Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

дифференциально анализируемый

дифференциально рассмотренный

дифференциально-алгебраический

дифференциально-геометрический

дифференциально-диагностический

дифференциально-психологический

дифференциально-разностный

Орфографический словарь

Синонимы к слову дифференциально-разностный

прил., кол-во синонимов: 1

Морфемно-орфографический словарь

Полезные сервисы

дифференциально-функциональный

дифференциальное исчисление

Энциклопедический словарь

Дифференциа́льное исчисле́ние - раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции у = f(х) называется предел отношения приращения Δу = у1 - у0 функции к приращению Δх = x1 - х0 аргумента при Δх, стремящемся к нулю (если этот предел существует).

Производная обозначается f'(х) или у'; т.о., <a href='/dict/дифференциальное' class='wordLink' target='_blank'>дифференциальное</a> <a href='/dict/исчисление' class='wordLink' target='_blank'>исчисление</a>. Дифференциалом функции у = f(х) называется выражение dy = у´dx, где dx = Δх - приращение аргумента х. Очевидно, что у' = dy/dx. Отношение dy/dx часто употребляют как знак производной. Вычисление производных и дифференциалов называют дифференцированием. Если производная f'(х) имеет, в свою очередь, производную, то её называют второй производной функции f(x) и обозначают f"(х), и т. д. Основные понятия дифференциального исчисления могут быть распространены на случай функций нескольких переменных. Если z = f(х, у) - функция двух переменных х и у, то, зафиксировав для у какое-либо значение, можно дифференцировать z по х; полученная производная <a href='/dict/дифференциальное' class='wordLink' target='_blank'>дифференциальное</a> <a href='/dict/исчисление' class='wordLink' target='_blank'>исчисление</a>называется частной производной z по х. Аналогично определяются частная производная <a href='/dict/дифференциальное' class='wordLink' target='_blank'>дифференциальное</a> <a href='/dict/исчисление' class='wordLink' target='_blank'>исчисление</a>, частные производные высших порядков, частные и полные дифференциалы. Для приложений дифференциального исчисления к геометрии важно, что так называемый угловой коэффициент касательной, то есть тангенс угла α (см. рис.) между осью Ох и касательной к кривой у = f(х) в точке М(х0, у0), равен значению производной при х = х0, то есть f'(х0). В механике скорость прямолинейно движущейся точки можно истолковать как производную пути по времени. Дифференциальное исчисление (как и интегральное исчисление) имеет многочисленные применения.

<a href='/dict/дифференциальное' class='wordLink' target='_blank'>Дифференциальное</a> <a href='/dict/исчисление' class='wordLink' target='_blank'>исчисление</a>.

* * *

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ - ДИФФЕРЕНЦИА́ЛЬНОЕ ИСЧИСЛЕ́НИЕ, раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций.

Производной функции y = f(х) называется предел отношения приращения Dy = y1 - y0 функции к приращению Dx = x1 - x0 аргумента при Dx, стремящемся к нулю (если этот предел существует). Дифференциалом функции y = f(x) называется выражение dy = yўdx, где dx = Dx - приращение аргумента x. Очевидно, что yў = dy/dx. Отношение dy/dx часто употребляют как знак производной. Вычисление производных и дифференциалов называют дифференцированием. Если производная fў(x) имеет, в свою очередь, производную, то ее называют 2-й производной функции f(x) и обозначают fўў(x), и т. д. Основные понятия дифференциального исчисления могут быть распространены на случай функций нескольких переменных. Если z = f(x,y) - функция двух переменных x и y, то, зафиксировав для y какое-либо значение, можно дифференцировать z по x; полученная производная dz/dx = fўx называется частной производной z по x. Аналогично определяются частная производная dz/dy = fўy, частные производные высших порядков, частные и полные дифференциалы.

Для приложений дифференциального исчисления к геометрии важно, что т. н. угловой коэффициент касательной, т. е. тангенс угла a между осью Ox и касательной к кривой y = f(x) в точке M(x0, y0), равен значению производной при x = x0, т. е. fў(x0). В механике скорость прямолинейно движущейся точки можно истолковать как производную пути по времени. Дифференциальное исчисление (как и интегральное исчисление (см. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ)) имеет многочисленные применения.

Большой энциклопедический словарь

ДИФФЕРЕНЦИАЛЬНОЕ исчисление - раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции y = f(х) называется предел отношения приращения ?y = y1 - y0 функции к приращению ?x = x1 - x0 аргумента при ?x, стремящемся к нулю (если этот предел существует). производная обозначается f?(x) или y?; таким образом, Дифференциалом функции y = f(x) называется выражение dy = y?dx, где dx = ?x - приращение аргумента x. Очевидно, что y? = dy/dx. Отношение dy/dx часто употребляют как знак производной.

Вычисление производных и дифференциалов называют дифференцированием. Если производная f?(x) имеет, в свою очередь, производную, то ее называют 2-й производной функции f(x) и обозначают f??(x), и т. д. Основные понятия дифференциального исчисления могут быть распространены на случай функций нескольких переменных. Если z = f(x,y) - функция двух переменных x и y, то, зафиксировав для y какое-либо значение, можно дифференцировать z по x; полученная производная dz/dx = f?x называется частной производной z по x. Аналогично определяются частная производная dz/dy = f?y, частные производные высших порядков, частные и полные дифференциалы. Для приложений дифференциального исчисления к геометрии важно, что т. н. угловой коэффициент касательной, т. е. тангенс угла ? (см. рис.) между осью Ox и касательной к кривой y = f(x) в точке M(x0, y0), равен значению производной при x = x0, т. е. f?(x0). В механике скорость прямолинейно движущейся точки можно истолковать как производную пути по времени. Дифференциальное исчисление (как и интегральное исчисление) имеет многочисленные применения.

Иллюстрированный энциклопедический словарь

<a href='/dict/дифференциальное' class='wordLink' target='_blank'>Дифференциальное</a> <a href='/dict/исчисление' class='wordLink' target='_blank'>исчисление</a>. <a href='/dict/проведение' class='wordLink' target='_blank'>Проведение</a> <a href='/dict/касательной' class='wordLink' target='_blank'>касательной</a> к <a href='/dict/графику' class='wordLink' target='_blank'>графику</a> <a href='/dict/функции' class='wordLink' target='_blank'>функции</a> y=f(x) в <a href='/dict/точке' class='wordLink' target='_blank'>точке</a> M.

Дифференциальное исчисление. Проведение касательной к графику функции y=f(x) в точке M.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции y=f(x) называется предел отношения приращения функции Dy=y1-y0 к приращению аргумента Dx=x1-x0 при Dx, стремящемся к нулю (если этот предел существует). Производная обозначается y'' т.о. y'=lim Dy/Dx при Dx®0. Дифференциалом функции y=f(x) называется выражение dy=y', где dx=y'Dx - приращение аргумента x. Очевидно, что y'=dy/dx. Отношение dy/dx часто употребляют как знак производной. Вычисление производных и дифференциалов называется дифференцированием. Если производная f' (x) имеет, в свою очередь, производную, то ее называют 2-й производной функции f (x) и обозначают f" (x), и т.д. Основные понятия дифференциального исчисления могут быть распространены на случай функций нескольких переменных. Для приложений дифференциального исчисления к геометрии важно, что так называемый угловой коэффициент касательной, т.е. тангенс угла a между осью Ox и касательной к кривой y=f(x) в точке M(x0, y0), равен значению производной при x=x0, т.е. f' (x0). С точки зрения механики производную от пути по времени можно истолковать как скорость прямолинейно движущейся точки. Дифференциальное исчисление (как и интегральное исчисление) имеет многочисленные применения.

Словарь иностранных слов

Полезные сервисы

дифференциальное счисление

дифференциальное уравнение

Энциклопедический словарь

Дифференциа́льное уравне́ние - уравнение, связывающее искомую функцию, её производные (или дифференциалы) и независимые переменные, например dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальном уравнении последнее обращается в тождество; в приведённом примере решением является всякая функция вида у = х2 + С, где С - любая постоянная. Процесс решения дифференциального уравнения называется его интегрированием. При помощи дифференциального уравнения записываются многие реальные процессы, поэтому дифференциальные уравнения имеют исключительно важное значение для естествознания и техники.

* * *

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ - ДИФФЕРЕНЦИА́ЛЬНОЕ УРАВНЕ́НИЕ, уравнение, связывающее искомую функцию, ее производные (или дифференциалы) и независимые переменные, напр. dy = 2xdx. Решением или интегралом дифференциального уравнения называется функция, при подстановке которой в дифференциальное уравнение последнее обращается в тождество; в приведенном примере решением является всякая функция вида y = x2 + C, где С - любая постоянная. Процесс решения дифференциального уравнения называется его интегрированием. При помощи дифференциального уравнения записываются многие реальные процессы, поэтому дифференциальные уравнения имеют исключительно важное значение для естествознания и техники.

Большой энциклопедический словарь

Полезные сервисы