАЗОФИЛЫ), эозинофилы (см. ЭОЗИНОФИЛЫ) и нейтрофилы (см. НЕЙТРОФИЛЫ)) шаровидной формы, имеют ядро и способны к активному амебоидному движению. Лейкоциты играют важную роль в защите организма от болезней - вырабатывают антитела (см. АНТИТЕЛА) и поглощают бактерий. В 1 мкл крови в норме содержится 4-9 тыс. лейкоцитов. Количество лейкоцитов в крови здорового человека подвержено колебаниям: оно повышается к концу дня, при физической нагрузке, эмоциональном напряжении, приеме белковой пищи, резкой смене температуры окружающей среды.

Существуют две основные группы лейкоцитов - гранулоциты (см. ГРАНУЛОЦИТЫ) (зернистые лейкоциты) и агранулоциты (см. АГРАНУЛОЦИТЫ) (незернистые лейкоциты). Гранулоциты подразделяются на нейтрофилы, эозинофилы и базофилы. Все гранулоциты имеют разделенное на лопасти ядро и зернистую цитоплазму. Агранулоциты разделяются на два основных типа: моноциты и лимфоциты.

Нейтрофилы

Нейтрофилы составляют 40-75% всех лейкоцитов. Диаметр нейтрофила 12 мкм, ядро содержит от двух до пяти долек, соединенных между собой тонкими нитями. В зависимости от степени дифференцировки различают палочкоядерные (незрелые формы с подковообразными ядрами) и сегментоядерные (зрелые) нейтрофилы. У женщин один из сегментов ядра содержит вырост в форме барабанной палочки - так называемое тельце Барра. Цитоплазма заполнена множеством мелких гранул. Нейтрофилы содержат митохондрии и большое количество гликогена. Продолжительность жизни нейтрофилов - около 8 суток. Основная функция нейтрофилов - обнаружение, захват (фагоцитоз) и переваривание с помощью гидролитических ферментов болезнетворных бактерий, обломков тканей и другого подлежащего удалению материала, специфическое распознавание которого осуществляется при помощи рецепторов. После осуществления фагоцитоза нейтрофилы погибают, и их остатки составляют основной компонент гноя. Фагоцитарная активность, наиболее выраженная в возрасте 18-20 лет, с возрастом уменьшается. Активность нейтрофилов стимулируется многими биологически активными соединениями - тромбоцитарными факторами, метаболитами арахидоновой кислоты и др. Многие из этих веществ являются хемоаттрактантами, по градиенту концентрации которых нейтрофилы мигрируют в очаг инфекции (см. Таксисы (см. ТАКСИСЫ)). Изменяя свою форму, они могут протискиваться между клетками эндотелия и покидать пределы кровеносного сосуда. Освобождение токсичного для тканей содержимого гранул нейтрофилов в местах их массивной гибели может приводить к образованию обширных локальных повреждений (см. Воспаление (см. ВОСПАЛЕНИЕ)).

Эозинофилы

Эозинофилы составляют 1-5% общего числа лейкоцитов, но при различных заболеваниях (например, астме, сенной лихорадке и др.) их число возрастает. Палочкоядерные эозинофилы - незрелые формы с подковообразным ядром, сегментоядерные эозинофилы - зрелые клетки с ядром, состоящим из двух крупных сегментов, соединенных тонкой перемычкой. Цитоплазма содержит хорошо развитую гранулярную эндоплазматическую сеть, небольшое количество цистерн гладкой эндоплазматической сети, скопления рибосом, отдельные митохондрии и много гликогена. Цитоплазматические гранулы, окрашиваемые эозином (см. ЭОЗИН) в красный цвет, определили название этих клеток. Они содержат комплекс ферментов, таких как пероксидаза, фосфолипаза, кислая фосфатаза, коллагеназа и т. д. Активирующими факторами для эозинофилов являются бактериальные продукты, гистамин и др. Достигнув места внедрения чужеродных бактерий, эозинофилы выделяют содержимое гранул и липидные медиаторы, губительно действующие на паразитов. Секретируемые эозинофилами вещества могут повреждать и нормальные ткани (например, бронхиальный эпителий), и вызывать в них некроз и фиброзное перерождение. Эозинофилы способны мигрировать из кровотока в ткани, контактирующие с внешней средой - слизистые оболочки дыхательных и мочеполовых путей, кишечника. Размер эозинофила в крови около 12 мкм, а после выхода в соединительную ткань увеличивается до 20 мкм. Полагают, что эозинофилы обладают антигистаминным действием. Содержание эозинофилов в крови контролируется гормонами коры надпочечников. Продолжительность жизни - предположительно 8-14 дней.

Базофилы

Базофилы составляют 0-1% популяции лейкоцитов. Размер 10-12 мкм. Чаще имеют трехдольное S-образное ядро, содержат все виды органелл, свободные рибосомы и гликоген. Цитоплазматические гранулы окрашиваются в синий цвет основными красителями (метиленовым синим и др.), с чем связано название данных лейкоцитов. В состав цитоплазматических гранул входят пероксидаза, гистамин, медиаторы воспаления и др. вещества, выброс которых в месте активации вызывает развитие аллергических реакций немедленного типа: аллергический ринит, некоторых формы астмы, анафилактический шок. Как и другие лейкоциты, базофилы могут покидать кровоток, но их способность к амебоидному движению ограничена. Продолжительность жизни неизвестна.

Моноциты

Моноциты составляют 2-9% от общего числа лейкоцитов. Это самые крупные лейкоциты (диаметр около 15 мкм). Моноциты имеют крупное бобовидное ядро, расположенное эксцентрично, в цитоплазме присутствуют типичные органеллы, фагоцитарные вакуоли, многочисленные лизосомы. Различные вещества, образующиеся в очагах воспаления и разрушения тканей, являются агентами хемотаксиса и активации моноцитов. Активированные моноциты выделяют ряд биологически активных веществ - интерлейкин-1, эндогенные пирогены, простагландины (см. ПРОСТАГЛАНДИНЫ) и др. Покидая кровоток, моноциты превращаются в макрофагов (см. МАКРОФАГИ), активно поглощают бактерий и др. крупные частицы.

Лимфоциты

Лимфоциты составляют 20-45% общего числа лейкоцитов. Они округлой формы, содержат крупное ядро и небольшое количество цитоплазмы. В цитоплазме немного лизосом, митохондрий, минимум эндоплазматической сети, достаточно много свободных рибосом. Выделяют 2 морфологически сходные, но функционально различающиеся группы лимфоцитов: Т-лимфоциты (80% ), образующиеся в тимусе (вилочковой железе), и В-лимфоциты (10%), образующиеся в лимфоидной ткани. Клетки лимфоцитов образуют короткие отростки (микроворсинки), более многочисленные у В-лимфоцитов. Лимфоциты играют центральную роль во всех иммунных реакциях организма (образование антител, уничтожение опухолевых клеток и т. д.). Большинство лимфоцитов крови находится в функционально и метаболически неактивном состоянии. В ответ на специфические сигналы, лимфоциты выходят из сосудов в соединительную ткань. Главная функция лимфоцитов состоит в узнавании и уничтожении клеток-мишеней (чаще всего вирусов при вирусной инфекции). Продолжительность жизни лимфоцитов варьирует от нескольких дней до десяти и более лет.

Полезные сервисы