Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

землетрясение

Энциклопедический словарь

ЗЕМЛЕТРЯСЕ́НИЕ -я; ср. Подземные толчки и колебания отдельных участков земной коры, вызываемые тектоническими или вулканическими процессами. Сильное з. З. силой пять баллов по шкале Рихтера. Эпицентр землетрясения.

* * *

землетрясе́ние - подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. Интенсивность землетрясения оценивается в сейсмических баллах (см. Сейсмическая шкала), для энергетической классификации землетрясений пользуются магнитудой (см. Рихтера шкала). Известны два главных сейсмических пояса: Тихоокеанский, охватывающий кольцом берега Тихого океана, и Средиземноморский, простирающийся через юг Евразии от Пиренейского полуострова на запад до Малайского архипелага на востоке В пределах океанов значительной сейсмической активностью отличаются срединно-океанические хребты. Наиболее известные катастрофические землетрясения: Лиссабонское 1755, Калифорнийское 1906, Мессинское 1908, Ашхабадское 1948, Чилийское 1960, Армянское 1988, Иранское 1990.

* * *

ЗЕМЛЕТРЯСЕНИЕ - ЗЕМЛЕТРЯСЕ́НИЕ, подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. Интенсивность землетрясений оценивается в сейсмических баллах (см. Сейсмическая шкала (см. СЕЙСМИЧЕСКАЯ ШКАЛА)), для энергетической классификации землетрясений пользуются магнитудой (см. Рихтера шкала (см. РИХТЕРА ШКАЛА)). Известно два главных сейсмических пояса: Тихоокеанский, охватывающий кольцом берега Тихого океана, и Средиземноморский, простирающийся через юг Евразии от Пиренейского п-ова на запад до Малайского арх. на востоке. В пределах океанов значительной сейсмической активностью отличаются срединно-океанические хребты. Наиболее известные катастрофические землетрясения: Лиссабонское 1755, Калифорнийское 1906, Мессинское 1908, Ашхабадское 1948, Чилийское 1960, Таншанское 1976, Армянское 1988, Иранское 1990.

* * *

ЗЕМЛЕТРЯСЕ́НИЕ, подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре (см. ЗЕМНАЯ КОРА)и верхней мантии (см. ВЕРХНЯЯ МАНТИЯ) и передающиеся на большие расстояния.

Общие сведения

Сильные землетрясения носят катастрофический характер, уступая по числу жертв только тайфунам (цунами) и значительно опережая извержения вулканов. Материальный ущерб одного разрушительного землетрясения может составлять сотни миллионов долларов. Число слабых землетрясений гораздо больше, чем сильных. Так, из сотни тысяч землетрясений, ежегодно происходящих на Земле, только единицы катастрофических. Они высвобождают около 1020 Дж потенциальной сейсмической энергии, что составляет всего 0,01% тепловой энергии Земли, излучаемой в космическое пространство.

Где и почему происходят землетрясения

Территориальное распределение землетрясений неравномерно. Оно определяется перемещением и взаимодействием литосферных плит (см. ЛИТОСФЕРНАЯ ПЛИТА). Главный сейсмический пояс, в котором выделяется до 80% всей сейсмической энергии, расположен в Тихом океане в районе глубоководных желобов (см. ОКЕАНИЧЕСКИЕ ГЛУБОКОВОДНЫЕ ЖЕЛОБА), где происходит подвигание холодных литосферных плит под континент. Остальная энергия выделяется в Евроазиатском складчатом поясе в местах столкновения Евроазиатской плиты с Индийской и Африканской плитами и в районах срединно-океанических хребтов (см. СРЕДИННО-ОКЕАНИЧЕСКИЕ ХРЕБТЫ)в условиях растяжения литосферы (см. ЛИТОСФЕРА) (см. Рифтов мировая система (см. РИФТОВ МИРОВАЯ СИСТЕМА)).

Параметры землетрясений

Очаги землетрясений располагаются на глубинах до 700 км, но большая часть (3/4) сейсмической энергии выделяется в очагах, находящихся на глубине до 70 км. Размер очага катастрофических землетрясений может достигать 100x1000 км. Его положение и место начала перемещения масс (гипоцентр (см. ГИПОЦЕНТР)) определяют путем регистрации сейсмических волн (см. СЕЙСМИЧЕСКИЕ ВОЛНЫ), возникающих при землетрясениях (у слабых землетрясений очаг и гипоцентр совпадают). Проекция гипоцентра на земную поверхность именуется эпицентром (см. ЭПИЦЕНТР). Вокруг него располагается область наибольших разрушений (эпицентральная, или плейстосейстовая, область).

Интенсивность землетрясений

Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения (см. МАГНИТУДА ЗЕМЛЕТРЯСЕНИЯ), служащей мерой его энергии. Максимальное известное значение магнитуды приближается к 9. Магнитуда связана с полной энергией землетрясения, но эта зависимость не прямая, а логарифмическая, с увеличением магнитуды на единицу энергия возрастает в 100 раз, т. е. при толчке с магнитудой 6 высвобождается в 100 раз больше энергии, чем при магнитуде 5, и в 10 000 больше, чем при магнитуде 4. Часто в средствах массовой информации, оповещающих о сейсмических катастрофах, отождествляется шкала магнитуд (Рихтера шкала (см. РИХТЕРА ШКАЛА)) и сейсмическая шкала (см. СЕЙСМИЧЕСКАЯ ШКАЛА) интенсивности, измеряемая в сейсмических баллах, т. к. журналисты, сообщающие о 12 баллах «по шкале Рихтера», путают магнитуду с интенсивностью. Интенсивность тем больше, чем ближе очаг расположен к поверхности, так, напр., если очаг землетрясения с магнитудой, равной 8, находится на глубине 10 км, то на поверхности интенсивность составит 11-12 баллов; при той же магнитуде, но на глубине 40-50 км воздействие на поверхности уменьшается до 9-10 баллов.

Сейсмические шкалы

Как далеко распространяется влияние землетрясений?

Сейсмические движения сложны, но поддаются классификации. Существует большое число сейсмических шкал, которые можно свести к трем основным группам. В России применяется наиболее широко используемая в мире 12-балльная шкала МSK-64 (Медведева-Шпонхойера-Карника), восходящая к шкале Меркали-Канкани (1902), в странах Латинской Америки принята 10-балльная шкала Росси-Фореля (1883), в Японии - 7-балльная шкала. Оценка интенсивности, в основу которой положены бытовые последствия землетрясения, легко различаемые даже неопытным наблюдателем, в сейсмических шкалах разных стран различна. Напр., в Австралии одну из степеней сотрясения сравнивают с тем «как лошадь трется о столб веранды», в Европе такой же сейсмический эффект описывается так - «начинают звонить колокола», в Японии фигурирует «опрокинутый каменный фонарик». В наиболее простом и удобном виде ощущения и наблюдения представлены в схематизированной краткой описательной шкале (вариант MSK), которой может пользоваться каждый.

Балл - Проявление на поверхности

1 - Не ощущается никем, регистрируется только сейсмическими приборами

2 - Ощущается иногда людьми, находящимися в спокойном состоянии

3 - Ощущается немногими, более сильно проявляется в помещении на верхних этажах

4 - Ощущается многими (особенно в помещении), в ночное время некоторые просыпаются. Возможен звон посуды, дребезжание стекол, хлопки дверей

5 - Ощущается почти всеми, многие ночью просыпаются. Качание висячих предметов, трещины в оконных стеклах и штукатурке

6 - Ощущается всеми, осыпается штукатурка, легкие разрушения зданий

7 - Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах. Толчки ощущаются в автомобилях

8 - Большие трещины в стенах, падение труб, памятников. Трещины на крутых склонах и на сырой почве

9 - Обрушение стен, перекрытий кровли в некоторых зданиях, разрывы подземных трубопроводов

10 - Обвалы многих зданий, искривление железнодорожных рельсов. Оползни, обвалы, трещины (до 1 м) в грунте

11 - Многочисленные широкие трещины в земле, обвалы в горах, обрушение мостов, только немногие каменные здания сохраняют устойчивость

12 - Значительные изменения рельефа, отклонение течения рек, предметы подбрасываются в воздух, тотальное разрушение сооружений

Как далеко распространяется влияние землетрясений?

Сильные землетрясения могут ощущаться на расстоянии тысячи и более километров. Так в асейсмичной Москве время от времени наблюдаются толчки интенсивностью до 3 баллов, служащие «эхом» катастрофических карпатских землетрясений в горах Вранча в Румынии, эти же землетрясения в близкой к Румынии Молдавии ощущаются как 7-8-балльные.

Длительность землетрясений

Продолжительность землетрясений различна, часто число подземных толчков образует рой землетрясений, включающих предшествующие (форшоки) и последующие (афтершоки) толчки. Распределение наиболее сильного толчка (главного землетрясения) внутри роя носит случайный характер. Магнитуда сильнейшего афтершока меньше на 1,2, чем у основного толчка, эти афтершоки сопровождаются своими вторичными сериями последующих толчков. Напр., землетрясение, происшедшее на о. Лисса в Средиземном м., длилось три года, общее число толчков за период 1870-73 составило 86 тысяч.

Катастрофические землетрясения

Из огромного числа происходящих ежегодно землетрясений, только одно имеет магнитуду равную или более 8, десять - 7-7,9, сто - 6-6,9. Всякое землетрясение с магнитудой св. 7 может стать крупной катастрофой. Однако оно может остаться и незамеченным, если произойдет в пустынном районе. Так, грандиозная природная катастрофа - Гоби-Алтайское землетрясение (1957; магнитуда 8,5, интенсивность 11-12 баллов) - остается почти не изученной, хотя из-за огромной силы, малой глубины очага и отсутствия растительного покрова это землетрясение оставило на поверхности наиболее полную и многообразную картину (возникли 2 озера, мгновенно образовался огромный надвиг (см. НАДВИГ) в виде каменной волны высотой до 10 м, максимальное смещение по сбросу достигло 300 м и т. п.). Территория шириной 50-100 км и длиной 500 км (как Дания или Голландия) была полностью разрушена. Если бы это землетрясение произошло в густонаселенном районе, число жертв могло измеряться миллионами. Последствия одного из самых сильных землетрясений (магнитуда могла составлять 9), произошедшего в старейшем районе Европы - Лиссабоне - в 1755 и захватившего территорию свыше 2,5 млн. км2, были столь грандиозны (погибло 50 тыс. из 230 тыс. горожан, в гавани выросла скала, прибрежное дно стало сушей, изменилось очертание побережья Португалии) и так поразили европейцев, что Вольтер откликнулся на него «Поэмой о гибели Лиссабона» (1756, русский перевод 1763). По-видимому, впечатление от этой катастрофы было столь сильным, что Вольтер в поэме оспаривал учение о предустановленной мировой гармонии. Сильные землетрясения, как бы они ни были редки, никогда не оставляют современников равнодушными. Так, в трагедии У. Шекспира «Ромео и Джульетта» (1595) кормилица вспоминает землетрясение 1580, которое, судя по всему, пережил сам автор.

Почему люди гибнут при землетрясениях

Если землетрясения происходят в море, то они могут вызвать разрушительные волны - цунами (см. ЦУНАМИ), наиболее часто опустошающие побережья Тихого океана, как это произошло в 1933 в Японии и в 1952 на Камчатке.

Общее число жертв землетрясений на планете за последние 500 лет составило около 5 млн. чел., почти половина из них приходится на Китай. Так в 1556 в китайской пров. Шэньси при землетрясении с магнитудой 8,1 погибло 830 тыс. чел., в 1976 в районе Таншан к востоку от Пекина землетрясение с магнитудой 7,8 вызвало гибель 240 тыс. чел. по официальным китайским данным (по данным американских сейсмологов до 1 млн. чел.). Исключительно тяжелые последствия связаны также с землетрясениями в 1737 в Калькутте (Индия), когда погибло 300 тыс. чел., в 1908 в Мессине (Италия) - 120 тыс. чел., в 1923 в Токио - 143 тыс. чел.

Большие потери при землетрясениях обычно связаны с высокой плотностью населения, примитивными методами строительства, особенно характерными для бедных районов, при этом совсем не обязательно, чтобы землетрясение было сильным (напр., в 1960 в результате сейсмического толчка с магнитудой 5,8 погибло до 15 тыс. человек в Агадире, Марокко). Естественные явления - оползни (см. ОПОЛЗНИ), трещины играют меньшую роль. Катастрофические последствия землетрясения можно предотвратить, улучшив качество построек, т. к. большая часть людей гибнет под их обломками. Полезно также воспользоваться советом - во время землетрясения не выбегать на улицу, а лучше укрыться в дверном проеме или под крепкой плитой или доской (столом), способных выдержать вес обрушивающегося груза.

Прогноз и районирование землетрясений

Задача прогноза землетрясений, ведущегося на основе наблюдений за предвестниками (предсказание не только места, но, самое главное, времени сейсмического события), далека от своего решения, т. к. ни один из предвестников нельзя считать надежным. Известны единичные случаи исключительно удачного своевременного прогноза, напр., в 1975 в Китае очень точно было предсказано землетрясение с магнитудой 7,3. В сейсмоопасных районах важную роль играет возведение сейсмостойких сооружений (см. Антисейсмическое строительство (см. АНТИСЕЙСМИЧЕСКОЕ СТРОИТЕЛЬСТВО)). Деление территории по степени потенциальной сейсмической опасности входит в задачу сейсмического районирования (см. СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ). Оно основано на использовании исторических данных (о повторяемости сейсмических событий, их силе) и инструментальных наблюдений за землетрясениями, геолого-географическом картировании и сведениях о движении земной коры. Районирование территории связано и с проблемой страхования от землетрясений.

Сейсмограф

Впервые инструментальные наблюдения появились в Китае, где в 132 Чан Хен изобрел сейсмоскоп, представлявший собой искусно сделанный сосуд. На внешней стороне сосуда, с размещенным внутри маятником, по кругу были выгравированы головы драконов, держащих в пасти шарики. При качании маятника от землетрясения один или несколько шариков выпадали в открытые рты лягушек, размещенных у основания сосудов таким образом, чтобы лягушки могли их проглотить. Современный сейсмограф (см. СЕЙСМОГРАФ)представляет собой комплект приборов, регистрирующих колебания грунта при землетрясении и преобразующих их в электрический сигнал, записываемый на сейсмограммах (см. СЕЙСМОГРАММА) в аналоговой и цифровой форме. Однако, по-прежнему, основным чувствительным элементом служит маятник с грузом.

Сейсмическая служба

Постоянные наблюдения за землетрясениями осуществляются сейсмической службой (см. СЕЙСМИЧЕСКАЯ СЛУЖБА). Современная мировая сеть насчитывает св. 2000 стационарных сейсмических станций, данные которых систематически публикуются в сейсмологических бюллетенях и каталогах. Кроме стационарных станций используются экспедиционные сейсмографы, в т. ч. устанавливаемые на дне океанов. Экспедиционные сейсмографы засылались также на Луну (где 5 сейсмографов ежегодно регистрируют до 3000 лунотрясений), а также на Марс и Венеру.

Антропогенные землетрясения

В кон. 20 в. техногенная деятельность человека, принявшая планетарный масштаб, стала причиной наведенной (искусственно вызываемой) сейсмичности, возникающей, напр., при ядерных взрывах (испытания на полигоне Невада инициировали тысячи сейсмических толчков), при строительстве водохранилищ, заполнение которых иногда провоцирует сильные землетрясения. Так случилось в Индии, когда сооружение водохранилища Койна вызвало 8-балльное землетрясение, при котором погибло 177 человек.

Изучение землетрясений

Изучением землетрясений занимается сейсмология (см. СЕЙСМОЛОГИЯ). Сейсмические волны, возникающие при землетрясениях, используются также для изучения внутреннего строения Земли (см. ЗЕМЛЯ (планета)), достижения в этой области послужили основой для развития методов сейсмической разведки (см. СЕЙСМИЧЕСКАЯ РАЗВЕДКА).

Наблюдения за землетрясениями ведутся с древнейших времен. Детальные исторические описания, надежно свидетельствующие о землетрясениях с сер. 1 тыс. до н. э., даны японцами. Большое внимание сейсмичности уделяли и античные ученые - Аристотель (см. АРИСТОТЕЛЬ)и др. Систематические инструментальные наблюдения, начатые во 2-ой пол. 19 в., привели к выделению сейсмологии в самостоятельную науку (Б. Б. Голицын (см. ГОЛИЦЫН Борис Борисович), Э. Вихерт (см. ВИХЕРТ Эмиль), Б. Гутенберг (см. ГУТЕНБЕРГ Бено), А. Мохоровичич, Ф. Омори и др.).

Большой энциклопедический словарь

ЗЕМЛЕТРЯСЕНИЕ - подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре и верхней мантии и передающиеся на большие расстояния. Общие сведения Сильные землетрясения носят катастрофический характер, уступая по числу жертв только тайфунам и значительно (в десятки раз) опережая извержения вулканов. Материальный ущерб одного разрушительного землетрясения может составлять сотни миллионов долларов. число слабых землетрясений гораздо больше, чем сильных. Так, из сотни тысяч землетрясений, ежегодно происходящих на Земле, только единицы катастрофических. они высвобождают около 1020 Дж потенциальной сейсмической энергии, что составляет всего 0,01% тепловой энергии Земли, излучаемой в космическое пространство. Где и почему происходят землетрясения Территориальное Распределение землетрясений неравномерно. Оно определяется перемещением и взаимодействием литосферных плит. Главный сейсмический пояс, в котором выделяется до 80% всей сейсмической энергии, расположен в Тихом океане в районе глубоководных желобов, где происходит подвигание холодных литосферных плит под континент. Остальная энергия выделяется в Евроазиатском складчатом поясе в местах столкновения Евроазиатской плиты с Индийской и Африканской плитами и в районах срединно-океанических хребтов в условиях растяжения литосферы (см. Рифтов мировая система). Параметры землетрясений Очаги землетрясений располагаются на глубинах до 700 км, но большая часть (3/4) сейсмической энергии выделяется в очагах, находящихся на глубине до 70 км. Размер очага катастрофических землетрясений может достигать 100x1000 км. Его положение и место начала перемещения масс (гипоцентр) определяют путем регистрации сейсмических волн, возникающих при землетрясениях (у слабых землетрясений очаг и гипоцентр совпадают).

Проекция гипоцентра на земную поверхность именуется эпицентром. Вокруг него располагается область наибольших разрушений (эпицентральная, или плейстосейстовая, область). Интенсивность землетрясений Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения, служащей мерой его энергии. Максимальное известное значение магнитуды приближается к 9. Магнитуда связана с полной энергией землетрясения, но эта зависимость не прямая, а логарифмическая, с увеличением магнитуды на единицу энергия возрастает в 100 раз, т. е. при толчке с магнитудой 6 высвобождается в 100 раз больше энергии, чем при магнитуде 5, и в 10 000 больше, чем при магнитуде 4. Часто в средствах массовой информации, оповещающих о сейсмических катастрофах, отождествляется шкала магнитуд (Рихтера шкала) и сейсмическая шкала интенсивности, измеряемая в сейсмических баллах, т. к. журналисты, сообщающие о 12 баллах "по шкале Рихтера", путают магнитуду с интенсивностью. Интенсивность тем больше, чем ближе очаг расположен к поверхности, так, напр., если очаг землетрясения с магнитудой, равной 8, находится на глубине 10 км, то на поверхности интенсивность составит 11-12 баллов; при той же магнитуде, но на глубине 40-50 км воздействие на поверхности уменьшается до 9-10 баллов. Сейсмические шкалы Сейсмические движения сложны, но поддаются классификации. Существует большое число сейсмических шкал, которые можно свести к трем основным группам. В России применяется наиболее широко используемая в мире 12-балльная шкала МSK-64 (Медведева-Шпонхойера-Карника), восходящая к шкале Меркали-Канкани (1902), в странах Латинской Америки принята 10-балльная шкала Росси-Фореля (1883), в Японии - 7-балльная шкала. Оценка интенсивности, в основу которой положены бытовые последствия землетрясения, легко различаемые даже неопытным наблюдателем, в сейсмических шкалах разных стран различна. Напр., в Австралии одну из степеней сотрясения сравнивают с тем "как лошадь трется о столб веранды", в Европе такой же сейсмический эффект описывается так - "начинают звонить колокола", в Японии фигурирует "опрокинутый каменный фонарик". В наиболее простом и удобном виде ощущения и наблюдения представлены в схематизированной краткой описательной шкале (вариант MSK), которой может пользоваться каждый. Балл Проявление на поверхности 1 Не ощущается никем, регистрируется только сейсмическими приборами 2 Ощущается иногда людьми, находящимися в спокойном состоянии 3 Ощущается немногими, более сильно проявляется в помещении на верхних этажах 4 Ощущается многими (особенно в помещении), в ночное время некоторые просыпаются. Возможен звон посуды, дребезжание стекол, хлопки дверей 5 Ощущается почти всеми, многие ночью просыпаются. Качание висячих предметов, трещины в оконных стеклах и штукатурке 6 Ощущается всеми, осыпается штукатурка, легкие разрушения зданий 7 Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах. Толчки ощущаются в автомобилях 8 Большие трещины в стенах, падение труб, памятников. Трещины на крутых склонах и на сырой почве 9 Обрушение стен, перекрытий кровли в некоторых зданиях, разрывы подземных трубопроводов 10 Обвалы многих зданий, искривление железнодорожных рельсов. оползни, обвалы, трещины (до 1 м) в грунте 11 Многочисленные широкие трещины в земле, обвалы в горах, обрушение мостов, только немногие каменные здания сохраняют устойчивость 12 Значительные изменения рельефа, отклонение течения рек, предметы подбрасываются в воздух, тотальное разрушение сооружений Как далеко распространяется влияние землетрясений Сильные землетрясения могут ощущаться на расстоянии тысячи и более километров. Так в асейсмичной Москве время от времени наблюдаются толчки интенсивностью до 3 баллов, служащие "эхом" катастрофических карпатских землетрясений в горах Вранча в Румынии, эти же землетрясения в близкой к Румынии Молдавии ощущаются как 7-8-балльные. Длительность землетрясений Продолжительность землетрясений различна, часто число подземных толчков образует рой землетрясений, включающих предшествующие (форшоки) и последующие (афтершоки) толчки. Распределение наиболее сильного толчка (главного землетрясения) внутри роя носит случайный характер. Магнитуда сильнейшего афтершока меньше на 1,2, чем у основного толчка, эти афтершоки сопровождаются своими вторичными сериями последующих толчков. Напр., землетрясение, происшедшее на о. Лисса в Средиземном м., длилось три года, общее число толчков за период 1870-73 составило 86 тысяч. Катастрофические землетрясения Из огромного числа происходящих ежегодно землетрясений, только одно имеет магнитуду равную или более 8, десять - 7-7,9, сто - 6-6,9. Всякое землетрясение с магнитудой св. 7 может стать крупной катастрофой. Однако оно может остаться и незамеченным, если произойдет в пустынном районе. Так, грандиозная природная катастрофа - Гоби-Алтайское землетрясение (1957; магнитуда 8,5, интенсивность 11-12 баллов) - остается почти не изученной, хотя из-за огромной силы, малой глубины очага и отсутствия растительного покрова это землетрясение оставило на поверхности наиболее полную и многообразную картину (возникли 2 озера, мгновенно образовался огромный надвиг в виде каменной волны высотой до 10 м, максимальное смещение по сбросу достигло 300 м и т. п.). Территория шириной 50-100 км и длиной 500 км (как Дания или Голландия) была полностью разрушена. Если бы это землетрясение произошло в густонаселенном районе, число жертв могло измеряться миллионами. Последствия одного из самых сильных землетрясений (магнитуда могла составлять 9), произошедшего в старейшем районе Европы - Лиссабоне - в 1755 и захватившего территорию свыше 2,5 млн. км², были столь грандиозны (погибло 50 тыс. из 230 тыс. горожан, в гавани выросла скала, прибрежное дно стало сушей, изменилось очертание побережья Португалии) и так поразили европейцев, что Вольтер откликнулся на него "Поэмой о гибели Лиссабона" (1756, русский перевод 1763). По-видимому, впечатление от этой катастрофы было столь сильным, что Вольтер в поэме оспаривал учение о предустановленной мировой гармонии. Сильные землетрясения, как бы они ни были редки, никогда не оставляют современников равнодушными. Так, в трагедии У. Шекспира "Ромео и Джульетта" (1595) кормилица вспоминает землетрясение 1580, которое, судя по всему, пережил сам автор. Почему люди гибнут при землетрясениях Если землетрясения происходят в море, то они могут вызвать разрушительные волны - цунами, наиболее часто опустошающие побережья Тихого океана, как это произошло в 1933 в Японии и в 1952 на Камчатке. Общее число жертв землетрясений на планете за последние 500 лет составило около 5 млн. чел., почти половина из них приходится на Китай. Так в 1556 в китайской пров. Шэньси при землетрясении с магнитудой 8,1 погибло 830 тыс. чел., в 1976 в районе Таншан к востоку от Пекина землетрясение с магнитудой 7,8 вызвало гибель 240 тыс. чел. по официальным китайским данным (по данным американских сейсмологов до 1 млн. чел.). Исключительно тяжелые последствия связаны также с землетрясениями в 1737 в Калькутте (Индия), когда погибло 300 тыс. чел., в 1908 в Мессине (Италия) - 120 тыс. чел., в 1923 в Токио - 143 тыс. чел. Большие потери при землетрясениях обычно связаны с высокой плотностью населения, примитивными методами строительства, особенно характерными для бедных районов, при этом совсем не обязательно, чтобы землетрясение было сильным (напр., в 1960 в результате сейсмического толчка с магнитудой 5,8 погибло до 15 тыс. человек в Агадире, Марокко). Естественные явления - оползни, трещины играют меньшую роль. Катастрофические последствия землетрясения можно предотвратить, улучшив качество построек, т. к. большая часть людей гибнет под их обломками. Полезно также воспользоваться советом - во время землетрясения не выбегать на улицу , а лучше укрыться в дверном проеме или под крепкой плитой или доской (столом), способных выдержать вес обрушивающегося груза. Прогноз и районирование землетрясений Задача прогноза землетрясений, ведущегося на основе наблюдений за предвестниками (предсказание не только места, но, самое главное, времени сейсмического события), далека от своего решения, т. к. ни один из предвестников нельзя считать надежным. Известны единичные случаи исключительно удачного своевременного прогноза, напр., в 1975 в Китае очень точно было предсказано землетрясение с магнитудой 7,3. В сейсмоопасных районах важную роль играет возведение сейсмостойких сооружений (см. Антисейсмическое строительство). Деление территории по степени потенциальной сейсмической опасности входит в задачу сейсмического районирования. Оно основано на использовании исторических данных (о повторяемости сейсмических событий, их силе) и инструментальных наблюдений за землетрясениями, геолого-географическом картировании и сведениях о движении земной коры. Районирование территории связано и с проблемой страхования от землетрясений. сейсмограф Впервые инструментальные наблюдения появились в Китае, где в 132 Чан Хен изобрел сейсмоскоп, представлявший собой искусно сделанный сосуд. На внешней стороне сосуда, с размещенным внутри маятником, по кругу были выгравированы головы драконов, держащих в пасти шарики. При качании маятника от землетрясения один или несколько шариков выпадали в открытые рты лягушек, размещенных у основания сосудов таким образом, чтобы лягушки могли их проглотить. Современный сейсмограф представляет собой комплект приборов, регистрирующих колебания грунта при землетрясении и преобразующих их в электрический сигнал, записываемый на сейсмограммах в аналоговой и цифровой форме. Однако, по-прежнему, основным чувствительным элементом служит маятник с грузом. Сейсмическая служба Постоянные наблюдения за землетрясениями осуществляются сейсмической службой. Современная мировая сеть насчитывает св. 2000 стационарных сейсмических станций, данные которых систематически публикуются в сейсмологических бюллетенях и каталогах. Кроме стационарных станций используются экспедиционные сейсмографы, в т. ч. устанавливаемые на дне океанов. Экспедиционные сейсмографы засылались также на Луну (где 5 сейсмографов ежегодно регистрируют до 3000 лунотрясений), а также на Марс и Венеру. Антропогенные землетрясения В кон. 20 в. техногенная деятельность человека, принявшая планетарный масштаб, стала причиной наведенной (искусственно вызываемой) сейсмичности, возникающей, напр., при ядерных взрывах (испытания на полигоне Невада инициировали тысячи сейсмических толчков), при строительстве водохранилищ, заполнение которых иногда провоцирует сильные землетрясения. Так случилось в Индии, когда сооружение водохранилища Койна вызвало 8-балльное землетрясение, при котором погибло 177 человек. Изучение землетрясений Изучением землетрясений занимается сейсмология. Сейсмические волны, возникающие при землетрясениях, используются также для изучения внутреннего строения Земли, достижения в этой области послужили основой для развития методов сейсмической разведки. Наблюдения за землетрясениями ведутся с древнейших времен. Детальные исторические описания, надежно свидетельствующие о землетрясениях с сер. 1 тыс. до н. э., даны японцами. Большое внимание сейсмичности уделяли и античные ученые - Аристотель и др. Систематические инструментальные наблюдения, начатые во 2-ой пол. 19 в., привели к выделению сейсмологии в самостоятельную науку (Б. Б. Голицын, Э. Вихерт, Б. Гутенберг, А. Мохоровичич, Ф. Омори и др.).

Полезные сервисы

пиранези джованни баттиста

Энциклопедический словарь

Пиране́зи Джованни Баттиста (Piranesi) (1720-1778), итальянский гравёр. Графические «архитектурные фантазии» Пиранези поражают грандиозностью пространственных построений, драматическими светотеневыми контрастами (цикл «Виды Рима», издан в 1748-1788).

* * *

ПИРАНЕЗИ Джованни Баттиста - ПИРАНЕ́ЗИ (Piranesi) Джованни Баттиста (1720-78), итальянский гравер. Графические «архитектурные фантазии» Пиранези поражают грандиозностью пространственных построений, драматическими светотеневыми контрастами (цикл «Виды Рима», издан в 1748-88).

* * *

ПИРАНЕ́ЗИ (Piranesi) Джованни Баттиста (4 октября1720, Мольяно, Венето - 9 ноября 1778, Рим), итальянский художник, гравер и архитектор.

Увлечение архитектурой. Первые гравюры

Родился в местечке Мольяно, недалеко от Венеции, в семье каменщика Анджело Пиранези. Благодаря своему брату Анджело, который был монахом картезианского монастыря и очень образованным человеком, рано познакомился с историей Древнего Рима и увлекся его архитектурой. Отец отдал его в обучение Маттео Луккези - инженеру водного магистрата и брату матери Джованни. В круг обязанностей юного Пиранези входило наблюдение за работами в окрестностях Венеции, зарисовки и обмеры. Здесь он познакомился с монументальным зодчеством, полюбил ритмы мощных инженерных конструкций, грандиозных мостов и увлекся творчеством Андреа Палладио (см. ПАЛЛАДИО Андреа) - гениального архитектора позднего итальянского Возрождения (см. ВОЗРОЖДЕНИЕ (Ренессанс)). Рисованию и законам перспективы его учил известный венецианский архитектор Карло Дзукки. В 1743 Пиранези частично издает свой первый цикл гравюр под названием «Первая часть архитектурных и перспективных рисунков, составленных и гравированных Джованни Баттиста Пиранези, венецианским архитектором».

Римский период

В 1740 Венецианская республика решила отправить посольство к папе, и Пиранези был зачислен в свиту посла в качестве рисовальщика. В Риме он вошел в круг художников и архитекторов - пансионеров Французской академии, научился у них, по словам Леграна, одного из биографов Пиранези, «широкому легкому рисунку и головокружительному искусству схватывать глазом и передавать с чувством то биение жизни, без которого все вокруг нас холодно и бесплодно». В течение трех лет, проведенных в Риме, Пиранези работал как театральный декоратор и одновременно изучал архитектуру древности, Ренессанса и барокко (см. БАРОККО), штудируя теоретические труды и делая бесчисленные зарисовки памятников. К концу этого периода относятся его первые опыты в гравюре.

Это был век так называемого «бумажного зодчества»: иллюзорных пейзажей, воздушных замков, фантастических перспективных композиций. Безграничные пространства с нереальной архитектурой, поражающей воображение монументальностью и невероятными ракурсами, увлекли молодого Пиранези. С этого времени в его работах появляются особые приемы гипертрофии форм и светотени, которые станут отличительной особенностью его зрелого стиля. Пиранези часто изображает пышные интерьеры, насыщенные световыми контрастами, сильные ракурсы пространства, немыслимые архитектурные формы и конструкции.

«Тюрьмы»

В конце 1743 Пиранези возвращается на родину и по дороге, проезжая через Венецию, берет несколько уроков рисунка и гравирования у Дж. Б. Тьеполо (см. ТЬЕПОЛО Джованни Баттиста), по рекомендации которого был приглашен для исполнения декоративных работ в один из венецианских дворцов. В это время он делает первые наброски своих будущих знаменитых серий «Тюрьмы» и «Фантазии» («Каприччи»). «Фантастические композиции тюрем» были впервые изданы в 1745 и переизданы в 1760 с 16 переработанными композициями под названием «Тюрьмы, сочиненные Джованни Баттиста Пиранези, венецианским архитектором». Эта серия отражает зрелый почерк мастера. Офорты поразительны свободным и виртуозным штрихом, изощренностью и композиционным мастерством: фантастические переплетения сводов, арок, лестниц, колонн, кронштейнов, карнизов, рустов; мрачные машины, рычаги и цепи, заполняющие это пространство, создают ощущение чудовищного леса, в котором затеряны ничтожные фигурки людей, бессильные перед мощью грозного, обрушивающегося на них пространства. Необычайный размах архитектурного воображения позволяет назвать Пиранези предшественником романтизма (см. РОМАНТИЗМ). Черты, характерные для романтического мировоззрения можно обнаружить также в интересе Пиранези к эффектам лунного освещения и мотивам таинственных, бесформенных необычных руин, которые столь часто привлекали внимание художника.

Живописная сила тона и монументальность форм - отличительные черты офортов Пиранези. В больших по размеру листах, требующих рассмотрения на расстоянии, Пиранези располагает площади, уголки города, здания, арки, мосты, развалины, гробницы, лестницы, вазы, канделябры, фрагменты колонн и статуй, орнаменты. С особенной любовью изучает Пиранези камень, его поверхность, окраску, различие пород, следы времени на нем. Графические приемы Пиранези необычайно разнообразны. Мастерски используя многоступенчатое травление, он работает линиями, струящимися во всю глубину листа, сменяя их точками, царапинами, крючками, захлестывающимися петлями, извивами, создавая широкие теневые зоны и сильные световые эффекты.

«Римские древности»

Динамическая насыщенность «Тюрем» - дань увлечению барочными мотивами - постепенно уступает в его работах место спокойно-монументальным композициям «Римских ведут» - обширного собрания офортов, над которым Пиранези работал в течение многих лет. В 1753 Пиранези издает серию «Трофеи Октавиана Августа», и уже с 1752 начинает работу над большим проектом «Римские древности» (полностью вышел в свет в 1756). Издание состояло из четырех томов, каждый из которых содержал большое количество до того не исследованных материалов. Эти гравюры Пиранези стали серьезным вкладом в историю архитектуры античного Рима. Весь этот грандиозный труд был выгравирован на 224 досках и выполнен мастером за неполных пять лет. Успех «Римских древностей» был необычайно велик, хотя критики усмотрели в них отступление от норм классической гравюры. Пиранези даже издал в Риме так называемые «Оправдательные письма», в которых отстаивал правоту своих взглядов и метода воспроизведения античных памятников.

Почти сразу после выхода «Римских древностей» Пиранези издает еще два обширных труда: «О великолепии архитектуры римлян», законченный после 1758, и «Марсово поле античного Рима», вышедший в 1762. Следующей крупной работой Пиранези стала серия «Вазы, канделябры, надгробия, саркофаги, треножники, светильники и античные орнаменты», опубликованная лишь в 1778. В этих офортах Пиранези превращается в ученого исследователя предметов античного быта. Впоследствии листы этой серии широко использовались в классицистических композициях.

Одним из лучших творений Пиранези является серия видов храмов Пестума (см. ПЕСТУМ) , законченная им незадолго до смерти. В этих офортах завораживает не только отточенность техники, но и разнообразие точек зрения на архитектуру, эффектные светотеневые решения, и та особая тщательность, с которой выгравирована каждая деталь.

Наследие Пиранези

Значительным в творчестве художника является его теоретическое наследие: сочинения, посвященные архитектуре, и полемика с противниками. Решительный сторонник Витрувия (см. ВИТРУВИЙ), определявшего архитектуру как синтез «прочности, полезности и красоты», Пиранези является одним из родоначальников классицизма (см. КЛАССИЦИЗМ). Возражая против слепого следования канонам, он поддерживал принципы гармонии функционального и эстетического, которые устанавливались им путем тщательнейшего изучения истории и конструкции древних памятников.

Офорты Пиранези составили 28 томов, 1733 доски (Рим, Королевская калькография), вышедшие из его мастерской. Отличаясь грандиозной работоспособностью, он заполнил за свою жизнь больше медных листов, чем все итальянские граверы 18 в. вместе взятые. В тесном сотрудничестве с Пиранези работал его брат Франческо.

В 1765 Пиранези исполнил единственный в своей жизни реальный строительный заказ: декорировал фасад маленькой церкви Санта-Мария на Авентинском холме в Риме. В этой церкви он был погребен в 1778.

Полезные сервисы