Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

векторное исчисление

Энциклопедический словарь

Ве́кторное исчисле́ние - раздел математики, в котором изучаются операции над векторами. Векторное исчисление включает векторную алгебру и векторный анализ. Правила векторной алгебры отражают свойства действий над векторными величинами. Например, суммой векторов а и b называется вектор, идущий из начала вектора а в конец вектора b при условии, что начало вектора b приложено к концу вектора а; это правило связано с правилом сложения сил или скоростей (см. Параллелограмм сил). В векторном исчислении установлены два типа умножения векторов (см. Скалярное произведение, Векторное произведение). Если i, j, k - три взаимно перпендикулярных единичных вектора в пространстве, то любой вектор а единственным образом можно представить в виде а = a1i + а2j + a3k. Числа a1, a2, a3 называются компонентами (координатами) вектора а. В основе векторного анализа лежат операции дифференцирования и интегрирования вектор-функций.

* * *

ВЕКТОРНОЕ ИСЧИСЛЕНИЕ - ВЕ́КТОРНОЕ ИСЧИСЛЕ́НИЕ, раздел математики, в котором изучаются операции над векторами. (см. ВЕКТОР (в математике)) Векторное исчисление включает векторную алгебру и векторный анализ. Правила векторной алгебры отражают свойства действий над векторными величинами. Напр., суммой векторов a и b называется вектор, идущий из начала вектора a в конец вектора b при условии, что начало вектора b приложено к концу вектора a; это правило связано с правилом сложения сил или скоростей (см. Параллелограмм сил (см. ПАРАЛЛЕЛОГРАММ СИЛ)). В векторном исчислении установлены два типа умножения векторов (см. Скалярное произведение (см. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ), Векторное произведение (см. ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ)). Если i, j, k - три взаимно перпендикулярных единичных вектора в пространстве, то любой вектор a единственным образом можно представить в виде a=a1i+a2j+a3k. Числа a1, a2, a3 называются компонентами (координатами) вектора a. В основе векторного анализа лежат операции дифференцирования и интегрирования вектор-функций.

Большой энциклопедический словарь

ВЕКТОРНОЕ исчисление - раздел математики, в котором изучаются операции над векторами. Векторное исчисление включает векторную алгебру и векторный анализ. Правила векторной алгебры отражают свойства действий над векторными величинами. Напр., суммой векторов a и b называется вектор, идущий из начала вектора a в конец вектора b при условии, что начало вектора b приложено к концу вектора a; это правило связано с правилом сложения сил или скоростей (см. Параллелограмм сил). В векторном исчислении установлены два типа умножения векторов (см. Скалярное произведение, Векторное произведение). Если i, j, k - три взаимно перпендикулярных единичных вектора в пространстве, то любой вектор a единственным образом можно представить в виде a=a1i+a2j+a3k. Числа a1, a2, a3 называются компонентами (координатами) вектора a. В основе векторного анализа лежат операции дифференцирования и интегрирования вектор-функций.

Полезные сервисы

векторное поле

Энциклопедический словарь

Большой энциклопедический словарь

Идеография

Полезные сервисы

векторное произведение

Энциклопедический словарь

Ве́кторное произве́дение - вектора а на вектор b, вектор р = [а, b], или а×b, равный по длине площади параллелограмма, построенного на векторах а и b, перпендикулярный плоскости этого параллелограмма; направление векторного произведения р зависит от выбора координатной системы i, j, k; из конца вектора р кратчайший поворот вектора а к вектору b виден в том же направлении (по часовой стрелке или против), в каком из конца вектора k видно вращение от i к j. Векторное произведение зависит от порядка сомножителей.

* * *

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ - ВЕ́КТОРНОЕ ПРОИЗВЕДЕ́НИЕ вектора a на вектор b, вектор p=[a, b], или a · b, равный по длине площади параллелограмма, построенного на векторах a и b, перпендикулярный плоскости этого параллелограмма; направление векторного произведения p зависит от выбора координатной системы i, j, k: из конца вектора p кратчайший поворот вектора a к вектору b виден в том же направлении (по часовой стрелке или против), в каком из конца вектора k видно вращение от i к j. Векторное произведение зависит от порядка сомножителей.

Большой энциклопедический словарь

Полезные сервисы

векторное пространство

Энциклопедический словарь

Полезные сервисы