Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

бора нитрид пиролитический

Энциклопедический словарь

БОРА НИТРИД ПИРОЛИТИЧЕСКИЙ - БО́РА НИТРИ́Д ПИРОЛИТИ́ЧЕСКИЙ, p-BN, высокотемпературный поликристаллический диэлектрик (см. ДИЭЛЕКТРИКИ). Относится к беспористым газонепроницаемым материалам, обладает анизотропией физико-механических характеристик. Материал отличается высокой термостабильностью: в инертной атмосфере или вакууме начинает испаряться с диссоциацией при температуре выше 2073 К, плавится под давлением азота при температуре 3283 К. Плотность (1,85-2,24) г/см3, термический коэффициент линейного расширения в интервале 293-1173К -(2,0-4,0).10-6К-1, удельное электрическое сопротивление 1.1015Ом.м, электрическая прочность (45-100).103кВ/м.

Пиролитический нитрид бора химически инертен, стоек к действию металлов и сплавов при высоких температурах.

Высокие диэлектрические свойства и радиопрозрачность дают возможность использовать изделия из p-BN в электротехнике, электронной, полупроводниковой и смежных с ними областях техники. Пиролитический нитрид бора используется в качестве материала для тиглей, применяемых в синтезе и выращивании полупроводников, испарительных ячеек в установках молекулярно-пучковой эпитаксии и источников примеси бора в производстве интегральных микросхем, окон вывода СВЧ-энергии, в качестве электроизоляционных и диэлектрических элементов мощных конденсаторов.

Полезные сервисы

бора нитрид

Энциклопедический словарь

Бо́ра нитри́д - BN, кристаллы. Белая модификация применяется для получения высокоогнеупорных материалов, армирующих волокон, как полупроводниковый материал, сухая смазка для подшипников, поглотитель нейтронов в ядерных реакторах. Чёрная модификация (боразон) с tпл 3200°C по твёрдости близка к алмазу; используется как абразивный материал.

* * *

БОРА НИТРИД - БО́РА НИТРИ́Д, BN, кристаллический, имеет три модификации: гексагональную a-BN , кубическую b-BN (боразон) и ромбоэдрическую g-BN.

Гексагональный нитрид бора альфа-BN

a-BN кристаллизируется в гексагональной структуре, аналогичной структуре графита (см. Структурные типы кристаллов (см. СТРУКТУРНЫЕ ТИПЫ КРИСТАЛЛОВ)). Кристаллическая структура a-BN состоит из графитоподобных сеток, расположенных, в отличие от структуры графита точно одна под другой с чередованием атомов бора и азота по оси Z. Расстояние между сетками в решетке нитрида бора равно 3,34А, т. е. меньше, чем у графита (3,40А), что свидетельствует о более прочной связи между сетками в структуре нитрида бора по сравнению с графитом (см. ГРАФИТ). Из-за близости структуры и некоторых физических свойств нитрида бора и графита a-BN часто называют «белым графитом». В отличие от графита отдельные кристаллики BN прозрачны.

Белый, похожий на тальк порошок a-BN, получают из элементов при температурах выше 2000 °С. Нитрид бора может быть получен также прокаливанием бора (или B2O3) в атмосфере аммиака или при нагревании смеси B2O3 с восстановителями (углем, магнием) в атмосфере аммиака.

Температура плавления a-BN tпл 3000 °С (под давлением азота). Плотность частиц порошка равна 2,3 г/см3. По смазочным свойствам a-BN превосходит графит. В спрессованном состоянии нитрид бора обладает полупроводниковыми свойствамишириной запрещенной зоны около 3,7 эВ), а при наличии небольшого количества примесей обладает люминесцентными свойствами. Лучшими активаторными свойствами в BN обладают С и B2O3. Углерод при низких концентрациях вызывает голубое, а при высоких - желтое свечение. Он хорошо актививизируется как люминофор (см. ЛЮМИНОФОРЫ) при возбуждении светом, ультрафиолетовыми, рентгеновскими лучами, a-частицами и электронами.

Нитрид бора при комнатной температуре химически инертен, не реагирует с кислородом или хлором, кислотами или щелочами. Кислород и хлор начинают действовать на него при температурах выше 700 °С. Реагирует с фтором (образуя BF3 и N2) и с HF (образуя NH4BF4); горячие растворы щелочей разлагают его с выделением NH3.

При температуре выше 1000°С начинает разлагаться на элементы.

Алмазоподобная форма бета-BN (боразон)

При давлении выше 62 тыс атм и температурах выше 1350 °С происходит полиморфное превращение графитоподобной гексагональной b-BN модификации в кубическую алмазоподобную b-BN структуру. Хорошими катализаторами такого превращения являются щелочные и щелочноземельные металлы. Как и в случае перехода графит-алмаз, полиморфное превращение сопровождается резким изменением свойств нитрида бора. Боразон кристаллизуется в структуре сфалерита с периодом решетки 3,615=0,001 А при 25 °С. (При определенном сочетании температур и давления может произойти образование кристаллов нитрида бора в структуре вюрцита.)

Кристаллы боразона, полученные при аллотропическом переходе BN (гекс.) - BN (куб.) при высоких давлениях, имеют вид полиэдров, обычно тетраэдров или октаэдров. Они прозрачны, а их цвет зависит от наличия и типа примесей. Размер образующихся кристаллов боразона зависит от давления и температуры процесса. Избыток бора в реакционной смеси придавал полученным кристаллам боразона коричневый или черный цвет, бериллий - синий, сера - желтый. Желтую окраску имеют также кристаллы боразона, полученного из смеси гексагонального нитрида бора с нитридом лития. Были получены также красные, белые и бесцветные кристаллы. В зависимости от вида и концентрации примесей боразон имеет различный тип проводимости, а величина удельного сопротивления лежит в пределах от 104 до 109 Ом.см.

Плотность боразона равна 3,45 г/см3. Твердость его при оценке по шкале Мооса (см. МООСА ШКАЛА) соизмерима с твердостью алмаза (около 10 баллов), однако боразон сильно превосходит алмаз по термостойкости (до 2000 °С) и ударной прочности.

Химическая стойкость боразона значительно выше, чем обычной формы нитрида бора.

Кристаллы боразона не изменяются при нагреве в вакууме до температуры выше 2000 °С. При нагреве на воздухе медленное окисление боразона наблюдается лишь при 2000 °С, тогда как алмаз сгорает на воздухе уже при 875 °С.

При температуре 2500 °С и давлении 40000 атм происходит переход боразона в гексагональный нитрид бора.

Ромбоэдрический гамма-BN

Ромбоэдрическая модификация g-BN обнаружена наряду с гексагональной при получении нитрида бора взаимодействием бората натрия с цианистым калием. Эта форма имеет структуру, подобную структуре b-графита с разным смещением между гексагонами в последовательных слоях. Периоды решетки а=2,504 А, с=10,01А.

Применение нитрида бора

Нитрид бора и материалы на его основе занимают заметное место в ряду важнейших инструментальных материалов и являются основой многих современных технологий. Он нашел широкое применение в реакциях промышленного органического синтеза и при крекинге нефти, в изделиях высокотемпературной техники, в производстве полупроводников, получении высокочистых металлов, газовых диэлектриков, как средство для тушения возгораний. Из нитрида бора изготовляют высокоогнеупорные материалы, проявляющие как полупроводниковые, так и диэлектрические свойства.

Термодинамические особенности полиморфизма нитрида бора обусловили появление большого количества материалов на основе его плотных модификаций и различных технологий его получения. Белая модификация применяется для получения высокоогнеупорных материалов, армирующих волокон, как полупроводниковый материал, сухая смазка для подшипников, поглотитель нейтронов в ядерных реакторах.

Основанием для широкого применения боразона в инструментах, послужила наибольшая твёрдость, приближающаяся к твёрдости алмаза. Из боразона изготавливают изделия, применяемые в высокотемпературной технике (тигли, изоляторы, тигли для получения полупроводниковых кристаллов, детали электровакуумных приборов); он применяется для производства полупроводниковых приборов и интегральных схем (твердотельные планарные источники примеси бора, диэлектрические прокладки конденсаторов), деталей электровакуумных приборов (окон выводов энергии, стержней теплоотводов).

Широкое применение находит пиролитический нитрид бора. Нитрид бора входит в состав промышленной керамики.

Полезные сервисы

галлия арсенид

Энциклопедический словарь

ГАЛЛИЯ АРСЕНИД - ГА́ЛЛИЯ АРСЕНИ́Д, один из основных полупроводниковых материалов (см. ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ), относящийся к классу соединений AIIIBV. Благодаря удачному сочетанию свойств занимает второе место (после кремния (см. КРЕМНИЙ)) по своему значению в современной электронной технике. Арсенид галлия имеет неплохие теплофизические характеристики, достаточно большую ширину запрещенной зоны (см. ЗАПРЕЩЕННАЯ ЗОНА), высокую подвижность электронов, благоприятные особенности зонной структуры, обуславливающие возможность прямых межзонных переходов носителей заряда. Разработаны технологии получения материала с хорошими изолирующими свойствами и высокой прозрачностью в инфракрасной области спектра.

Кристаллы арсенида галлия кристаллизуются в решетке сфалерита. Постоянная решетки при 300К равна 5,6533 А, расстояние между ближайшими соседними атомами - 2,45 А; относительная молекулярная масса - 144,63; число атомов в 1 см3 - 4,42·1022; плотность GaAs в твердом состоянии - 5,32 г/см3, в жидком состоянии - 5,71 г/см3; температура плавления tпл= 1238оС; равновесное давление паров мышьяка в точке плавления ГАЛЛИЯ АРСЕНИД 1.105 Па (0,98 атм), что в значительной мере усложняет технологию его получения. Твердость по минералогической шкале - 4,5; температурный коэффициент линейного расширения t.= 6,4106 К-1; ширина запрещенной зоны - 1,43 эВ; диэлектрическая проницаемость статическая - 12,9, высокочастотная - 10,89.

Электрофизические свойства нелегированного арсенида галлия в сильной степени зависят от состава и концентрации собственных точечных дефектов (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ), концентрации фоновых примесей и режимов термообработки слитков. Для получения монокристаллов n- и p-типа проводимости с заданной концентрацией носителей заряда используют легирование электрически активными примесями. Основными легирующими примесями при получении монокристаллов n-типа являются S, Se, Te, Si, Sn, а при получении монокристаллов p-типа - Zn.

Арсенид галлия не взаимодействует с водой, но активно разлагается под действием кислот с выделением токсичного арсина (см. МЫШЬЯКА ГИДРИД). Удельная скорость растворения арсенида галлия существенно возрастает в смесях кислот. При нагреве на воздухе до 300 оС арсенид галлия не окисляется. Арсенид галлия относится к числу разлагающихся соединений. Начиная с 600 оС, разлагается с выделением мышьяка. Расплавленный арсенид галлия очень активен и взаимодействует практически со всеми известными материалами, используемыми для изготовления контейнеров. Наибольшее распространение в технологии арсенида галлия нашел синтетический кварц. Для получения высокочистого полуизолирующего арсенида галлия применяют пиролитический нитрид бора (см. НИТРИДЫ).

Структурные характеристики материала

Одной из основных технологических характеристик GaAs является плотность дислокаций (см. ДИСЛОКАЦИИ) ND. Характер распределения и величина плотности дислокаций оказывает влияние на рабочие параметры изготавливаемых на его основе приборов. В производстве светодиодов применяют кристаллы с ND (5-10).103см-2, в производстве лазеров - с ND 5.102см-2. Присутствие дислокаций в активных областях светоизлучательных структур, изготовленных на сильно легированных пластинах GaAs n- и p-типа проводимости, приводит к быстрой деградации характеристик прибора. В связи с этим низкая плотность дислокаций является основным требованием к материалу. Характер распределения дислокаций и их плотность влияют также на распределение параметров СВЧ-приборов по площади пластины нелегированного полуизолирующего ПИ-GaAs. Это связано с перераспределением собственных точечных дефектов вблизи дислокаций.

Получение малодислокационных и бездислокационных кристаллов GaAs является сложной технологической задачей, к настоящему времени практически нерешенной. Исключение составляют сильно легированные кристаллы, так как введение легирующих примесей при достижении определенного уровня легирования сопровождается эффектом «примесного упрочнения» - снижения плотности дислокаций - в кристаллах арсенида галлия. Плотность дислокаций в кристаллах полупроводников определяется термопластической деформацией, которая успевает пройти в кристалле в процессе релаксации термоупругих напряжений, т. е. зависит от условий получения (метода выращивания), диаметра кристалла и концентрации легирующей примеси.

Методы получения кристаллов арсенида галлия

В промышленном производстве монокристаллов GaAs используются три метода выращивания:

- метод Чохральского с жидкостной герметизацией расплава слоем борного ангидрида (Liquid Encapsulated Czochralski - LEC), используется, в основном для получения нелегированного ПИ-GaAs;

- метод горизонтальной направленной кристаллизации (ГНК) в вариантах «по Бриджмену» (Horizontal Bridgman - HB) или «кристаллизации в движущемся градиенте температуры» (Horizontal Gradient Freeze - HGF), используется для получения кристаллов n-типа проводимости, легированных Si;

- метод вертикальной направленной кристаллизации в тех же двух вариантах (Vertical Bridgman - VB Vertical и Gradient Freeze - VGF), используется для получения как легированных донорными примесями кристаллов, так и для получения нелегированного арсенида галлия.

Метод LEC является одним из основных в производстве монокристаллов GaAs. При выращивании монокристаллов арсенида галлия методом Чохральского с жидкостной герметизацией расплава необходимо учитывать, что процесс осуществляется при достаточно больших осевых и радиальных градиентах температуры вблизи фронта кристаллизации, т. е. в области максимальной пластичности материала. Очевидным следствием роста кристалла при высоких градиентах температуры при таких условиях является высокая плотность дислокаций, типичные значения которой составляют от 1,104 до 2,105 см-2 в зависимости от диаметра слитка.

В целях снижения температурных градиентов и соответственно снижения плотности дислокаций было предложено несколько модификаций метода. Одной из таких модификаций является выращивание в условиях полной герметизации растущего кристалла. Однако при малых радиальный градиентах, характерных для этого метода, затруднено поддержание диаметра растущего кристалла. Этот метод не позволяет выращивать достаточно длинные кристаллы, что делает его непригодным для промышленного использования. Более эффективным является метод Чохральского с контролируемым давлением паров мышьяка. В нем исключается разложение выращенного слитка. Использование этого метода позволило значительно снизить плотность дислокаций в монокристаллах арсенида галлия. Недостатком этого метода является высокая стоимость оборудования.

Основным вариантом технологии LEC стал совмещенный процесс синтеза и выращивания монокристалла в установке «высокого давления»рабочим давлением (60-70) атм. при синтезе и (20-30) атм. при выращивании). Для получения арсенида галлия с высоким удельным сопротивлением - ПИ-GaAs - используют галлий и мышьяк чистотой не хуже 7N, тигли из пиролитического нитрида бора и управление содержанием фонового углерода, определяющим величину удельного сопротивления и подвижности носителей заряда в материале. При низких концентрациях углерода (1,1015 ат/см3) обеспечиваются наилучшие с точки зрения использования в технологии ионной имплантации свойства GaAs, при достаточно высоком содержании углерода ( 3,1015 ат/см3) кристаллы имеют высокое удельное сопротивление ( 108 Ом/см), что важно при использовании ПИ- GaAs в качестве подложек в эпитаксиальных технологиях.

Основным направлением развития технологии LEC является увеличение диаметра выращиваемых монокристаллов при одновременном увеличении массы загрузки, что продиктовано необходимостью повышения экономической эффективности производства. Доминирующее положение в структуре производства LEC-ПИ- GaAs пока занимают монокристаллы диаметром 100 мм, но уже более 20% продаж приходится на пластины диаметром 150 мм.

Монокристаллы GaAs, легированные Si с низкой плотностью дислокаций, выращивают методом горизонтальной направленной кристаллизации (ГНК) в кварцевых контейнерах. Однако используемые контейнерные материалы имеют низкую механическую прочность, что не позволяет получить кристаллы большого диаметра. Применение метода ВНК частично устраняет присущие методу ГНК недостатки и позволяет получать легированные кремнием кристаллы диаметром до 100 мм с низкой плотностью дислокаций.

Применение арсенида галлия

Основное применение имеет:

1) нелегированный полуизолирующий (ПИ) GaAs с высоким удельным сопротивлением (107 Ом.см). Используется при изготовлении высокочастотных интегральных схем (ИС) и дискретных микроэлектронных приборов. Помимо высокого удельного сопротивления монокристаллы нелегированного GaAs, применяемые в производстве высокочастотных приборов (особенно с использованием технологий ионной имплантации), должны иметь высокие значения подвижности носителей заряда (см. ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА) и высокую макро- и микроскопическую однородность распределения свойств как в поперечном сечении, так и по длине выращенных слитков.

2) Сильнолегированный кремнием GaAs n-типа проводимости с низкой плотностью дислокаций. Применяется при изготовлении светодиодов и лазеров. Монокристаллы сильно легированного кремнием (1017-1018 см-3) GaAs, помимо высокой проводимости, должны обладать достаточно совершенной кристаллической структурой. Они широко используется в оптоэлектронике для изготовления инжекционных лазеров, свето- и фотодиодов, фотокатодов, являются прекрасным материалом для генераторов СВЧ-колебаний (так называемых генераторов или диодов Ганна (см. ГАННА ДИОД)). Применяются для изготовления туннельных диодов, способных работать при более высоких температурах, чем кремниевые, и на более высоких частотах, чем германиевые.

3) Монокристаллы полуизолирующего арсенида галлия, легированные хромом, используют в инфракрасной оптике.

4) Монокристаллы GaAs, легированные цинком или теллуром, применяют в производстве оптоэлектронных приборов

5) Входит в состав многих тройных и четверных твердых растворов (см. ТВЕРДЫЕ РАСТВОРЫ).

Полезные сервисы