Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

архе

Энциклопедический словарь

АРХЕ - А́РХЕ (латинское название Arche, код S/2002 J1), спутник Юпитера (см. ЮПИТЕР (планета)), среднее расстояние до планеты 23,3 млн км, эксцентриситет орбиты 0,2496, период обращения вокруг планеты 732 сут. По орбите вращается в направлении, противоположном суточному вращению планеты. Имеет неправильную форму, наибольший поперечник 3,5 км.

Архе был открыт с Земли Скоттом Шепардом 31 октября 2002. Название было утверждено Международным Астрономическим Союзом в марте 2005 в честь музы Архи. Последняя буква имени была изменена на «е», как и у всех вновь открываемых нерегулярных спутников Юпитера.

Синонимы к слову архе

сущ., кол-во синонимов: 3

Анатомия терминов

(гк)

См. арх.

Сканворды для слова архе

- Нерегулярный спутник планеты Юпитер с обратным орбитальным обращением.

Полезные сервисы

археанакт

Сканворды для слова археанакт

- Боспорский царь.

Полезные сервисы

археанактиды

Энциклопедический словарь

Археанакти́ды - династия Боспорского царства в 480-438 до н. э.

* * *

АРХЕАНАКТИДЫ - АРХЕАНАКТИ́ДЫ, династия Боспорского царства в 480-438 до н. э.

Большой энциклопедический словарь

АРХЕАНАКТИДЫ - династия Боспорского царства в 480-438 до н. э.

Полезные сервисы

архебактерии

Энциклопедический словарь

АРХЕБАКТЕРИИ - АРХЕБАКТЕ́РИИ (от греч. archaios - древний и бактерии (см. БАКТЕРИИ)), группа микроскопических одноклеточных организмов-прокариот (см. ПРОКАРИОТЫ), резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Название говорит о том, что эти организмы в настоящее время многими исследователями считаются древнейшими живыми организмами на Земле. Среди них нет возбудителей инфекционных болезней. Архебактерии существенно отличаются от других микроорганизмов (эукариот и прокариот) по составу и последовательности нуклеотидов в рибосомных и транспортных РНК (см. РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ). Архебактерии разнообразны по типу обмена веществ, физиологическим и экологическим особенностям: среди них встречаются аэробы (см. АЭРОБЫ) и анаэробы (см. АНАЭРОБЫ), хемогетеротрофы и хемоавтотрофы, нейтрофилы и ацидофилы. Некоторые архебактерии (галобактерии) обладают особым типом фотосинтеза, при котором свет поглощается не хлорофиллом, а бактериородопсином. Только некоторым архебактериям свойствен энергетический процесс, в результате которого образуется метан (см. МЕТАН). Описано более 40 видов архебактерий (25 родов), относящихся к 5 различным группам: метанобразующим, сероокиcляющим термоацидофилам, серовосстанавливающим термофилам, галобактериям, термоплазмам.

Некоторые исследователи выделяют архебактерий в самостоятельное царство живых организмов - Archaebacteria, другие рассматривают архебактерий на уровне отдела (Mendosicutes) и класса (Archaeobacteria) царства прокариот.

Полезные сервисы

архебактерия

Слитно. Раздельно. Через дефис

архебакте/рия, -и

Морфемно-орфографический словарь

архе/бакте́ри/я [й/а].

Полезные сервисы

архегониальные растения

Новый словарь иностранных слов

архегониа́льные растения

- , архегониаты растения, имеющие женский орган размножения в форме архегония, к ним относятся мохообразные, папоротникообразные и голосеменные растения.

Полезные сервисы

архегониальный

Орфографический словарь

архегониа́льный

Полезные сервисы

архегониат

Синонимы к слову архегониат

сущ., кол-во синонимов: 1

Полезные сервисы

архегониаты

Орфографический словарь

архегониа́ты, -ов, ед. ч. -иа́т, -а

Большой словарь иностранных слов

архегониаты

- обширная группа растений, у которых женским органом размножения является архегоний

Полезные сервисы

архегонии

Словарь иностранных слов

АРХЕГОНИИ - женские половые органы у сосудистых споровых растений и листоносных мхов.

Полезные сервисы

архегоний

Энциклопедический словарь

Архего́ний (от греч. archē - начало и gonē - рождение), женский орган полового размножения у моховидных, папоротниковидных, плауновидных, хвощевидных и голосеменных. Обычно колбовидной формы; в расширенной части - яйцеклетка.

* * *

АРХЕГОНИЙ - АРХЕГО́НИЙ (от греч. arche - начало и gone - рождение), женский орган полового размножения у моховидных, папоротниковидных, плауновидных, хвощевидных и голосеменных. Обычно колбовидной формы; в расширенной части - яйцеклетка.

Большой энциклопедический словарь

АРХЕГОНИЙ (от греч. arche - начало и gone - рождение) - женский орган полового размножения у моховидных, папоротниковидных, плауновидных, хвощевидных и голосеменных. Обычно колбовидной формы; в расширенной части - яйцеклетка.

Орфографический словарь

архего́ний, -я

Словарь ударений

архего́ний, -я

Синонимы к слову архегоний

сущ., кол-во синонимов: 1

Новый словарь иностранных слов

архего́ний

(гр. arche начало + gone рождение, происхождение) женский орган размножения у мохообразных, папоротникообразных и голосеменных растений, объединяемых (в отличие от цветковых растений) в группу архегониальных растений.

Сканворды для слова архегоний

- Половой орган мхов, папоротников и др.

Полезные сервисы

архегония

Словарь иностранных слов

АРХЕГОНИЯ (греч.). Женский половой орган споровых растений.

Полезные сервисы

археи

Энциклопедический словарь

Архе́и - архебактерии, группа микроскопических одноклеточных организмов; относятся к «доядерным» формам - прокариотам. Сходны с истинными бактериями по размерам клеток и морфологическим признакам, однако состав и строение клеточных стенок, структура генетического аппарата и другие особенности сближают их с эукариотами. Описано более 100 видов. Большинство археев живёт в экстремальных условиях, часто непригодных для жизни других организмов, - в насыщенных растворах солей (галобактерии), при температуре 80ºC и выше (гипертермофилы), в кислой среде (pH 1-2, термоплазмы) и т. д. Только среди археев есть метаногены - организмы, способные выделять газ метан. Археи, как и бактерии, относятся к наиболее древним обитателям Земли.

Полезные сервисы

архей

Энциклопедический словарь

Архе́й (от греч. archáios - древний), нижнее из двух крупнейших подразделений докембрия. Верхний рубеж около 2,6 млрд. лет назад. В большинстве регионов мира представлен высокометаморфизованными горными породами.

* * *

АРХЕЙ - АРХЕ́Й (от греч. archaios - древний), нижнее из двух крупнейших подразделений докембрия (см. ДОКЕМБРИЙ). Верхний рубеж ок. 2,6 млрд. лет назад. В большинстве регионов мира представлен высокометаморфизованными горными породами.

Большой энциклопедический словарь

АРХЕЙ (от греч. archaios - древний) - нижнее из двух крупнейших подразделений докембрия. Верхний рубеж ок. 2,6 млрд. лет назад. В большинстве регионов мира представлен высокометаморфизованными горными породами.

Орфографический словарь

архе́й, -я

Синонимы к слову архей

сущ., кол-во синонимов: 3

эон, мегацикл

Словарь иностранных слов

АРХЕЙ (греч. archaios - первоначальный, от arche - начало). По Парацельсу, начало жизни, управляющее всеми функциями человеческого тела.

Сканворды для слова архей

- Эра, геологический археозой.

Полезные сервисы

архейская

Большой словарь иностранных слов

архейская

- эра [от гр. древний] - древнейшая эра в геологической истории Земли, обычно называемая азойской

Полезные сервисы

архейская группа

Словарь иностранных слов

АРХЕЙСКАЯ ГРУППА (греч. archaios - древний, первоначальный). Первоначальная группа геологических наслоений.

Полезные сервисы

архейская эра

Словарь иностранных слов

АРХЕЙСКАЯ ЭРА - в геологии, самая древняя эпоха в истории образования земной коры.

Полезные сервисы

архейский

Энциклопедический словарь

АРХЕ́ЙСКИЙ -ая, -ое. [от греч. archē - начало].

◊ Архе́йская эра. Древнейшая эра в геологической истории Земли.

Академический словарь

-ая, -ое.

архейская эра

древнейшая эра в геологической истории Земли.

[От греч. ’αρχή - начало]

Орфографический словарь

архе́йский

Словарь ударений

архе́йский; архе́йская э́ра(геол.)

Формы слов для слова архейский

архе́йский, архе́йская, архе́йское, архе́йские, архе́йского, архе́йской, архе́йских, архе́йскому, архе́йским, архе́йскую, архе́йскою, архе́йскими, архе́йском, архе́йск, архе́йска, архе́йско, архе́йски

Синонимы к слову архейский

прил., кол-во синонимов: 2

азойский

Морфемно-орфографический словарь

архе́й/ск/ий.

Грамматический словарь

архе́йский п 3a✕~

Полезные сервисы

архейско-протерозойский

Слитно. Раздельно. Через дефис

архе/йско-протерозо/йский

Полезные сервисы

архейско-раннепротерозойский

Слитно. Раздельно. Через дефис

архе/йско-раннепротерозо/йский

Полезные сервисы

архелай

Словарь церковнославянского языка

 сын Ирода Великого (Mф. 2, 22).

Словарь русских имен

-я, м. Стар. редк.

Отч.: Архела́евич, Архела́евна.

[От греч. archelaos - вождь народа.]

† 18 марта, 19 апр.

Словарь имён

-я, муж. Стар. редк.

Отч.: Архелаевич, Архелаевна.

Происхождение: (От греч. archelaos - вождь народа.)

Именины: 18 марта, 19 апр.

Именины

Вождь народа (греч.).

18 (5) марта - мученик Архелай.

19 (6) апреля - мученик Архилий, иерей.

Сканворды для слова архелай

- В Библии - сын Ирода Великого, царь Иудеи, царствовавший 10 лет.

- Царь Спарты из рода Агидов, правивший в IX веке до н.э.

Полезные сервисы

архелай македонский

Афоризмы

Архелай Македонский

(ок. V в. до н.э.) царь Македонии в 413-399 гг. до н.э.

Болтливому цирюльнику на вопрос, как его постричь, он (македонский царь Архелай) сказал: «Молча!»

Полезные сервисы

архелая

Словарь русских имен

-и, ж. Стар. редк.

[Женск. к Архелай (см.).]

† 19 июня

Словарь имён

-и, жен. Стар. редк.

Происхождение: (Женск. к (см. Архелай))

Именины: 19 июня

Именины

ж Женское к Архилий.

19 (6) июня - преподобномученица Архелая дева.

Полезные сервисы

архелон

Сканворды для слова архелон

- Вымершая морская черепаха.

Полезные сервисы

архентерон

Синонимы к слову архентерон

сущ., кол-во синонимов: 1

Полезные сервисы

архентино

Энциклопедический словарь

АРХЕНТИНО - АРХЕНТИ́НО, смотри Лаго-Архентино (см. ЛАГО-АРХЕНТИНО) .

Полезные сервисы

архео

Анатомия терминов

(гк)

См. арх.

Полезные сервисы

архео.

Слитно. Раздельно. Через дефис

архео... (греч. древний) - первая часть сложных слов, пишется слитно

Полезные сервисы

архео..

Толковый словарь

Начальная часть сложных слов, вносящая значение: имеющий отношение к древности или к старине, связанный с ними (археоло́гия, археогра́фия и т.п.).

Популярный словарь

Архео...

Означает ‘древний’, ‘относящийся к древности’: археология, археография.

Этимология:

От греческого archaios ‘древний’.

Культура речи:

Пишется всегда слитно с последующей частью слова.

Энциклопедический словарь

Архео... (от греч. archáios - древний), часть сложных слов, означающая: древний, относящийся к древности (например, археография).

Большой энциклопедический словарь

АРХЕО... (от греч. archaios - древний) - часть сложных слов, означающая: древний, относящийся к древности.

Новый словарь иностранных слов

архео...

((гр. archaios древний) первая составная часть сложных слов, соответствующая по значению слову древний , указывающая на отношение к древности, напр.: археография.

Полезные сервисы

археоастрономия

Энциклопедия Кольера

Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад. Состоящие из массивных каменных глыб размером до 20 м и весом до 100 т каждая, эти постройки являются крупнейшим строительным и организационным достижением людей бронзового века. Наиболее известен Стонхендж на равнине Солсбери в Южной Англии. Круговой ров 91 м в диаметре обрамляет два концентрических круга из вертикально стоящих камней с еще двумя концентрическими постройками внутри. В центре - алтарный камень. В основном это сооружение было создано между 2000 и 1500 до н.э. Археологический анализ показал, что это место использовалось и достраивалось не менее 1500 лет. В 18 в. ученые обнаружили, что наиболее заметные камни Стонхенджа указывают направление на точку восхода Солнца в день летнего солнцестояния. Астроном Дж. Хокинс установил в 1963, что

Стонхендж использовали как гигантский прибор для предсказания времени и места на небе определенных астрономических событий, в основном восходов и заходов Солнца, Луны и некоторых звезд.

См. также СТОНХЕНДЖ.

ВАВИЛОНСКАЯ, ШУМЕРСКАЯ И ЕГИПЕТСКАЯ АСТРОНОМИЯ

Доисторические люди, несомненно, использовали элементы практической астрономии для расчета сезонов и моментов различных астрономических событий. Антропологи зафиксировали множество таких обычаев и приемов даже у народов, не имевших письменности. Благодаря изобретению письменности сохранилось множество документальных свидетельств развития астрономии у великих речных цивилизаций, особенно Междуречья и Египта. Такой уровень развития астрономии достигнут, безусловно, благодаря сложной культуре этих цивилизаций. На клинописных табличках, сделанных около 1800 до н.э., сохранились записи моментов восхода Луны и ее первого появления в новолуние. Как и многие другие народы, вавилоняне вели лунный календарь и начинали отсчет дней месяца с первого появления лунного серпа в лучах вечерней зари.

Его легко было заметить в ясную погоду, но предсказать наперед, в какой именно вечер появится молодая Луна, было непростой задачей. Этот прогноз зависит не только от таких очевидных факторов, как продолжительность месяца, но и от весьма сложного сезонного изменения угла между эклиптикой и западной частью горизонта. Одним из достижений шумерской, а затем вавилонской астрономии была разработка арифметического алгоритма для предсказания этого важнейшего явления. Венера - заметный объект, часто наблюдаемый в сумерки на западе. Поэтому не удивительно, что вечерний заход и утренний восход Венеры также отмечались, а затем вычислялись и предсказывались. В самых ранних из сохранившихся табличек записаны также восходы, заходы и кульминации некоторых ярких звезд. Вавилоняне уделяли особое внимание звездам Зодиака - полосы, проходящей вдоль видимого пути Солнца (эклиптики), в пределах которой перемещаются планеты. Они разделили Зодиак на 12 равных частей, назвав каждую из них именем ближайшего созвездия, и стали использовать угловые единицы, делившие небо на 360 частей (в основе системы счисления вавилонян лежало число 60).

См. также СОЗВЕЗДИЕ; ЗОДИАК. К 6 в н.э. вавилонская астрономия достигла высокого уровня. Была полностью решена проблема вычисления месяца и года, весьма осложненная тем обстоятельством, что периоды орбитального движения Луны и Земли не кратны друг другу, и поэтому лунный и солнечный календари не удается согласовать надолго.

См. также КАЛЕНДАРЬ. Другими достижениями вавилонских математиков были предвычисления сезонного изменения продолжительности дня, положения и фаз Луны, положения ярких планет и даже наступления лунных затмений. Вавилонские вычисления основывались не на какой-либо теории истинного положения небесных тел, а лишь на регулярности их видимых перемещений. Таким образом, вавилонские теории были полностью арифметическими: находились повторяющиеся последовательности в записях чисел и делались попытки продолжить их в будущее. Эти теории примитивнее развитых позже греками геометрических теорий, хотя и не уступают им в точности. Египетская цивилизация существовала одновременно с вавилонской и достигла многого в области культуры, но к астрономии это не относилось. Вначале египтяне использовали лунный календарь, но вскоре отказались от него в пользу более простого, разделив год на 365 дней (12 месяцев по 30 дней плюс 5 праздничных дней в конце) и позволив солнечному календарю (т.е. сезонам года) расходиться с лунным календарем на четверть суток в год. Египтяне отмечали моменты восхода и захода ярких звезд, используя их для счета времени. Они также были отменными топографами: их пирамиды и прочие монументы изумительно точно (до нескольких угловых минут) ориентированы по сторонам света. Некоторые вентиляционные коридоры в пирамидах, вероятно, были ориентированы в точки верхней кульминации определенных звезд и могли служить визирными трубами.

ЭЛЛИНИСТИЧЕСКАЯ АСТРОНОМИЯ

Расцвет греческой (эллинистической) цивилизации в пору угасания вавилонской и египетской отмечен крупными изменениями в практической и теоретической астрономии. Греки переняли многие знания и учения предшествовавших цивилизаций, но изменили и систематизировали их в соответствии с новым взглядом на мир. Основанная на философии и космологии Платона и Аристотеля, имеющая теоретической базой геометрию греческих математиков, объединившая множество новых, зачастую более точных данных, астрономия Древней Греции стала развитой наблюдательной и теоретической дисциплиной и приобрела тот вид, который сохранился вплоть до эпохи Возрождения.

В ГРЕЧЕСКОЙ ГЕОЦЕНТРИЧЕСКОЙ СИСТЕМЕ Луна (A), Солнце (D) и планеты - Меркурий (B), Венера (C), Марс (E), Юпитер (F) и Сатурн (G) - движутся равномерно по окружностям X, называемым эпициклами, с центрами Y, также равномерно движущимися по большим окружностям, называемым деферентами, в центре которых находится Земля. Поскольку Меркурий и Венера никогда не удаляются от Солнца на большой угол, центры эпициклов этих планет и Солнца всегда лежат на одной прямой.

В ГРЕЧЕСКОЙ ГЕОЦЕНТРИЧЕСКОЙ СИСТЕМЕ Луна (A), Солнце (D) и планеты - Меркурий (B), Венера (C), Марс (E), Юпитер (F) и Сатурн (G) - движутся равномерно по окружностям X, называемым эпициклами, с центрами Y, также равномерно движущимися по большим окружностям, называемым деферентами, в центре которых находится Земля. Поскольку Меркурий и Венера никогда не удаляются от Солнца на большой угол, центры эпициклов этих планет и Солнца всегда лежат на одной прямой.

Греки развили практические методы астрономии для мореплавания, отраженные в поэмах Гомера 9 и 8 вв. до н.э. (в нескольких местах этих поэм описаны приемы определения месяца и года, ведения календаря и счета времени). Греки поддерживали тесные торговые контакты с соседними странами, и когда у них начался расцвет философии и естествознания (часто именуемый "греческим чудом"), они смогли объединить достижения разных народов.

Открытие прецессии. Около 430 до н.э. было обнаружено, что продолжительность сезонов не одинакова. Для определения дат равноденствий греки отмечали дни, когда Солнце садится в точке запада. Вместо того, чтобы выбирать ближайшую звезду, от которой начинать деление Зодиака на 12 знаков (как это делали вавилоняне), они выбрали точку неба, через которую проходит Солнце в день весеннего равноденствия, пересекая небесный экватор. В то время эта точка находилась в созвездии Овна и поэтому была названа "первой точкой Овна". В течение нескольких столетий никаких видимых изменений не отмечалось, но затем наблюдатели заметили, что эта точка смещается на фоне звезд, и открыли таким образом предварение равноденствия - прецессию.

См. также НЕБЕСНАЯ СФЕРА; ЗЕМЛЯ. Эфирные сферы и круговое движение. Используя греческие и старые вавилонские наблюдения, Евдокс Книдский (ок. 406 - ок. 347 до н.э.) попытался создать геометрическую модель небесных явлений. Он представлял Землю покоящейся в центре, вокруг которого вращается несколько концентрических прозрачных сфер. На каждой из них зафиксирована планета (в число которых тогда включали Солнце и Луну). Некоторые из сфер несли на себе другие сферы с осью, смещенной на некоторый угол. На самой внешней сфере располагались все звезды, поскольку их взаимное расположение никогда не менялось. Каждая из сфер вращалась с постоянной скоростью (важное философское требование): например, каждая звезда совершала оборот за сутки. Подбирая скорости вращения, расположение сфер и углы взаимного наклона их осей, Евдокс мог воспроизводить основные небесные явления. Ему удалось объяснить даже такие сложные и загадочные движения, как обратные петли Марса, Юпитера и Сатурна на фоне звезд и колебания Меркурия и Венеры около Солнца. Позже Аристотель (ок. 384-322 до н.э.) включил эту теорию в свое учение, количество сфер возросло и превысило 50, но попытки Каллиппа (род. ок. 370 до н.э.) и других сделать теорию более точно соответствующей наблюдениям не дали результата. Вскоре от этой теории как от расчетной схемы отказались, но она сохранила важное значение как космологическая модель.

ЗОДИАКАЛЬНАЯ АРМИЛЛА (упрощенной схемы) впервые применена древними греками для измерения разностей эклиптических широт и долгот двух небесных объектов.

ЗОДИАКАЛЬНАЯ АРМИЛЛА (упрощенной схемы) впервые применена древними греками для измерения разностей эклиптических широт и долгот двух небесных объектов.

Обобщенная космологическая система Аристотеля, доминировавшая на Западе около 2000 лет, утверждала одни физические принципы для подлунной сферы, а другие - для небесной. Четыре элемента подлунной сферы - земля, вода, воздух и огонь - характеризовались естественным прямолинейным движением либо к занятому Землей центру Вселенной (тяжелые), либо от него (легкие). В отличие от этого эфир, единственный элемент небесной сферы, обладал естественным круговым движением. Все научные теории о поведении вещества - то, что сейчас мы называем физикой, химией и даже геологией, - произошли из аристотелевой системы естественных движений и естественных мест. Согласно Аристотелю, планеты прикреплены к эфирным сферам Евдокса, круговое движение которых следует из их небесной природы.

Гиппарх. Гиппарх с о. Родос (ранее 161 - ок. 126 до н.э.) внес важный вклад в развитие астрономии. Он провел много точных наблюдений и сравнил их с результатами вавилонских и других астрономов. Составив новый каталог положений ярких звезд и сравнив его с предшествовавшими каталогами, он заметил, что эклиптические долготы всех звезд смещаются примерно на градус в столетие, тогда как широты остаются неизменными. Отсюда он заключил, что положение Солнца относительно звезд в моменты равноденствий (и солнцестояний) смещается, или прецессирует, в обратном направлении. Наиболее важным вкладом Гиппарха стало развитие планетной теории. Тщательно измерив неравенство продолжительности сезонов, он понял, что Солнце перемещается по небу в течение года с переменной скоростью. Поскольку, согласно космологии Платона и Аристотеля, движение Солнца должно быть круговым и равномерным, он заключил, что неравномерность солнечного движения лишь кажущаяся. Расположив Землю чуть в стороне от центра сферы, несущей Солнце, он получил наблюдаемое неравномерное движение светила при истинном равномерном. Проблему сложного движения Луны Гиппарх разрешил несколько иным путем. Вместо того, чтобы располагать центр лунного движения в центре Земли или чуть в стороне от него, он заставил Луну обращаться по небольшой окружности - эпициклу - центр которой движется вокруг центра Земли.

См. также ГИППАРХ.

Птолемей. Греческая геометрическая астрономия достигла кульминации в Александрии в работах Птолемея (ок. 100 - ок. 170). Его сложный геометрический аппарат и математические методы дополнили вычислениями космологию Аристотеля и восторжествовали над конкурирующими методами и системами. Величайшая работа Птолемея Альмагест - это трактат по математическим методам вычисления положений планет на небесной сфере. Опираясь на глубокую традицию греческой геометрии, Птолемей преобразовал космологию Аристотеля в математическую модель Вселенной. Для каждой планеты он разработал свою теорию, состоящую из разнообразных геометрических приемов. Планета, по Птолемею, равномерно обращается вокруг центра эпицикла, который, в свою очередь, движется по кругу деферента, в центре которого (или рядом с ним) находится Земля. Эти движения планет, казавшиеся тогда не связанными друг с другом, позже нашли объяснение как движения с переменной скоростью по эллиптическим орбитам вокруг Солнца под действием его притяжения.

КВАДРАНТ использовался для измерения высоты звезд в меридиане.

КВАДРАНТ использовался для измерения высоты звезд в меридиане.

Даже при низкой точности глазомерных измерений 2 в. н.э. простой комбинации эпицикла и деферента было недостаточно. Поэтому Птолемей модифицировал теорию, нарушив этим канон Аристотеля. Во-первых, используя идею Гиппарха, он поместил Землю не в центре деферента. В случае Солнца эксцентрический деферент позволил ему вообще обойтись без эпицикла. Во-вторых, он предположил движение деферента равномерным не по отношению к его центру или даже к центру Земли, а по отношению к воображаемой точке, названной эквантом и расположенной симметрично положению Земли относительно центра деферента. Подбирая размер и наклон этих элементов, периоды обращения и смещение точек эксцентра и экванта, Птолемей мог объяснить наблюдаемое движение планет. Альмагест Птолемея - объемистый и сложный трактат по астрономии. В нем описаны приборы и методы проведения наблюдений, даны таблицы положения звезд и предвычисленных положений планет, детально объяснены различные теории планет и указано, как пользоваться ими для вычисления положений планет, подробно обсуждаются данные наблюдений и теории предшественников. Альмагест далеко превзошел все предшествующие астрономические трактаты, поэтому большинство из них перестали копировать, и со временем они оказались потеряны, за исключением небольших фрагментов или ссылок.

См. также

ОБСЕРВАТОРИЯ;

ПТОЛЕМЕЙ Клавдий. Предсказание движений планет имело огромное значение. Во-первых, оно укрепляло веру в рациональное устройство мира. Эта заповедь Аристотеля, объединенная с теологией, воплотилась в "план Творца". На более практическом уровне математическая астрономия позволила рассчитывать календари, предсказывать затмения и, что важно, составлять гороскопы для государственных и личных нужд. Это последнее сохранило свою заметную, хотя и спорную роль даже после распространения на Западе христианства.

См. также АСТРОЛОГИЯ; ЗАТМЕНИЯ.

СРЕДНЕВЕКОВАЯ АСТРОНОМИЯ

Технический прогресс в изготовлении приборов для измерений невооруженным глазом привел к созданию более точных таблиц движения планет, а развитие вычислительных методов позволило точнее определять теоретические значения. Однако при этом выяснилось, что согласие между теорией и наблюдениями не очень хорошее. Было немало споров о том, как выйти из этого положения, но основная схема Птолемея, представляющая движение планет вокруг Земли с помощью комбинации равномерно вращающихся окружностей, сохранилась вплоть до Возрождения. В Римской империи астрономия не развивалась. Хотя римляне достигли большого прогресса в политике, юриспруденции, риторике и технике, теорию и наблюдения в астрономии они почти не продвинули. После распада империи и нашествия варваров астрономия на Западе стала угасать. Она еще существовала в виде копий старых работ, но механическое переписывание сопровождалось множеством ошибок. Разработка календаря стала большой проблемой, и даже такое рутинное, но нужное дело, как определение основанных на лунном календаре дат религиозных праздников (например, Пасхи), было доступно лишь немногим образованным людям. Каталоги и рассчитанные Птолемеем таблицы сохранились, но все меньше и меньше людей понимало их и могло использовать. Те немногие, кто еще проводил наблюдения и фиксировал астрономические события, пользовались солнечными часами и простейшими приборами.

См. также СОЛНЕЧНЫЕ ЧАСЫ. В то время как астрономия угасала в Европе после падения Рима, эта эллинистическая наука пустила мощные корни в соседних культурах Центральной Азии, а также достигла Индии. Были построены многочисленные обсерватории, крупнейшей из которых стала обсерватория Улугбека в Самарканде. Ученые Среднего Востока владели всеми астрономическими знаниями той эпохи, исправляли и дополняли методы и технику Птолемея.

См. также ОБСЕРВАТОРИЯ. Даже после 12 в., когда некоторые работы Аристотеля были открыты заново и в Европе начались интеллектуально наполненные времена схоластики, астрономия оставалась в упадке. Тем не менее, популярными стали космологические темы, касающиеся общего строения и движения Вселенной. Основой этого периода средневековой мысли были сочинения Аристотеля, к которым теологи и ученые написали множество комментариев. Вместе с Библией и трудами отцов церкви работы Аристотеля стали основой обучения. Предметом пылких дискуссий стало устройство сфер Евдокса и физические принципы их движения, возможная множественность миров и даже природа Луны. Эти дискуссии подготовили образованный Запад к интеллектуальному взлету Возрождения, наступившему в 14 в., когда сохранившиеся в арабских странах античные знания хлынули в Европу. Наконец-то европейские астрономы смогли прочитать Птолемея, Аристотеля и других ученых древности в полном объеме и, что особенно важно, увидеть полную картину развития античной астрономии.

ВОЗРОЖДЕНИЕ

Коперник и гелиоцентризм. Н. Коперник (1473-1543), оказавшийся революционером в астрономии, поначалу работал в традиционном русле и почитал античное знание. Желая, тем не менее, упростить астрономические расчеты, ставшие чересчур сложными, он поместил Солнце в центр, сделал Землю планетой, а Луну - спутником Земли. При этом он пытался сохранить равномерное круговое движение и отказался от приемов, введенных Птолемеем и его последователями.

В ГЕЛИОЦЕНТРИЧЕСКОЙ СИСТЕМЕ КОПЕРНИКА, представленной здесь в упрощенном виде, Солнце находится в центре, вокруг него обращаются Земля и другие планеты, а Луна как спутник обращается вокруг Земли. В действительности Коперник для объяснения лунного и планетных движений, подобно грекам, использовал эпициклы, но ему удалось обойтись без многих искусственных приемов, введенных Птолемеем и его последователями.

В ГЕЛИОЦЕНТРИЧЕСКОЙ СИСТЕМЕ КОПЕРНИКА, представленной здесь в упрощенном виде, Солнце находится в центре, вокруг него обращаются Земля и другие планеты, а Луна как спутник обращается вокруг Земли. В действительности Коперник для объяснения лунного и планетных движений, подобно грекам, использовал эпициклы, но ему удалось обойтись без многих искусственных приемов, введенных Птолемеем и его последователями.

В итоге возникло непримиримое противоречие между геоцентрической системой Птолемея и гелиоцентрической Коперника. Последняя воспринималась как искусственная вычислительная схема с точки зрения теологии и религиозных убеждений и с позиций физики той эпохи. С чисто математической точки зрения - какая из систем может точнее воспроизвести наблюдаемые на небе перемещения светил, - обе они были почти равноценны. Более того, возвращаясь к традиции Аристотеля, система Коперника вынуждена была использовать даже больше эпициклов, чем система Птолемея, и поэтому в определенном смысле была сложнее. См. также КОПЕРНИК Николай.

Тихо Браге и изменчивость небес. Эксцентричный и колоритный датский астроном Т. Браге (1546-1601) занялся повышением точности наблюдений для сравнения между собой конкурирующих систем мироздания. Используя новые приемы, он довел измерения с помощью невооруженного глаза до невероятной точности почти в 1'. В 1585 при государственной поддержке он основал обсерваторию на острове Вен, где, создавая великолепные инструменты, он и его помощники с высокой точностью измеряли положения планет. Он надеялся использовать эти наблюдения для подтверждения собственной гибридной системы мироздания, согласно которой Земля находится в центре, Луна и Солнце обращаются вокруг нее, а остальные планеты движутся вокруг Солнца. Так Т. Браге пытался сохранить относительную простоту планетной системы Коперника, оставляя при этом Землю неподвижной.

СЕКСТАНТ, каким пользовался Тихо; требовал двух наблюдателей для измерения углового расстояния между двумя звездами.

СЕКСТАНТ, каким пользовался Тихо; требовал двух наблюдателей для измерения углового расстояния между двумя звездами.

Не желая считать Землю планетой, Тихо, тем не менее, оказался первопроходцем в изучении новых небесных явлений. 11 ноября 1572 он заметил в созвездии Кассиопеи объект, сияющий ярче любой звезды или планеты. Этот объект постепенно терял яркость, став к декабрю как Юпитер, а в мае 1573 достигнув второй звездной величины. В высшей степени надежные наблюдения Т.Браге не выявили параллакса, хотя своими приборами он измерял параллаксы атмосферных явлений, таких, как метеоры. Значит, новое светило, которое он назвал по-латыни просто "nova", находится дальше сферы Луны, где-то на неизменных небесах. Пять лет спустя Тихо был поражен еще более изумительным небесным спектаклем: появилась комета, по яркости сравнимая с Венерой и с хвостом длиной в 45 диаметров Луны. Он наблюдал ее несколько недель и даже переопределил для этого положения опорных звезд, от которых измерял углы. Из этих наблюдений он заключил, что комета прошла от Земли на расстоянии, более чем в пять раз превышающем расстояние до Луны. Новое светило и комета доказали, что за пределом лунной сферы могут и действительно происходят перемены. Кометы, которые Аристотель считал атмосферными явлениями, теперь превратились в планеты.

См. также БРАГЕ Тихо.

Кеплер и разрушение круговых движений. В 1600, за год до своей смерти, живший теперь в Праге Т. Браге пригласил И. Кеплера (1571-1630), чтобы передать ему свое интеллектуальное наследство. До этого в сочинении "Тайна Вселенной" (Prodromus dissertationum mathematicarum continens mysterium cosmographicum, 1596) Кеплер пытался проверить с точки зрения неоплатонизма единство и необходимость принципов, лежащих в основе системы Коперника. Полностью доверяя высокоточным наблюдениям Тихо, Кеплер два года тщетно пытался подыскать наборы традиционных круговых движений. В случае Марса лучшие из его вариантов давали расхождение вычисленных и наблюдаемых положений планеты до восьми угловых минут (Коперник в свое время удовлетворился десятью минутами). Однако Кеплер упорно проводил утомительные вычисления, делал и исправлял ошибки, искал все новые и новые варианты. Наконец, с сожалением он отказался от окружностей и начал для описания орбиты Марса экспериментировать с овалами. Когда, наконец, в 1605 он использовал эллипс для описания орбиты Марса, все стало на свои места. Его Новая астрономия (Astronomia Nova, 1609) содержала два из трех утверждений, называемых теперь кеплеровскими законами движения планет, а именно, что орбита планеты есть эллипс, в одном из фокусов которого расположено Солнце, и что линия, соединяющая этот фокус с планетой, заметает равные площади за равное время. Эти два элегантных утверждения позволили покончить с громоздкими построениями Птолемея, Коперника и Тихо. Из них вытекало, что тела могут двигаться в космосе по орбитам, не будучи прикрепленными к сферам, эпициклам, деферентам и прочим носителям, что планеты могут ускоряться и замедляться по известному закону, не подчиняясь аристотелеву принципу равномерного кругового движения. Диктатура окружности была сломлена так же, как привилегированное положение и неподвижность Земли. Третий закон Кеплера, гласящий, что отношение квадратов орбитальных периодов любых двух планет или спутников равно отношению кубов их средних расстояний от центрального тела, был опубликован в его работе Гармония Мира (Harmonice mundi, 1619). Эти законы продемонстрировали глубокую рациональность Солнечной системы с ее эллиптическими орбитами и сгладили разочарование, вызванное отказом от аристотелева принципа равномерных круговых движений. Масштабы Солнечной системы и спутниковых систем планет теперь легко могли быть получены из наблюдений. Составленное Кеплером Краткое изложение коперниканской астрономии (Epitomes astronomiae Copernicanae, 1617-1621) включало полное описание законов Кеплера. Это Изложение стало дополнением к Рудольфовым таблицам (Tabulae Rudolphinae, 1627), в которых Кеплер привел практические методы и результаты вычисления положений планет. Таблицы, вычисленные по теории Кеплера, быстро вытеснили все другие, что привело к увяданию астрономии Птолемея.

См. также

КЕПЛЕР Иоганн;

КЕПЛЕРА ЗАКОНЫ.

Галилей, новая физика и телескоп. Произведенная Коперником революция в астрономии означала нечто большее, чем перемену положений Земли и Солнца и определение траекторий планет. Удаление Земли из центра мира, придание ей орбитального и вращательного движений, свободный полет планет в пространстве по некруговым траекториям - все это требовало совершенно новой физики, отличной от аристотелевой. В то время как Кеплер обеспечивал идеям Коперника важную теоретическую поддержку, его флорентийский знакомый и коллега Г. Галилей (1564-1642) делал это не только теоретически, но и практически. Галилей рано стал приверженцем коперниканства, он стремился найти физические доказательства гипотезы Коперника и установить новые физические принципы и законы, которые бы опровергли "очевидные" возражения против этой спорной теории. Исследования Галилея по физике падающих тел привели к математическому описанию действия гравитации вблизи поверхности Земли, а Кеплер в своих законах дал математическое описание действия гравитации на движущиеся по орбитам планеты.

ДВА ТЕЛЕСКОПА ГАЛИЛЕЯ на музейной подставке (Флоренция). Ниже, в центре виньетки, - разбитый объектив первого телескопа Галилея. На схеме внизу показано расположение линз в этой простой телескопической системе.

ДВА ТЕЛЕСКОПА ГАЛИЛЕЯ на музейной подставке (Флоренция). Ниже, в центре виньетки, - разбитый объектив первого телескопа Галилея. На схеме внизу показано расположение линз в этой простой телескопической системе.

ОПТИЧЕСКАЯ СИСТЕМА первого телескопа Галилея.

ОПТИЧЕСКАЯ СИСТЕМА первого телескопа Галилея.

Решающий вклад в утверждение идей Коперника Галилей внес с помощью телескопа. Первый раз Галилей взглянул на небо в свой только что сделанный телескоп в январе 1610. То, что он увидел, полностью разрушило представления Аристотеля о космосе, царившие в течение 20 веков. Телескоп показал, что поверхность Луны не гладкая и абсолютно сферическая, как думали философы в отношении Луны и других небесных тел. Напротив, она грубая, неровная, изобилующая впадинами и выпуклостями, такая же, как поверхность Земли с ее горными цепями и долинами. Весть об этих открытиях быстро разошлась среди образованной публики, вызывая восторг и восхищение. Когда Галилей направил свой телескоп на звезды, в особенности на Млечный Путь, он увидел мириады новых звезд, не известных ранее. Яркие планеты предстали маленькими дисками, тогда как звезды остались туманными точками, что указывало на их значительно большую удаленность, как и предполагал Коперник. На Марсе и Сатурне, которые располагались тогда на небе близко к Солнцу и были максимально удалены от Земли, не удалось заметить деталей. Зато Юпитер продемонстрировал поразительную и совершенно анти- аристотелевскую картину. Изучая его матовый диск в телескоп, Галилей заметил рядом четыре спутника, обращающихся вокруг самого Юпитера. Он даже смог определить, какой из спутников обращается ближе к Юпитеру, а какой - дальше, и приблизительно установил их периоды обращения. Это открытие подкрепило гипотезу Коперника, показав, что обращение Луны вокруг Земли не есть уникальное явление. В июле 1610 Галилей обнаружил то, что принял за два спутника Сатурна, которые, в отличие от обращающихся вокруг планеты спутников Юпитера, постоянно держались по бокам от диска планеты и были едва различимы. Они исчезли в 1612, вновь появились в 1613 и стали похожи на "ручки". Это загадочное явление объяснил лишь в 1659 Х. Гюйгенс (1629-1695) как изменение внешнего вида кольца, окружающего планету. В изучении Венеры Галилей достиг большего. Осенью и зимой 1610-1611 он обнаружил, что Венера, подобно Луне, имеет цикл смены фаз. Поскольку Венера никогда не удаляется от Солнца более чем на 48°, а в сильно ущербленной и выпуклой фазах видна еще ближе к Солнцу, наблюдение полного цикла ее фаз пришлось проводить в сумерки и дневное время, что весьма непросто. Эта полная смена фаз окончательно сломила систему Птолемея, согласно которой Венера не может демонстрировать полного цикла фаз. Вскоре после обнародования наблюдений Галилея в практической астрономии перестали пользоваться системой Птолемея. В конце 1610 с помощью телескопа и аккуратно выполненных рисунков Галилей смог проследить перемещение пятен по диску Солнца. Перспективное искажение формы пятен при их приближении к лимбу Солнца и одинаковое время (ок. 14 сут), за которое они пересекали солнечный диск по параллельным траекториям, указывали, что пятна находятся на сферической поверхности самого Солнца. Их движение свидетельствовало о том, что Солнце вращается так же, как вся остальная Солнечная система Коперника. Слава Галилея и поддержка, полученная им от многих здравомыслящих ученых, вызвали недовольство и интриги со стороны приверженцев церкви и взглядов Аристотеля. В 1616 инквизиция осудила учение Коперника о том, что "Солнце неподвижно пребывает в центре мира, а Земля движется и вращается". Галилею пришлось заявить, что он не поддерживает это учение. Тем не менее с 1625 по 1630 он работал над "Диалогом о двух главнейших системах мира - птолемеевой и коперниковой" (Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano, 1632). Эта книга Галилея, написанная по-итальянски, а не на латыни, как было тогда принято, имеет форму диалога, в котором с полной очевидностью усматриваются Аристотель, сам автор и любопытствующий простак. Открытия с телескопом, изучение приливов и другие исследования Галилея, представленные в Диалоге, ясно показывают, что только гипотеза Коперника может объяснить все эти явления. В 1633 Галилея вызвали в инквизицию, судили и подвергли домашнему аресту до конца жизни. Его последний труд Беседы и математические доказательства, касающиеся двух новых наук (Discorsi e dimostrazioni mathematiche intorno a due nuove scienze attenenti alla meccanica, 1638) содержит систематическое изложение новой физики.

См. также ГАЛИЛЕЙ Галилео. Наблюдения Галилея с телескопом открыли новую эру в астрономии. Телескопы быстро распространились в Европе, где их модернизировали и использовали многие увлеченные и прилежные наблюдатели. За несколько десятилетий после первых открытий Галилея астрономы обнаружили в космосе бездну новых явлений. Они описали множество деталей на поверхности Луны, Марса, Юпитера и, немного позже, Сатурна, открыв при этом его кольца. Было исследовано движение четырех спутников Юпитера и обнаружены у него и Сатурна другие спутники. Удалось наблюдать фазы Венеры, хотя на ней и на маленьком Меркурии почти не было видно деталей. Телескоп не только помог увидеть новые объекты и явления, но и стал важным дополнением к традиционным приборам для измерения положений звезд и планет, что позволило измерять положения значительно точнее и было незамедлительно использовано при вычислении эфемерид.

СТАРИННЫЙ ТЕЛЕСКОП-РЕФРАКТОР

СТАРИННЫЙ ТЕЛЕСКОП-РЕФРАКТОР

Астрономия попала в круг правительственных интересов. Торговое, военное и научное мореплавание крайне нуждалось в точном определении долгот. В Париже (1667), Гринвиче (1675) и Берлине (1705) были основаны государственные обсерватории для составления точных таблиц положения навигационных звезд и движения Луны и планет, которыми могли бы пользоваться моряки.

См. также ОБСЕРВАТОРИЯ.

ЭПОХА НЬЮТОНА

Ньютон и гравитация. Замена небесных сфер Аристотеля кеплеровым движением планет по эллиптическим орбитам выдвинула на передний план вопрос о силах, удерживающих планеты на орбитах. Французский философ и математик Р.Декарт (1596-1650) предположил, что все пространство между телами заполнено тончайшей материей. Вихри этого вещества удерживают планеты на их орбитах, а все взаимодействия передаются путем прямого контакта.

См. также ДЕКАРТ Рене. В конце 1600-х годов в научных кругах Англии стали обсуждаться альтернативные теории тяготения. Поскольку было известно, что свет ослабляется пропорционально квадрату расстояния, несколько английских ученых, включая Э.Галлея (1656-1743), Р.Гука (1635-1702) и К.Рена (1632-1723), предположили, что могла бы существовать некая подобная сила взаимного притяжения тел. Ни один из них, однако, не дал математического решения этой проблемы.

См. также

ГАЛЛЕЙ Эдмунд;

ГУК Роберт;

РЕН Кристофер. В 1684 Галлей посетил И. Ньютона (1643-1727), чтобы обсудить проблему тяготения, и, увидев, что тот близок к ее решению, настоял на ускорении работ. Следующие три года Ньютон при поддержке Галлея почти непрерывно трудился над этой проблемой. Объединив исследования Галилея над падающими на Земле телами и кеплеровы законы планетных движений, Ньютон создал строгую теорию тяготения, действительно объединившую Солнце, Землю и планеты в единую систему. Ньютон изложил свои открытия в "Математических началах натуральной философии" (Philosophiae naturalis principia mathematica, 1687). Все наблюдаемые в Солнечной системе явления выводились в книге Ньютона с математической точностью из нескольких основных принципов и закона всемирного тяготения. Книга I - математическое описание движения свободного тела под влияние действующих на него сил - утверждает новые принципы механики. Она начинается с определения того, что теперь называют инерцией, массой и импульсом, а затем формулирует три знаменитых ньютоновых закона движения. Книга II - о движении тел в среде с сопротивлением - в основном опровергает теорию вихрей Декарта. В Книге III Ньютон применяет свою теорию гравитации фактически ко всем телам Солнечной системы - к планетам, Луне и другим спутникам,

Орфографический словарь

археоастроно́мия, -и

Синонимы к слову археоастрономия

сущ., кол-во синонимов: 1

Полезные сервисы

археограф

Толковый словарь

м.

Специалист в области археографии.

Толковый словарь Ушакова

АРХЕО́ГРАФ, археографа, муж. Ученый - специалист по археографии.

Толковый словарь Ожегова

АРХЕО́ГРАФ, -а, муж. Специалист по археографии.

Словарь существительных

АРХЕО́ГРАФ, -а, м

Специалист по археографии.

Д.С. Лихачев в молодости был археографом.

Энциклопедический словарь

АРХЕО́ГРАФ -а; м. Специалист по археографии.

Академический словарь

-а, м.

Специалист по археографии.

Орфографический словарь

архео́граф, -а

Словарь ударений

архео́граф

Формы слов для слова археограф

архео́граф, архео́графы, архео́графа, архео́графов, архео́графу, архео́графам, архео́графом, архео́графами, архео́графе, архео́графах

Морфемно-орфографический словарь

архе/о́/граф/.

Грамматический словарь

архео́граф мо 1a

Словарь иностранных слов

АРХЕОГРАФ (этим. см. предыд. сл.). Занимающийся отыскиванием, описанием и изданием письменных древностей.

Сканворды для слова археограф

- Учёный, изучающий рукописные, печатные и другие памятники.

Полезные сервисы

археограф-историк

Слитно. Раздельно. Через дефис

архео/граф-исто/рик, архео/графа-исто/рика

Полезные сервисы

археографическая комиссия

Энциклопедический словарь

Археографи́ческая коми́ссия - учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. С 1922 в АН (с 1956 при Отделении истории). Издаёт «Археографический ежегодник» (с 1958).

* * *

АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - АРХЕОГРАФИ́ЧЕСКАЯ КОМИ́ССИЯ, учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. В 1922-91 в АН СССР, с декабря 1991 в РАН (с 1956 при Отделении истории). Издает «Археографический ежегодник» (с 1958).

Большой энциклопедический словарь

АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - учреждение для сбора и публикации исторических документов. В 1834-1917 при Министерстве народного просвещения. В 1922-91 в АН СССР, с декабря 1991 в РАН (с 1956 при Отделении истории). Издает "Археографический ежегодник" (с 1958).

Гуманитарный словарь

АРХЕОГРАФИ́ЧЕСКАЯ КОМИ́ССИЯ - науч. учреждение, созд. в Петербурге в 1834 при Мин-ве нар. просвещения для изд. материалов, собранных в ходе археографич. эксп. В 1837 утверждена как самостоят. науч. учреждение. Издавала актовые мат-лы по истории разл. местностей России, предприняла первое систематич. изд. "Полного собрания рус. летописей" (с 1841), многотомной "Русской ист. б-ки" (с 1872). А. к. выявляла док. материалы по истории России в иностр. архивах, приобретала соотв. док-ты в России и за рубежом. В сер. 19 в. наряду с Петерб. А. к. возникли А. к. в Киеве, Вильне, Тифлисе (Кавказская). В 1826 образована А. к. при Моск. археологич. об-ве. В 1922 Петрогр. А. к. передана в ведение Рос. АН, в 1926 на ее базе созд. Ист.-археографич. комиссия при АН СССР (в 1931-36 - Ист.-археографич. ин-т). В 1956 по инициативе М. Н. Тихомирова созд. А. к. при Отделении истории АН СССР (ныне РАН). А. к. издает "Археографич. ежегодник".

Лит.: Библиографич. указ. изданий Археографии комиссии, 1836-1936, Л., 1985; Копанев А. И. К 150-летию Археографич. комиссии, в кн.: Вспомогат. ист. дисциплины, В. 16. Л., 1985.

Словарь иностранных слов

АРХЕОГРАФИЧЕСКАЯ КОМИССИЯ - в Петербурге, учреждение для рассмотрения и издания различных исторических актов и памятников. Учреждена Николаем I в 1834 г.

Полезные сервисы

археографический

Толковый словарь

прил.

1. соотн. с сущ. археография, связанный с ним

2. Свойственный археографии, характерный для неё.

Толковый словарь Ушакова

АРХЕОГРАФИ́ЧЕСКИЙ, археографическая, археографическое (филол.). прил. к археография. Археографическая комиссия.

Толковый словарь Ожегова

АРХЕОГРА́ФИЯ, -и, ж. Историческая дисциплина, занимающаяся описанием и изданием письменных памятников прошлого, а также научное собирание таких памятников.

Академический словарь

-ая, -ое.

прил. к археография.

Археографическая работа.

Орфографический словарь

археографи́ческий

Словарь ударений

археографи́ческий

Формы слов для слова археографический

археографи́ческий, археографи́ческая, археографи́ческое, археографи́ческие, археографи́ческого, археографи́ческой, археографи́ческих, археографи́ческому, археографи́ческим, археографи́ческую, археографи́ческою, археографи́ческими, археографи́ческом, археографи́ческ, археографи́ческа, археографи́ческо, археографи́чески

Морфемно-орфографический словарь

архе/о́/граф/и́ческ/ий.

Грамматический словарь

археографи́ческий п 3a✕~

Полезные сервисы

археография

Толковый словарь

ж.

Вспомогательная историческая дисциплина, занимающаяся теорией и методикой издания древних письменных памятников.

Энциклопедический словарь

АРХЕОГРА́ФИЯ -и; ж. [от греч. archаios - древний и graphō - пишу]. Вспомогательная историческая наука, занимающаяся собиранием, описанием и изданием древних письменных памятников.

Археографи́ческий, -ая, -ое. А-ая экспедиция.

* * *

археогра́фия (от архео... и ...графия), специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.

* * *

АРХЕОГРАФИЯ - АРХЕОГРА́ФИЯ (от греч. archaios - древний и графия), специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.

Большой энциклопедический словарь

АРХЕОГРАФИЯ (от архео... и ...графия) - специальная историческая дисциплина, занимающаяся собиранием, описанием и изданием рукописных, печатных и других памятников.

Гуманитарный словарь

АРХЕОГРА́ФИЯ (от греч. αρχεοζ - древний и γραφω - пишу) - спец. ист. дисциплина, имеющая целью поиск, описание и издание древних рукописей. В России А. развивается с 18 в., когда началось издание летописных и док. памятников. Крупную роль в развитии рус. А. сыграл Н. И. Новиков - издатель "Древней Рос. Вивлиофики". В нач. 19 в. существ. значение имела работа историков, группировавшихся вокруг гр. Н. П. Румянцева - создателя Румянцевского музея. Систематич. поиск древних рукописей начат с образованием Археографич. экспедиции, преобразованной в 1834 в Археографич. комиссию (см.). В 19 - нач. 20 в. изданы многие десятки томов ист. пам. в составе "Актов Археографич. экспедиции", "Актов исторических" и дополнений к ним, "Рус. ист. б-ки", "Сб. рус. ист. об-ва" и др. С 1841 ведется систематич. издание "Полн. собр. рус. летописей" (ПСРЛ) и "Писем и бумаг Петра Великого". После окт. 1917 археографич. деятельностью занимались учреждения АН СССР и ведущие высшие уч. заведения. Среди крупнейших рус. археографов - П. М. Строев, Н. В. Калачев, Н. П. Лихачев, А. А. Шахматов, А. С. Лаппо-Данилевский, С. Б. Веселовский, С. Н. Валк, И. А. Голубцов, Л. В. Черепнин. М. Н. Тихомиров и др.

Лит.: Корнева И. И., Тальман Е. М., Энштейн Д. М. История археографии дорев. России. М., 1969; Добрушин Е. М. История отеч. археографии: совр. проблемы и задачи изучения. М., 1989.

Сканворды для слова археография

- Наука, разрабатывающая основы издания исторических документов.

- Наука о методике издания письменных исторических источников.

Полезные сервисы