Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

физика твердого тела

Энциклопедия Кольера

ФИЗИКА ТВЕРДОГО ТЕЛА - раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика твердого тела - один из тех столпов, на которых покоится современное технологическое общество. В сущности, вся армия инженеров работает над наилучшим использованием твердых материалов при проектировании и изготовлении самых разнообразных инструментов, станков, механических и электронных компонентов, необходимых в таких областях, как связь, транспорт, компьютерная техника, а также фундаментальные исследования. Исследователя, работающего в области физики твердого тела, интересуют такие материалы, как металлы и сплавы, полупроводники, диэлектрики и магнитные материалы. Многие из них относятся к кристаллическим веществам: их атомы расположены так, что образуют правильную трехмерную решетку - периодическую структуру. Нарушения идеальной периодичности могут быть обусловлены химическими примесями, незаполненными (вакантными) атомными узлами, атомами внедренияпромежутках между узлами), а также дислокациями. Во многих случаях подобными нарушениями или отклонениями от строгой периодичности существенным образом определяются физические свойства кристаллических твердых тел. Управляя концентрацией подобных дефектов или целенаправленно создавая их, можно получать "наперед заданные" свойства твердых тел. Такая технология играет первостепенную роль, например, в области полупроводниковой микроэлектроники. Другой класс материалов, представляющий интерес для физики твердого тела, - это стеклообразные, или аморфные, материалы. Атомы в таких материалах располагаются в общем так же, как и в жидкостях, т.е. они упорядочены лишь в пределах нескольких межатомных расстояний от каждого атома, принятого за центральный. Иначе говоря, для стекол характерен ближний порядок в расположении атомов, а не дальний, как в кристаллической структуре.

См. также

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ;

ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ.

СВОЙСТВА ТВЕРДЫХ ТЕЛ

К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов, а также под воздействием различных излучений - света, рентгеновских лучей, пучков электронов, нейтронов и т.п. Значительная часть лабораторного оборудования, необходимая для изучения этих свойств, сама состоит из твердотельных устройств. Химические свойства твердых тел особенно существенны при изучении поверхностных явлений.

См. также

ХИМИЯ;

ХИМИЯ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ.

Структура. Твердое тело состоит из атомов. Само его существование указывает на наличие интенсивных сил притяжения, связывающих атомы воедино, и сил отталкивания, без которых между атомами не было бы промежутков. В результате таких взаимодействий атомы твердого тела частично теряют свои индивидуальные свойства, и именно этим объясняются новые, коллективные свойства системы атомов, которая называется твердым телом. Какова природа этих сил? Свободный атом состоит из положительно заряженного ядра и некоторого числа отрицательно заряженных электронов (масса которых значительно меньше массы ядра). Хорошо известные кулоновские (электрические) силы, действующие между заряженными частицами, создают притяжение между ядром и электронами, а также взаимное отталкивание между электронами. Поэтому твердое тело можно рассматривать как состоящее из системы взаимно отталкивающихся ядер и системы взаимно отталкивающихся электронов, причем обе эти системы притягиваются друг к другу. Физические свойства такого объекта определяются двумя фундаментальными физическими теориями - квантовой механикой и статистической механикой. Хотя характер взаимодействий между частицами известен, их необычайно большое число (ФИЗИКА ТВЕРДОГО ТЕЛА1022 ядер и еще больше электронов в 1 см3) не позволяет дать точное теоретическое описание твердого тела.

См. также

АТОМА СТРОЕНИЕ;

ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ;

КВАНТОВАЯ МЕХАНИКА;

СТАТИСТИЧЕСКАЯ МЕХАНИКА.

Использование моделей. В физике твердого тела обычно принимают упрощенные модели твердого тела и затем проводят вычисления их физических свойств. Модели должны быть достаточно простыми, для того чтобы было возможно их теоретическое описание, и в то же время достаточно сложными, для того чтобы они обладали исследуемыми свойствами. Например, для объяснения некоторых общих закономерностей электрической проводимости вполне подходит простая модель металла в виде системы положительных ионов, погруженных в газ подвижных электронов. Но оказалось крайне трудно построить подходящую физическую модель, которая позволила хотя бы качественно объяснить явление сверхпроводимости, открытое в 1911 голландским физиком Камерлинг-Оннесом. См. также ИОН.

Сверхпроводимость. Известно, что при низких температурах у многих металлов и сплавов необычайно повышается способность проводить электричество. (Электрический ток представляет собой упорядоченное движение электронов.) В 1956 американский физик Л. Купер пришел к выводу, что при определенных условиях электроны проводимости в металле могут образовывать слабо связанные пары. Именно эти куперовские пары лежат в основе знаменитой теории сверхпроводимости Бардина - Купера - Шриффера (БКШ), построенной в 1957; в 1972 эти три американских физика были удостоены Нобелевской премии. В сверхпроводящем состоянии вещество не оказывает сопротивления электрическому току. Поэтому сверхпроводящие вещества представляют большой интерес для энергетиков, которые рассчитывают с их помощью, например, передавать электрический ток на значительные расстояния без тепловых и иных потерь. Однако выше определенной (так называемой критической) температуры сверхпроводимость исчезает, и у металла вновь появляется электрическое сопротивление. В некоторых условиях сверхпроводимость разрушается также магнитным полем. Электрический ток, проходящий через сверхпроводник, создает на поверхности собственное магнитное поле, а потому существует верхний предел плотности сверхпроводящего тока, выше которого сверхпроводимость также разрушается. Все это, и в первую очередь низкие критические температуры, ограничивает возможности широкомасштабного применения сверхпроводников. Сверхпроводники необходимо непрерывно охлаждать жидким водородом, а еще лучше жидким гелием. Тем не менее, сверхпроводящие обмотки (например, из сплавов титана с ниобием) уже нашли широкое применение в электромагнитах. Продолжается поиск новых материаловтом числе органических кристаллов и полимеров) с более высокими критическими температурами, а также возможностей дальнейшего применения сверхпроводников. Специалисты надеются, что широкомасштабное применение сверхпроводников в электродвигателях и генераторах промышленного производства начнется уже в ближайшие годы. Особенно захватывающие перспективы сулит применение сверхпроводников в рельсовом транспорте. При движении магнита относительно проводника в проводнике индуцируются вихревые токи, которые в свою очередь порождают магнитные поля, отталкивающие движущийся магнит. Снабдив, например, поезд сверхпроводящим магнитом и используя рельс в качестве проводника, можно добиться эффекта магнитного подвешивания (левитации). Такие поезда на магнитной подвеске должны, как считается, иметь ряд преимуществ перед обычными поездами и поездами на воздушной подушке.

См. также СВЕРХПРОВОДИМОСТЬ.

Эффект Джозефсона. Другое направление развития в области сверхпроводимости было инициировано работой английского физика Б.Джозефсона, который в 1962 предсказал возможность удивительных эффектов, связанных с прохождением (квантовомеханическим туннелированием) куперовских электронных пар от одного сверхпроводника к другому сквозь тонкий слой изолирующего вещества. Эксперименты вскоре подтвердили его предсказания. Одним из интересных свойств такого перехода (называемого джозефсоновским) является то, что ток куперовских пар через него возможен даже в отсутствие разности потенциалов между сверхпроводниками. (Согласно классическим представлениям, электрический ток возникает лишь между точками с разными значениями потенциала.) Однако еще более разительный эффект состоит в том, что постоянная разность потенциалов, приложенная к джозефсоновскому переходу, вызывает возникновение переменного тока через переход. Частота этого тока дается простой формулой n = 2eV/h, где 2e - заряд куперовской электронной пары, V - приложенное напряжение, а h - фундаментальная константа, называемая постоянной Планка.

См. также ПЛАНКА ПОСТОЯННАЯ. Неудивительно, что за теоретическими предсказаниями Джозефсона последовала волна исследований в физике и технике. Устройства, основанные на эффекте Джозефсона, нашли применение в качестве сверхчувствительных детекторов в самых различных областях от радиоастрономии до биомедицинских приложений. В 1973 Джозефсону была присуждена Нобелевская премия за вклад в физику твердого тела.

См. также СВЕРХПРОВОДИМОСТЬ.

Транзисторы. Возможно, наибольшее влияние на развитие современной физики твердого тела оказали открытия американских физиков, сделанные в 1949: транзистора с точечными (Дж.Бардин, У.Браттейн) и плоскостными (У.Шокли) переходами. Эти открытия были сделаны в ходе исследования электрических свойств особого класса твердых тел, называемых полупроводниками.

См. также ТРАНЗИСТОР. Транзистор был первым полупроводниковым устройством, способным выполнять такие функции вакуумного триода (состоящего из анода, катода и сетки), как усиление и модуляция. Транзистор обладал несомненными преимуществами перед электронной лампой, поскольку не нуждался в токе накаливания катода, имел значительно меньшие размеры и массу, а также больший срок службы. Поэтому транзисторы вскоре вытеснили электронные лампы и произвели революцию в электронной промышленности. Второй этап этой революции соответствовал переходу от отдельных транзисторов к интегральным микросхемам. Такая микросхема содержит на поверхности монокристалла кремния (чипа) площадью 1 мм2 многие тысячи схемных компонентов. Электротехнику на микроскопическом и атомном уровне обычно называют микроэлектроникой. За свои фундаментальные исследования в области полупроводников и открытие транзисторного эффекта в веществах типа германия и кремния Шокли, Бардин и Браттейн были удостоены Нобелевской премии в 1956.

См. также

ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ;

ИНТЕГРАЛЬНАЯ СХЕМА;

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ. Широкий диапазон свойств твердых тел, широта области их технического применения, а также практически неисчерпаемые возможности создания новых твердых химических соединений выдвигают физику твердого тела на одно из первых мест в таких дисциплинах, как физика, химия, металлургия, различные области инженерной практики, а также биологические и медицинские науки. Физика твердого тела является самой крупной из областей физики; в ней занята примерно четверть всех работающих в физике исследователей, и ей посвящена соответствующая доля научных публикаций. Особенно ценны междисциплинарный характер физики твердого тела и плодотворное влияние, оказываемое ее теорией, экспериментами и практическими приложениями как на чистую науку, так и на технику.

Симметрия и классификация кристаллов. Кристаллографиейнесколько ограниченном смысле слова) называется наука, описывающая геометрические свойства кристаллов и их классификацию на основе понятия симметрии. Изучение кристаллической структуры лежит в основе физики твердого тела. Основная сумма данных кристаллографии была накоплена уже к концу 19 в.

См. также КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ. Образцы природных минералов, например берилла, алмаза или каменной соли, имеют плоские грани и прямые ребра, определяющие их типичный внешний вид (рис. 1). Такие вещества принято называть кристаллами, хотя еще до конца средних веков этот термин применялся исключительно к кварцу. Первые минералоги интересовались прежде всего именно формой кристаллов, т.е. их морфологией. Н.Стенон, датский лекарь при дворе великого герцога Тосканы и исследователь в области геологии, в 1669 открыл закон постоянства углов между гранями. Согласно закону Стенона, углы между соответствующими гранями кристалла данного вещества одни и те же для всех его кристаллов. Справедливость этого закона была многократно подтверждена, в особенности после многочисленных измерений, проведенных Р.де Лилем в 1772. Задолго до этого такие ученые, как Кеплер, Декарт, Гюйгенс и Гук, высказывали предположения о том, что внешние формы кристаллов отражают правильное (регулярное) внутреннее расположение сферических или эллипсоидальных частиц. В 1782 Р. Аюи обобщил эти представления. Он считал, что трехмерный кристалл, имеющий форму параллелепипеда, состоит из одинаковых "кирпичиков". Исходя из такого представления, Х.Вейсс в 1808 ввел систему кристаллографических осей, определяемую тремя векторами a, b, c, которые соответствуют трем сторонам "кирпичика" Аюи, т.е. элементарной ячейки. Бесконечное множество точек (узлов), положение которых определяется вектором R = n1a + n2b + n3c, где n1, n2 и n3 - целые числа, называется пространственной решеткой. Такая решетка - не кристалл, а чисто математический объект. Однако с ее помощью можно построить кристалл, если в каждый ее узел поместить повторяющийся элемент, состоящий из одного или нескольких атомов (рис. 2). И наоборот, можно построить пространственную решетку, соответствующую кристаллу, если выбрать произвольную точку (узел) P1, а затем найти все остальные точки P2, P3, ..., обладающие тем свойством, что окружение этих точек выглядит во всех отношениях в точности так же, как оно выглядит из точки P1. Множество точек P1, P2, P3, ... в таком случае образует пространственную решетку кристалла. Классификация решеток и кристаллов на основе понятия симметрии требует строгих определений. Операцией симметрии называется такая операция, которая, будучи произведена над твердым телом, оставляет это тело неизменным, и тогда это тело называется инвариантным относительно этой операции. (Например, сфера инвариантна по отношению к вращению вокруг любой оси, перемещению из одного места в другое, отражению в зеркале и т.п.) Если двумерную решетку на рис. 2 подвергнуть перемещению, задаваемому вектором a, то мы вновь получим исходную решетку; то же справедливо, разумеется, и по отношению к перемещению, задаваемому вектором b. Вообще говоря, решетка с элементарной ячейкой, заданной тремя векторами a, b, c, инвариантна относительно всех операций трансляции (переноса), определяемых равенством T = n1a + n2b = n3c, где n1, n2, n3 - целые числа. Совокупность всех таких операций называется трансляционной группой данной решетки.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 2. <a href='/dict/кристалл' class='wordLink' target='_blank'>КРИСТАЛЛ</a> <a href='/dict/можно' class='wordLink' target='_blank'>можно</a> <a href='/dict/построить' class='wordLink' target='_blank'>построить</a>, <a href='/dict/поместив' class='wordLink' target='_blank'>поместив</a> в <a href='/dict/каждую' class='wordLink' target='_blank'>каждую</a> <a href='/dict/точку' class='wordLink' target='_blank'>точку</a> <a href='/dict/пространственной' class='wordLink' target='_blank'>пространственной</a> <a href='/dict/решетки' class='wordLink' target='_blank'>решетки</a> <a href='/dict/атом' class='wordLink' target='_blank'>атом</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/группу' class='wordLink' target='_blank'>группу</a> <a href='/dict/атомов' class='wordLink' target='_blank'>атомов</a>.

Рис. 2. КРИСТАЛЛ можно построить, поместив в каждую точку пространственной решетки атом или группу атомов.

Существуют и другие операции симметрии для пространственной решетки, а именно те, при которых данная точка остается фиксированной (неподвижной). Подобные операции называются точечными и включают в себя вращения вокруг осей, проходящих через данную точку, а также зеркальные отражения в плоскостях, проходящих через данную точку. В случае двумерной решетки, изображенной на рис. 2, можно представить себе, например, ось, проходящую через какую-либо точку решетки перпендикулярно плоскости рисунка. Поворот вокруг этой оси на 180° не меняет решетку. Принято говорить, что такая ось обладает симметрией 2-го порядка. В общем случае тело обладает осью симметрии n-го порядка, если поворот тела на угол (360°/n) оставляет тело неизменным. Например, каждая пространственная диагональ куба является для него осью симметрии 3-го порядка, а ось, проведенная через центр куба перпендикулярно какой-либо паре его граней, является осью симметрии 4-го порядка. Полный набор операций симметрии, возможных при условии неподвижности данной точки и оставляющих тело неизменным, называется точечной группой этого тела. Для пространственной решетки или кристалла точечная симметрия ограничена требованием выполнения также трансляционной симметрии. Это сокращает число возможных осей вращения до четырех, обладающих соответственно симметрией 2-, 3-, 4- и 6-го порядков. Рисунок 3 поясняет, почему, например, решетка не может обладать осью симметрии 5-го порядка: плоскость нельзя покрыть пятиугольниками.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 3. <a href='/dict/пятиугольники' class='wordLink' target='_blank'>ПЯТИУГОЛЬНИКИ</a> не <a href='/dict/могут' class='wordLink' target='_blank'>могут</a> <a href='/dict/заполнить' class='wordLink' target='_blank'>заполнить</a> <a href='/dict/всю' class='wordLink' target='_blank'>всю</a> <a href='/dict/плоскость' class='wordLink' target='_blank'>плоскость</a>.

Рис. 3. ПЯТИУГОЛЬНИКИ не могут заполнить всю плоскость.

Существует лишь семь различных точечных групп для пространственных решеток; ими определяются семь кристаллических систем, или сингоний. Каждая сингония может быть охарактеризована видом элементарной ячейки, т.е. углами a, b, g между осями a, b, c и соотношением длин этих осей. Классификация соответствующих типов элементарных ячеек и наименования соответствующих кристаллических сингоний приведены ниже; обозначения ребер и углов ячеек соответствуют рис. 4.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 4. <a href='/dict/элементарная' class='wordLink' target='_blank'>ЭЛЕМЕНТАРНАЯ</a> <a href='/dict/ячейка' class='wordLink' target='_blank'>ЯЧЕЙКА</a>, <a href='/dict/основной' class='wordLink' target='_blank'>основной</a> <a href='/dict/кирпичик' class='wordLink' target='_blank'>кирпичик</a> <a href='/dict/кристалла' class='wordLink' target='_blank'>кристалла</a>.

Рис. 4. ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА, основной "кирпичик" кристалла.

Полная группа симметрии, или пространственная группа кристалла, является совокупностью всех операций симметрии (точечных операций, трансляций, а также их всевозможных комбинаций), по отношению к которым решетка инвариантна. Существует 14 различных пространственных групп, которыми может обладать решетка; им соответствуют 14 различных пространственных решеток (рис. 5). Впервые эти решетки были описаны Браве в 1848 на основе тщательного геометрического анализа и носят его имя. (Каждая решетка Браве принадлежит к одной из семи кристаллических сингоний.)

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 5. <a href='/dict/элементарные' class='wordLink' target='_blank'>ЭЛЕМЕНТАРНЫЕ</a> <a href='/dict/ячейки' class='wordLink' target='_blank'>ЯЧЕЙКИ</a> <a href='/dict/всех' class='wordLink' target='_blank'>всех</a> 14 <a href='/dict/основных' class='wordLink' target='_blank'>основных</a> <a href='/dict/видов' class='wordLink' target='_blank'>видов</a>.

Рис. 5. ЭЛЕМЕНТАРНЫЕ ЯЧЕЙКИ всех 14 основных видов.

Переходя от формального теоретического описания симметрии решетки к описанию реального кристалла, необходимо учитывать также симметрию атомов или атомных групп, помещаемых в каждый узел решетки. Тогда оказывается, что для кристаллов существует в общей сложности 230 различных пространственных групп (по-прежнему при 14 различных типах решеток Браве). Эти группы были получены и описаны на основе теории групп Е.С.Федоровым и С.Шенфлисом в 1891. Интересное развитие теория симметрии кристаллов получила применительно к магнитным кристаллам. В магнитно-упорядоченном состоянии периодичность определяется не только положением атомов, но и направлением их магнитных моментов. Поэтому число магнитных пространственных групп должно быть намного больше 230. Полное число магнитных пространственных групп симметрии равно 1651. Для описания симметрии макроскопических свойств кристалла выделяют определенные совокупности преобразований симметрии, составляющие так называемый "магнитный кристаллический класс" кристалла. Всего существует 122 таких класса.

См. также МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА. Хотя кристаллография сама по себе является довольно абстрактной областью науки, симметрия играет важную роль при описании физических свойств твердых тел. Например, трансляционная симметрия кристаллов позволила развить весьма общие теории, описывающие распространение волн в кристаллах, в том числе упругих волн и волн, связанных с движением электронов. Точечная симметрия также оказывает определяющее влияние на физические свойства кристаллов. В качестве примера можно указать на наличие сегнетоэлектрических свойств, в отсутствие внешнего электрического поля, лишь у кристаллов, не обладающих центром симметрии. Анизотропия физических свойств кристаллов, т.е. зависимость этих свойств от направления, также определяется условиями симметрии. Коротко можно сказать, что кристаллография отражает фундаментальный аспект физики твердого тела.

См. также

АТОМА СТРОЕНИЕ;

СТАТИСТИЧЕСКАЯ МЕХАНИКА;

СЕГНЕТОЭЛЕКТРИЧЕСТВО.

Кристаллическая структура и дифракция. Экспериментальное исследование расположения атомов в кристаллах стало возможно лишь после открытия Рентгеном в 1895 рентгеновского излучения. Чтобы проверить, является ли это излучение действительно одним из видов электромагнитного излучения, Лауэ в 1912 посоветовал Фридриху и Книппингу пропустить рентгеновский пучок через кристалл и посмотреть, возникнет ли дифракционная картина. Опыт дал положительный результат. В основе опыта лежала аналогия с хорошо известным явлением дифракции в обычной оптике. Когда пучок света проходит через ряд малых отверстий, отстоящих друг от друга на расстояния, сравнимые с длиной световой волны, на экране наблюдается интерференционная (или, что в данном случае то же, дифракционная) картина из чередующихся светлых и темных областей. Точно так же, когда рентгеновские лучи, длина волны которых сравнима с расстояниями между атомами кристалла, рассеиваются на этих атомах, на фотопластинке возникает дифракционная картина. Суть явления дифракции поясняется на рис. 6, где изображены плоские волны, падающие на ряд рассеивающих центров. Под действием падающего пучка каждый такой центр испускает сферические волны; эти волны интерферируют друг с другом, что приводит к образованию волновых фронтов, распространяющихся не только в направлении первоначального падающего пучка, но и в некоторых других направлениях. Так называемая картина дифракции Лауэ (лауэграмма), полученная при прохождении пучка рентгеновского излучения сквозь тонкую кристаллическую пластинку минерала берилла, представлена на рис. 7. Картина дифракции ясно показывает наличие вращательной оси симметрии 6-го порядка, что характерно для гексагональной кристаллической структуры. Таким образом, эта картина несет важную информацию о структуре кристалла, на котором происходит дифракция, что и было, в частности, предметом изысканий У.Брэгга и его сына У.Брэгга.

См. также

ОПТИКА;

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ;

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 6. <a href='/dict/волновые' class='wordLink' target='_blank'>ВОЛНОВЫЕ</a> <a href='/dict/фронты' class='wordLink' target='_blank'>ФРОНТЫ</a> <a href='/dict/различных' class='wordLink' target='_blank'>различных</a> <a href='/dict/порядков' class='wordLink' target='_blank'>порядков</a>, <a href='/dict/которые' class='wordLink' target='_blank'>которые</a> <a href='/dict/образуют' class='wordLink' target='_blank'>образуют</a> <a href='/dict/световые' class='wordLink' target='_blank'>световые</a> <a href='/dict/волны' class='wordLink' target='_blank'>волны</a>, <a href='/dict/дифрагировавшие' class='wordLink' target='_blank'>дифрагировавшие</a> на <a href='/dict/атомах' class='wordLink' target='_blank'>атомах</a> <a href='/dict/кристалла' class='wordLink' target='_blank'>кристалла</a> (<a href='/dict/показанных' class='wordLink' target='_blank'>показанных</a> <a href='/dict/жирными' class='wordLink' target='_blank'>жирными</a> <a href='/dict/точками' class='wordLink' target='_blank'>точками</a>).

Рис. 6. ВОЛНОВЫЕ ФРОНТЫ различных порядков, которые образуют световые волны, дифрагировавшие на атомах кристалла (показанных жирными точками).

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 7. <a href='/dict/дифракционная' class='wordLink' target='_blank'>ДИФРАКЦИОННАЯ</a> <a href='/dict/картина' class='wordLink' target='_blank'>КАРТИНА</a> <a href='/dict/лауэ' class='wordLink' target='_blank'>ЛАУЭ</a>, <a href='/dict/обнаруживающая' class='wordLink' target='_blank'>обнаруживающая</a> <a href='/dict/ось' class='wordLink' target='_blank'>ось</a> <a href='/dict/симметрии' class='wordLink' target='_blank'>симметрии</a> 6-го <a href='/dict/порядка' class='wordLink' target='_blank'>порядка</a> (<a href='/dict/получена' class='wordLink' target='_blank'>получена</a> <a href='/dict/пропусканием' class='wordLink' target='_blank'>пропусканием</a> <a href='/dict/рентгеновского' class='wordLink' target='_blank'>рентгеновского</a> <a href='/dict/излучения' class='wordLink' target='_blank'>излучения</a> <a href='/dict/сквозь' class='wordLink' target='_blank'>сквозь</a> <a href='/dict/тонкий' class='wordLink' target='_blank'>тонкий</a> <a href='/dict/кристалл' class='wordLink' target='_blank'>кристалл</a> <a href='/dict/берилла' class='wordLink' target='_blank'>берилла</a>).

Рис. 7. ДИФРАКЦИОННАЯ КАРТИНА ЛАУЭ, обнаруживающая ось симметрии 6-го порядка (получена пропусканием рентгеновского излучения сквозь тонкий кристалл берилла).

На основе явления дифракции рентгеновского излучения отец и сын Брэгги создали необычайно ценный экспериментальный метод рентгеноструктурного анализа кристаллов. Их работы знаменуют собой начало современной физики твердого тела. Соответствующее весьма сложное автоматизированное оборудование стало теперь обычным в лабораториях по физике твердого тела. Благодаря таким рентгеновским установкам и компьютерам определение расположения атомов даже в сложном кристалле стало почти рутинным делом. В 1914 Лауэ был удостоен за свои достижения Нобелевской премии; отец и сын Брэгги разделили такую же награду годом позднее. Мощь рентгеноструктурного анализа основана на его высокой избирательности. Например, если монохроматический пучок рентгеновского излучения падает в произвольном направлении на монокристалл, можно наблюдать выходящий (но не дифрагированный) пучок в том же направлении. Дифрагированные пучки возникают лишь при нескольких строго определенных (дискретных) углах падения относительно кристаллографических осей. Это условие лежит в основе метода вращения кристалла, в котором допускается вращение монокристалла относительно определенной оси, причем точно определяются те направления, для которых наблюдается дифракция. В других экспериментах могут использоваться порошкообразные кристаллические образцы и монохроматический пучок; - такой метод носит название Дебая - Шеррера. В этом случае имеется непрерывный спектр ориентаций отдельных кристаллитов, но достаточно интенсивные дифрагированные пучки дают лишь кристаллиты с определенной ориентацией. Порошковый метод не требует выращивания крупных монокристаллов, в чем и состоит его преимущество перед методами Лауэ и вращения кристалла. В методе Лауэ используются монокристалл и пучок рентгеновского излучения, обладающий непрерывным спектром, так что кристалл как бы сам выбирает подходящие длины волн для образования дифракционных картин (рис. 7). Какого же рода информацию о структуре кристалла может дать рентгеноструктурный анализ? Рентгеновское излучение - это электромагнитные волны, электрические поля которых взаимодействуют с заряженными частицами, а именно с электронами и атомами твердого тела. Поскольку масса электронов значительно меньше массы ядра, рентгеновское излучение эффективно рассеивается только электронами. Таким образом, рентгенограмма дает информацию о распределении электронов. Зная направления, в которых дифрагировало излучение, можно определить тип симметрии кристалла или кристаллический класс (кубический, тетрагональный и т.п.), а также длины сторон элементарной ячейки. По относительной интенсивности дифракционных максимумов можно определить положение атомов в элементарной ячейке. По существу дифракционная картина представляет собой математически преобразованную картину распределения электронов в кристалле - ее так называемый фурье-образ. Следовательно, она несет информацию и о структуре химических связей между атомами. Например, по рентгенограмме можно судить, действительно ли поваренная соль (NaCl) составлена из положительных и отрицательных ионов, а также о том, где находятся электроны в таком веществе, как германий. Наконец, распределение интенсивности в одном дифракционном максимуме дает информацию о размере кристаллитов, а также о несовершенствах (дефектах) решетки, механических напряжениях и других особенностях кристаллической структуры.

См. также ХИМИЯ. Хотя рентгеноструктурный анализ является старейшим методом изучения твердых тел на атомном уровне, он продолжает развиваться и совершенствоваться. Одно из таких усовершенствований состоит в применении электронных ускорителей в качестве мощных источников рентгеновского излучения - синхротронного излучения. Синхротрон - это ускоритель, который обычно используется в ядерной физике для разгона электронов до очень высоких энергий

(см. также УСКОРИТЕЛЬ ЧАСТИЦ).

Электроны создают электромагнитное излучение в диапазоне от ультрафиолетового до рентгеновского излучения. В сочетании с недавно разработанными твердотельными детекторами частиц эти новые источники смогут, как ожидается, дать много новой детальной информации о твердых телах.

См. также ДЕТЕКТОРЫ ЧАСТИЦ. В исследованиях в области физики твердого тела используется дифракция не только рентгеновского излучения, но и электронов и нейтронов. Возможность дифракции электронов и нейтронов основана на том, что частица, движущаяся со скоростью v, ведет себя как волна с длиной волны де Бройля l = h/mv, где h - постоянная Планка, m - масса частицы. Поскольку электроны заряжены, они интенсивно взаимодействуют с электронами и ядрами твердого тела. Поэтому, в отличие от рентгеновского излучения, они проникают лишь в тонкий поверхностный слой твердого тела. Но как раз это ограничение делает их весьма подходящими для изучения именно поверхностных свойств твердого тела.

См. также

АТОМ;

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ. Нейтроны были открыты в 1932. Четыре года спустя их волновая природа была подтверждена дифракционными экспериментами. Использование нейтронов в качестве средства исследования твердых тел стало возможным после создания ядерных реакторов, в которых, начиная примерно с 1950, создавались плотности потока нейтронов порядка 10 12 нейтрон/см2*с. Современные реакторы обеспечивают потоки, в тысячи раз более интенсивные.

См. также ЯДЕР ДЕЛЕНИЕ. Нейтроны, будучи нейтральными частицами, взаимодействуют только с ядрами твердого тела (по крайней мере, в немагнитных материалах). Это свойство существенно по ряду причин. Поскольку ядра чрезвычайно малы по сравнению с размерами атома, а взаимодействие между ядрами и падающими нейтронами является короткодействующим, нейтронный пучок обладает большой проникающей способностью и может быть использован для исследования кристаллов толщиной до нескольких сантиметров. Кроме того, нейтроны интенсивно рассеиваются ядрами как тяжелых, так и легких элементов. В противоположность этому рентгеновское излучение рассеивается электронами, а потому для него рассеивающая способность атомов увеличивается с возрастанием числа электронов, т.е. атомного номера элемента. Следовательно, положение атомов легких элементов в кристалле можно гораздо точнее определять методом нейтронной, а не рентгеновской дифракции. Это в особенности относится к ядрам атомов водорода, или, что эквивалентно ионам водорода, - протонам. Протоны могут быть обнаружены методом дифракции нейтронов, но не рентгеновского излучения, поскольку они не содержат электронов. Это свойство нейтронов приобретает особое значение при изучении веществ, обладающих водородными связями. Подобные связи возникают не только в неорганических веществах, но и, в частности, в биологических материалах (например, молекулах ДНК).

См. также НУКЛЕИНОВЫЕ КИСЛОТЫ. Нейтронные пучки играют важную роль при изучении твердых тел, поскольку нейтроны и ядра атомов имеют сравнимую массу. Поэтому при нейтронной бомбардировке твердого тела нейтроны могут возбуждатьпоглощать) решеточные волны, т.е. упругие волны, распространяющиеся в системе ядер кристалла. (Звуковая волна тоже является решеточной.) В таких неупругих столкновениях нейтрон теряет (или приобретает) энергию и импульс. Изменения этих величин могут быть измерены; они дают много детальной информации о динамических свойствах твердых тел. Таким образом, эксперименты по рассеянию нейтронов очень важны для исследования колебаний атомов в твердых телах. Наконец, дифракция нейтронов играет важную роль в изучении магнитных материалов. Хотя у нейтронов нет электрического заряда, они имеют дипольный магнитный момент, подобный стрелке компаса

(см. также МАГНИТЫ И МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА).

Поэтому нейтрон способен "видеть" магнитный атом в том смысле, что он взаимодействует с суммарным магнитным моментом всех электронов в атоме. Пучок нейтронов, направляемый на магнитный кристалл, рассеивается ядрами, а также "магнитными" электронами. Эти два вида рассеяния дают информацию о кристаллической и магнитной структуре. Подобные эксперименты позволили обнаружить существование в твердых телах магнитно-упорядоченных структур - от обычной параллельной ориентации магнитных моментов в ферромагнетике (например, в железе) до сложных геликоидальных структур в редкоземельных металлах и их соединениях.

См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.

Химические связи и физические свойства. Свободный атом состоит из положительно заряженного ядра и некоторого числа отрицательно заряженных электронов, движущихся вокруг него по своим орбитам. В соответствии с законами квантовой механики электроны в атоме распределены по оболочкам, схематически изображенным на рис. 8 для атома натрия. Два ближайших к ядру электрона образуют K-оболочку, следующие восемь электронов - L-оболочку, а единственный внешний электрон - М-оболочку. Электронное облако простирается от ядра на расстояния, измеряемые ангстремами (1 = 10-10 м), оно же определяет эффективный размер атома, который, вообще говоря, не имеет резкой границы. Электроны внутренних оболочек сильно связаны и хорошо локализованы в кулоновском (электрическом) поле ядра. Электроны же внешней оболочки связаны слабее, поскольку действующее на них кулоновское поле ядра частично экранировано (ослаблено) внутренними электронами. Когда свободные атомы сближаются и образуют твердое тело (кристалл), внешние (валентные) электроны оказываются значительно более восприимчивыми к влиянию соседних атомов, чем внутренние (электроны остова). Волновые функции (орбитали) электронов остова в твердом теле почти такие же, как и у свободного атома. Орбитали же валентных электронов атомов твердого тела перестраиваются таким образом, чтобы его полная энергия была меньше суммы энергий отдельных атомов, чем и обеспечивается необходимая энергия связи твердого тела. Таким образом, твердое тело можно рассматривать как состоящее из большого числа жестких ионных остовов (ядер с электронами внутренних оболочек) и единой системы валентных электронов.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 8. <a href='/dict/модель' class='wordLink' target='_blank'>МОДЕЛЬ</a> <a href='/dict/атома' class='wordLink' target='_blank'>АТОМА</a> <a href='/dict/натрия' class='wordLink' target='_blank'>НАТРИЯ</a>: в <a href='/dict/центре' class='wordLink' target='_blank'>центре</a> <a href='/dict/расположено' class='wordLink' target='_blank'>расположено</a> <a href='/dict/ядро' class='wordLink' target='_blank'>ядро</a>, <a href='/dict/вокруг' class='wordLink' target='_blank'>вокруг</a> <a href='/dict/него' class='wordLink' target='_blank'>него</a> - <a href='/dict/электроны' class='wordLink' target='_blank'>электроны</a> К-, L- и <a href='/dict/м-оболочек' class='wordLink' target='_blank'>М-оболочек</a>.

Рис. 8. МОДЕЛЬ АТОМА НАТРИЯ: в центре расположено ядро, вокруг него - электроны К-, L- и М-оболочек.

Таким образом, потеря индивидуальности атомами, составляющими твердое тело, сводится лишь к коллективизации валентных электронов. В зависимости от того, как распределены валентные электроны между ионными остовами и в промежутках между ними, различают четыре основных типа химической связи: ван-дер-ваальсова, ионная, металлическая и ковалентная. Характером связи в значительной степени определяются физические свойства твердого тела. Хотя для каждого из описываемых ниже типов связей имеются свои "типичные представители" среди реальных веществ, большинство твердых тел попадает в ту или иную промежуточную категорию.

Ван-дер-ваальсовские кристаллы. Самые простые из известных твердых тел - кристаллы инертных газов неона, аргона, криптона и ксенона

(см. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ).

Электронная структура свободных атомов этих газов имеет конфигурацию так называемых замкнутых оболочек, отличающуюся исключительной устойчивостью. Например, неон имеет заполненную К-оболочку из двух электронов и заполненную L-оболочку из восьми электронов; эта конфигурация соответствует максимальному числу электронов в каждой оболочке, разрешенному правилами квантовой механики. На устойчивость конфигурации электронов в кристаллах инертных газов указывают высокие значения энергии ионизации, необходимой для удаления одного из внешних электронов. Такая устойчивость означает, что у атомов инертных газов нет валентных электронов в обычном смысле этого слова. Действительно, даже внешние электроны могут рассматриваться как электроны остова, сильно связанные с ядром. Поэтому электронная структура атомов в твердом теле остается практически такой же, как и у свободных атомов. Поскольку суммарный электрический заряд атомов равен нулю и все электроны сильно связаны с соответствующими ядрами, возникает вопрос, каким образом эти атомы вообще связываются в твердое тело? Дело в том, что между нейтральными атомами существуют слабые силы притяжения, обусловленные взаимодействием электрических диполей, которые

Полезные сервисы

электронный микроскоп

Энциклопедия Кольера

ЭЛЕКТРОННЫЙ МИКРОСКОП - прибор, который позволяет получать сильно увеличенное изображение объектов, используя для их освещения электроны. Электронный микроскоп (ЭМ) дает возможность видеть детали, слишком мелкие, чтобы их мог разрешить световой (оптический) микроскоп. ЭМ - один из важнейших приборов для фундаментальных научных исследований строения вещества, особенно в таких областях науки, как биология и физика твердого тела. Существуют три основных вида ЭМ. В 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), в 1950-х годах - растровый (сканирующий) электронный микроскоп (РЭМ), а в 1980-х годах - растровый туннельный микроскоп (РТМ). Эти три вида микроскопов дополняют друг друга в исследованиях структур и материалов разных типов.

ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

ОПЭМ во многом подобен световому микроскопу см. МИКРОСКОП, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор (см. ниже), ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка -100 000 В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором (см. ЭЛЕКТРОННАЯ ПУШКА). Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.

Электронная оптика. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое - оптическими линзами. Принцип действия магнитной линзы поясняется схемой (рис. 1). Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Поскольку оптическая сила такой линзы, т.е. способность фокусировать электроны, зависит от напряженности магнитного поля вблизи оси, для ее увеличения желательно сконцентрировать магнитное поле в минимально возможном объеме. Практически это достигается тем, что катушку почти полностью закрывают магнитной "броней" из специального никель-кобальтового сплава, оставляя лишь узкий зазор в ее внутренней части. Создаваемое таким образом магнитное поле может быть в 10-100 тыс. раз более сильным, чем магнитное поле Земли на земной поверхности.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 1. <a href='/dict/магнитная' class='wordLink' target='_blank'>МАГНИТНАЯ</a> <a href='/dict/линза' class='wordLink' target='_blank'>ЛИНЗА</a>. <a href='/dict/витки' class='wordLink' target='_blank'>Витки</a> <a href='/dict/провода' class='wordLink' target='_blank'>провода</a>, по <a href='/dict/которым' class='wordLink' target='_blank'>которым</a> <a href='/dict/проходит' class='wordLink' target='_blank'>проходит</a> <a href='/dict/ток' class='wordLink' target='_blank'>ток</a>, <a href='/dict/фокусируют' class='wordLink' target='_blank'>фокусируют</a> <a href='/dict/пучок' class='wordLink' target='_blank'>пучок</a> <a href='/dict/электронов' class='wordLink' target='_blank'>электронов</a> <a href='/dict/так' class='wordLink' target='_blank'>так</a> же, <a href='/dict/как' class='wordLink' target='_blank'>как</a> <a href='/dict/стеклянная' class='wordLink' target='_blank'>стеклянная</a> <a href='/dict/линза' class='wordLink' target='_blank'>линза</a> <a href='/dict/фокусирует' class='wordLink' target='_blank'>фокусирует</a> <a href='/dict/световой' class='wordLink' target='_blank'>световой</a> <a href='/dict/пучок' class='wordLink' target='_blank'>пучок</a>.

Рис. 1. МАГНИТНАЯ ЛИНЗА. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок.

Схема ОПЭМ представлена на рис. 2. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает неувеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец помещается в магнитном поле объективной линзы с большой оптической силой - самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объективная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей 1000. Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ЭЛЕКТРОННЫЙ МИКРОСКОП1 000 000. (При увеличении в миллион раз грейпфрут вырастает до размеров Земли.) Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо-влево.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 2. <a href='/dict/обычный' class='wordLink' target='_blank'>ОБЫЧНЫЙ</a> <a href='/dict/просвечивающий' class='wordLink' target='_blank'>ПРОСВЕЧИВАЮЩИЙ</a> <a href='/dict/электронный' class='wordLink' target='_blank'>ЭЛЕКТРОННЫЙ</a> <a href='/dict/микроскоп' class='wordLink' target='_blank'>МИКРОСКОП</a> (<a href='/dict/опэм' class='wordLink' target='_blank'>ОПЭМ</a>). <a href='/dict/электроны' class='wordLink' target='_blank'>Электроны</a> <a href='/dict/ускоряются' class='wordLink' target='_blank'>ускоряются</a>, а <a href='/dict/затем' class='wordLink' target='_blank'>затем</a> <a href='/dict/фокусируются' class='wordLink' target='_blank'>фокусируются</a> <a href='/dict/магнитными' class='wordLink' target='_blank'>магнитными</a> <a href='/dict/линзами' class='wordLink' target='_blank'>линзами</a>. <a href='/dict/увеличенное' class='wordLink' target='_blank'>Увеличенное</a> <a href='/dict/изображение' class='wordLink' target='_blank'>изображение</a>, <a href='/dict/создаваемое' class='wordLink' target='_blank'>создаваемое</a> <a href='/dict/электронами' class='wordLink' target='_blank'>электронами</a>, <a href='/dict/которые' class='wordLink' target='_blank'>которые</a> <a href='/dict/проходят' class='wordLink' target='_blank'>проходят</a> <a href='/dict/через' class='wordLink' target='_blank'>через</a> <a href='/dict/диафрагму' class='wordLink' target='_blank'>диафрагму</a> <a href='/dict/объектива' class='wordLink' target='_blank'>объектива</a>, <a href='/dict/преобразуется' class='wordLink' target='_blank'>преобразуется</a> <a href='/dict/люминесцентным' class='wordLink' target='_blank'>люминесцентным</a> <a href='/dict/экраном' class='wordLink' target='_blank'>экраном</a> в <a href='/dict/видимое' class='wordLink' target='_blank'>видимое</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/регистрируется' class='wordLink' target='_blank'>регистрируется</a> на <a href='/dict/фотопластинке' class='wordLink' target='_blank'>фотопластинке</a>. В <a href='/dict/опэм' class='wordLink' target='_blank'>ОПЭМ</a> <a href='/dict/можно' class='wordLink' target='_blank'>можно</a> <a href='/dict/получить' class='wordLink' target='_blank'>получить</a> <a href='/dict/увеличение' class='wordLink' target='_blank'>увеличение</a> до 1 <abbr>млн.</abbr> 1 - <a href='/dict/источник' class='wordLink' target='_blank'>источник</a> <a href='/dict/электронов' class='wordLink' target='_blank'>электронов</a>; 2 - <a href='/dict/ускоряющая' class='wordLink' target='_blank'>ускоряющая</a> <a href='/dict/система' class='wordLink' target='_blank'>система</a>; 3 - <a href='/dict/диафрагма' class='wordLink' target='_blank'>диафрагма</a>; 4 -<a href='/dict/конденсорная' class='wordLink' target='_blank'>конденсорная</a> <a href='/dict/линза' class='wordLink' target='_blank'>линза</a>; 5 - <a href='/dict/образец' class='wordLink' target='_blank'>образец</a>; 6 - <a href='/dict/объективная' class='wordLink' target='_blank'>объективная</a> <a href='/dict/линза' class='wordLink' target='_blank'>линза</a>; 7 - <a href='/dict/диафрагма' class='wordLink' target='_blank'>диафрагма</a>; 8 - <a href='/dict/проекционная' class='wordLink' target='_blank'>проекционная</a> <a href='/dict/линза' class='wordLink' target='_blank'>линза</a>; 9 - <a href='/dict/экран' class='wordLink' target='_blank'>экран</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/пленка' class='wordLink' target='_blank'>пленка</a>; 10 - <a href='/dict/увеличенное' class='wordLink' target='_blank'>увеличенное</a> <a href='/dict/изображение' class='wordLink' target='_blank'>изображение</a>.

Рис. 2. ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. В ОПЭМ можно получить увеличение до 1 млн. 1 - источник электронов; 2 - ускоряющая система; 3 - диафрагма; 4 -конденсорная линза; 5 - образец; 6 - объективная линза; 7 - диафрагма; 8 - проекционная линза; 9 - экран или пленка; 10 - увеличенное изображение.

Изображение. Контраст в ОПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Если образец достаточно тонок, то доля рассеянных электронов невелика. При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие - из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке. Электроны, выходящие из диафрагмы с угловым отклонением, превышающим некоторый предел, уже не могут вернуться в пучок, несущий изображение, а поэтому сильно рассеивающие участки повышенной плотности, увеличенной толщины, места расположения тяжелых атомов выглядят на изображении как темные зоны на светлом фоне. Такое изображение называется светлопольным, поскольку на нем окружающее поле светлее объекта. Но можно сделать так, чтобы электрическая отклоняющая система пропускала в диафрагму объектива только те или иные из рассеянных электронов. Тогда образец выглядит светлым на темном поле. Слабо рассеивающий объект часто бывает удобнее рассматривать в режиме темного поля. Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран, что позволяет записать его на видеоленту. Видеозапись применяется для регистрации изображений, меняющихся во времени, например, в связи с протеканием химической реакции. Чаще всего окончательное изображение регистрируется на фотопленке или фотопластинке. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Кроме того, на единице площади фотопленки может быть зарегистрировано в 100 раз больше сигналов, чем на единице площади видеоленты. Благодаря этому изображение, зарегистрированное на фотопленке, можно дополнительно увеличить примерно в 10 раз без потери четкости.

Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50-100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ок. 0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ок. 2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию.

РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

РЭМ, ставший важнейшим прибором для научных исследований, служит хорошим дополнением ОПЭМ. В РЭМ применяются электронные линзы для фокусировки электронного пучка в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис. 3). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн.

<a href='/dict/рис' class='wordLink' target='_blank'>Рис</a>. 3. <a href='/dict/растровый' class='wordLink' target='_blank'>РАСТРОВЫЙ</a> <a href='/dict/электронный' class='wordLink' target='_blank'>ЭЛЕКТРОННЫЙ</a> <a href='/dict/микроскоп' class='wordLink' target='_blank'>МИКРОСКОП</a> (<a href='/dict/рэм' class='wordLink' target='_blank'>РЭМ</a>/<a href='/dict/рпэм' class='wordLink' target='_blank'>РПЭМ</a>). <a href='/dict/электроны' class='wordLink' target='_blank'>Электроны</a>, <a href='/dict/идущие' class='wordLink' target='_blank'>идущие</a> от <a href='/dict/источника' class='wordLink' target='_blank'>источника</a>, <a href='/dict/ускоряются' class='wordLink' target='_blank'>ускоряются</a> и <a href='/dict/фокусируются' class='wordLink' target='_blank'>фокусируются</a> в <a href='/dict/узкий' class='wordLink' target='_blank'>узкий</a> <a href='/dict/пучок' class='wordLink' target='_blank'>пучок</a> на <a href='/dict/образце' class='wordLink' target='_blank'>образце</a>. <a href='/dict/этот' class='wordLink' target='_blank'>Этот</a> <a href='/dict/пучок' class='wordLink' target='_blank'>пучок</a> <a href='/dict/перемещается' class='wordLink' target='_blank'>перемещается</a> по <a href='/dict/образцу' class='wordLink' target='_blank'>образцу</a> <a href='/dict/отклоняющими' class='wordLink' target='_blank'>отклоняющими</a> <a href='/dict/катушками' class='wordLink' target='_blank'>катушками</a> с <a href='/dict/током' class='wordLink' target='_blank'>током</a>. <a href='/dict/детекторы' class='wordLink' target='_blank'>Детекторы</a>, <a href='/dict/расположенные' class='wordLink' target='_blank'>расположенные</a> <a href='/dict/выше' class='wordLink' target='_blank'>выше</a> <a href='/dict/образца' class='wordLink' target='_blank'>образца</a>, <a href='/dict/регистрируют' class='wordLink' target='_blank'>регистрируют</a> <a href='/dict/рентгеновское' class='wordLink' target='_blank'>рентгеновское</a> <a href='/dict/излучение' class='wordLink' target='_blank'>излучение</a>, <a href='/dict/вторичные' class='wordLink' target='_blank'>вторичные</a> и <a href='/dict/отраженные' class='wordLink' target='_blank'>отраженные</a> <a href='/dict/электроны' class='wordLink' target='_blank'>электроны</a>. <a href='/dict/электроны' class='wordLink' target='_blank'>Электроны</a>, <a href='/dict/прошедшие' class='wordLink' target='_blank'>прошедшие</a> <a href='/dict/сквозь' class='wordLink' target='_blank'>сквозь</a> <a href='/dict/тонкий' class='wordLink' target='_blank'>тонкий</a> <a href='/dict/образец' class='wordLink' target='_blank'>образец</a>, <a href='/dict/регистрируются' class='wordLink' target='_blank'>регистрируются</a> <a href='/dict/кольцевым' class='wordLink' target='_blank'>кольцевым</a> <a href='/dict/детектором' class='wordLink' target='_blank'>детектором</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a>, <a href='/dict/пройдя' class='wordLink' target='_blank'>пройдя</a> <a href='/dict/через' class='wordLink' target='_blank'>через</a> <a href='/dict/энергетический' class='wordLink' target='_blank'>энергетический</a> <a href='/dict/анализатор' class='wordLink' target='_blank'>анализатор</a>, <a href='/dict/используются' class='wordLink' target='_blank'>используются</a> <a href='/dict/для' class='wordLink' target='_blank'>для</a> <a href='/dict/формирования' class='wordLink' target='_blank'>формирования</a> <a href='/dict/изображения' class='wordLink' target='_blank'>изображения</a> на <a href='/dict/экране' class='wordLink' target='_blank'>экране</a>. 1 - <a href='/dict/источник' class='wordLink' target='_blank'>источник</a> <a href='/dict/электронов' class='wordLink' target='_blank'>электронов</a>; 2 - <a href='/dict/ускоряющая' class='wordLink' target='_blank'>ускоряющая</a> <a href='/dict/система' class='wordLink' target='_blank'>система</a>; 3 - <a href='/dict/магнитная' class='wordLink' target='_blank'>магнитная</a> <a href='/dict/линза' class='wordLink' target='_blank'>линза</a>; 4 - <a href='/dict/отклоняющие' class='wordLink' target='_blank'>отклоняющие</a> <a href='/dict/катушки' class='wordLink' target='_blank'>катушки</a>; 5 - <a href='/dict/образец' class='wordLink' target='_blank'>образец</a>; 6 - <a href='/dict/детектор' class='wordLink' target='_blank'>детектор</a> <a href='/dict/отраженных' class='wordLink' target='_blank'>отраженных</a> <a href='/dict/электронов' class='wordLink' target='_blank'>электронов</a>; 7 - <a href='/dict/кольцевой' class='wordLink' target='_blank'>кольцевой</a> <a href='/dict/детектор' class='wordLink' target='_blank'>детектор</a>; 8 - <a href='/dict/анализатор' class='wordLink' target='_blank'>анализатор</a>.

Рис. 3. РАСТРОВЫЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (РЭМ/РПЭМ). Электроны, идущие от источника, ускоряются и фокусируются в узкий пучок на образце. Этот пучок перемещается по образцу отклоняющими катушками с током. Детекторы, расположенные выше образца, регистрируют рентгеновское излучение, вторичные и отраженные электроны. Электроны, прошедшие сквозь тонкий образец, регистрируются кольцевым детектором или, пройдя через энергетический анализатор, используются для формирования изображения на экране. 1 - источник электронов; 2 - ускоряющая система; 3 - магнитная линза; 4 - отклоняющие катушки; 5 - образец; 6 - детектор отраженных электронов; 7 - кольцевой детектор; 8 - анализатор.

Взаимодействие электронов сфокусированного пучка с атомами образца может приводить не только к их рассеянию, которое используется для получения изображения в ОПЭМ, но и к возбуждению рентгеновского излучения, испусканию видимого света и эмиссии вторичных электронов. Кроме того, поскольку в РЭМ перед образцом имеются только фокусирующие линзы, он позволяет исследовать "толстые" образцы.

Отражательный РЭМ. Отражательный РЭМ предназначен для исследования массивных образцов. Поскольку контраст, возникающий при регистрации отраженных, т.е. обратно-рассеянных, и вторичных электронов, связан в основном с углом падения электронов на образец, на изображении выявляется поверхностная структура. (Интенсивность обратного рассеяния и глубина, на которой оно происходит, зависят от энергии электронов падающего пучка. Эмиссия вторичных электронов определяется, в основном составом поверхности и электропроводностью образца.) Оба эти сигнала несут информацию об общих характеристиках образца. Благодаря малой сходимости электронного пучка можно проводить наблюдения с гораздо большей глубиной резкости, чем при работе со световым микроскопом, и получать прекрасные объемные микрофотографии поверхностей с весьма развитым рельефом. Регистрируя рентгеновское излучение, испускаемое образцом, можно в дополнение к данным о рельефе получать информацию о химическом составе образца в поверхностном слое глубиной ЭЛЕКТРОННЫЙ МИКРОСКОП0,001 мм. О составе материала на поверхности можно судить и по измеренной энергии, с которой эмиттируются те или иные электроны. Все сложности работы с РЭМ обусловлены, в основном, его системами регистрации и электронной визуализации. В приборе с полным комплексом детекторов, наряду со всеми функциями РЭМ, предусматривается рабочий режим электронно-зондового микроанализатора.

Растровый просвечивающий электронный микроскоп. Растровый просвечивающий электронный микроскоп (РПЭМ) - это особый вид РЭМ. Он рассчитан на тонкие образцы, такие же, как и исследуемые в ОПЭМ. Схема РПЭМ отличается от схемы на рис. 3 только тем, что в ней нет детекторов, расположенных выше образца. Поскольку изображение формируется бегущим пучком (а не пучком, освещающим весь исследуемый участок образца), требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (ок. В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра. Это поле буквально вытягивает миллиарды электронов из проволочки без всякого нагрева. Яркость такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой (см. выше), а испускаемые им электроны могут быть сфокусированы в пучок диаметром менее 1 нм. Были даже получены пучки, диаметр которых близок к 0,2 нм. Автоэлектронные источники могут работать только в условиях сверхвысокого вакуума (при давлениях ниже Па), в которых полностью отсутствуют такие загрязнения, как пары углеводородов и воды, и становится возможным получение изображений с высоким разрешением. Благодаря таким сверхчистым условиям можно исследовать процессы и явления, недоступные ЭМ с обычными вакуумными системами. Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны проходят сквозь такие образцы почти без рассеяния. Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод, расположенный под образцом (рис. 3). Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, - более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0,5 нм, то можно получить изображение отдельных атомов. Реально удается различать на изображении, полученном в РПЭМ, отдельные атомы с атомной массой железа (т.е. 26 и более). Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор, расположенный под этим детектором, позволяет отделить первые от вторых. Измеряя энергию, потерянную электронами при рассеянии, можно получить важную информацию об образце. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

РАСТРОВЫЙ ТУННЕЛЬНЫЙ МИКРОСКОП

В ЭМ, рассмотренных выше, для фокусировки электронов применяются магнитные линзы. Данный раздел посвящен ЭМ без линз. Но, прежде чем переходить к растровому туннельному микроскопу (РТМ), будет полезно кратко остановиться на двух старых видах безлинзового микроскопа, в которых формируется проецированное теневое изображение.

Автоэлектронный и автоионный проекторы. Автоэлектронный источник, применяемый в РПЭМ, с начала 1950-х годов применялся в теневых проекторах. В автоэлектронном проекторе электроны, испускаемые за счет автоэлектронной эмиссии острием очень малого диаметра, ускоряются в направлении люминесцентного экрана, расположенного на расстоянии нескольких сантиметров от острия. В результате на экране возникает проецированное изображение поверхности острия и находящихся на этой поверхности частиц с увеличением, равным отношению радиуса экрана к радиусу острия (порядка). Более высокое разрешение достигается в автоионном проекторе, в котором проецирование изображения осуществляется ионами гелия (или некоторых других элементов), эффективная длина волны которых меньше, чем у электронов. Это позволяет получать изображения, показывающие истинное расположение атомов в кристаллической решетке материала острия. Поэтому автоионные проекторы используются, в частности, для исследования кристаллической структуры и ее дефектов в материалах, из которых могут быть изготовлены такие острия.

Растровый туннельный микроскоп (РТМ). В этом микроскопе тоже используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом. РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Вибрации подавляются благодаря жесткой конструкции и малым размерам микроскопа (не более кулака), а также применению многослойных резиновых амортизаторов. Высокую точность обеспечивают пьезоэлектрические материалы, которые удлиняются и сокращаются под действием внешнего электрического поля. Подавая напряжение порядка 10-5 В, можно изменять размеры таких материалов на 0,1 нм и менее. Это дает возможность, закрепив острие на элементе из пьезоэлектрического материала, перемещать его в трех взаимно перпендикулярных направлениях с точностью порядка атомных размеров.

ТЕХНИКА ЭЛЕКТРОННОЙ МИКРОСКОПИИ

Вряд ли остался какой-либо сектор исследований в области биологии и материаловедения, где бы не применялась просвечивающая электронная микроскопия (ПЭМ); это обеспечено успехами техники приготовления образцов. Все применяемые в электронной микроскопии методики нацелены на получение предельно тонкого образца и обеспечение максимального контраста между ним и подложкой, которая необходима ему в качестве опоры. Основная методика рассчитана на образцы толщиной 2-200 нм, поддерживаемые тонкими пластмассовыми или углеродными пленками, которые кладутся на сетку с размером ячейки ок. 0,05 мм. (Подходящий образец, каким бы способом он ни был получен, обрабатывается так, чтобы увеличить интенсивность рассеяния электронов на исследуемом объекте.) Если контраст достаточно велик, то глаз наблюдателя может без напряжения различить детали, находящиеся на расстоянии 0,1-0,2 мм друг от друга. Следовательно, для того, чтобы на изображении, создаваемом электронным микроскопом, были различимы детали, разделенные на образце расстоянием в 1 нм, необходимо полное увеличение порядка 100-200 тыс. Лучшие из микроскопов могут создать на фотопластинке изображение образца с таким увеличением, но при этом изображается слишком малый участок. Обычно делают микроснимок с меньшим увеличением, а затем увеличивают его фотографически. Фотопластинка разрешает на длине 10 см ок. 10 000 линий. Если каждая линия соответствует на образце некой структуре протяженностью 0,5 нм, то для регистрации такой структуры необходимо увеличение не менее 20 000, тогда как при помощи РЭМ и РПЭМ, в которых изображение регистрируется электронной системой и развертывается на телевизионном экране, может быть разрешено только ок. 1000 линий. Таким образом, при использовании телевизионного монитора минимально необходимое увеличение примерно в 10 раз больше, чем при фоторегистрации.

Биологические препараты. Электронная микроскопия широко применяется в биологических и медицинских исследованиях. Разработаны методики фиксации, заливки и получения тонких срезов тканей для исследования в ОПЭМ и РПЭМ и методики фиксации для исследования объемных образцов в РЭМ. Эти методики дают возможность исследовать организацию клеток на макромолекулярном уровне. Электронная микроскопия выявила компоненты клетки и детали строения мембран, митохондрий, эндоплазматической сети, рибосом и множества других органелл, входящих в состав клетки. Образец сначала фиксируют глутаральдегидом или другими фиксирующими веществами, а затем обезвоживают и заливают пластмассой. Методы криофиксации (фиксации при очень низких - криогенных - температурах) позволяют сохранить структуру и состав без использования химических фиксирующих веществ. Кроме того, криогенные методы позволяют получать изображения замороженных биологических образцов без их обезвоживания. При помощи ультрамикротомов с лезвиями из полированного алмаза или сколотого стекла можно делать срезы тканей толщиной 30-40 нм. Смонтированные гистологические препараты могут быть окрашены соединениями тяжелых металлов (свинца, осмия, золота, вольфрама, урана) для усиления контраста отдельных компонентов или структур.

<a href='/dict/микрофотография' class='wordLink' target='_blank'>МИКРОФОТОГРАФИЯ</a> <a href='/dict/кристаллов' class='wordLink' target='_blank'>кристаллов</a> <a href='/dict/холестерина' class='wordLink' target='_blank'>холестерина</a> в <a href='/dict/поляризованном' class='wordLink' target='_blank'>поляризованном</a> <a href='/dict/свете' class='wordLink' target='_blank'>свете</a>.

МИКРОФОТОГРАФИЯ кристаллов холестерина в поляризованном свете.

Биологические исследования были распространены на микроорганизмы, особенно на вирусы, которые не разрешаются световыми микроскопами. ПЭМ позволила выявить, например, структуры бактериофагов и расположение субъединиц в белковых оболочках вирусов. Кроме того, методами позитивного и негативного окрашивания удалось выявить структуру с субъединицами в ряде других важных биологических микроструктур. Методы усиления контраста нуклеиновых кислот позволили наблюдать одно- и двунитные ДНК. Эти длинные линейные молекулы распластывают в слой основного белка и накладывают на тонкую пленку. Затем на образец вакуумным напылением наносят очень тонкий слой тяжелого металла. Этот слой тяжелого металла "оттеняет" образец, благодаря чему последний при наблюдении в ОПЭМ или РПЭМ выглядит как бы освещенным с той стороны, с которой напылялся металл. Если же вращать образец во время напыления, то металл накапливается вокруг частиц со всех сторон равномерно (как снежный ком).

Небиологические материалы. ПЭМ применяется в исследованиях материалов для изучения тонких кристаллов и границ между разными материалами. Чтобы получить изображение границы раздела с большим разрешением, образец заливают пластмассой, делают срез образца, перпендикулярный границе, а затем утоньшают его так, чтобы граница была видна на заостренной кромке. Кристаллическая решетка сильно рассеивает электроны в определенных направлениях, давая дифракционную картину. Изображение кристаллического образца в значительной мере определяется этой картиной; контраст сильно зависит от ориентации, толщины и совершенства кристаллической решетки. Изменения контраста на изображении позволяют изучать кристаллическую решетку и ее несовершенства в масштабе атомных размеров. Получаемая при этом информация дополняет ту, которую дает рентгенографический анализ объемных образцов, так как ЭМ дает возможность непосредственно видеть во всех деталях дислокации, дефекты упаковки и границы зерен. Кроме того, в ЭМ можно снимать электронограммы и наблюдать картины дифракции от выделенных участков образца. Если диафрагму объектива настроить так, чтобы через нее проходили только один дифрагированный и нерассеянный центральный пучки, то можно получать изображение определенной системы кристаллических плоскостей, которая дает этот дифрагированный пучок. Современные приборы позволяют разрешать периоды решетки величиной 0,1 нм. Исследовать кристаллы можно также методом темнопольного изображения, при котором перекрывают центральный пучок, так что изображение формируется одним или несколькими дифрагированными пучками. Все эти методы дали важную информацию о структуре очень многих материалов и существенно прояснили физику кристаллов и их свойства. Например, анализ ПЭМ-изображений кристаллической решетки тонких малоразмерных квазикристаллов в сочетании с анализом их электронограмм позволил в 1985 открыть материалы с симметрией пятого порядка.

Высоковольтная микроскопия. В настоящее время промышленность выпускает высоковольтные варианты ОПЭМ и РПЭМ с ускоряющим напряжением от 300 до 400 кВ. Такие микроскопы имеют более высокую проникающую способность, чем у низковольтных приборов, причем почти не уступают в этом отношении микроскопам с напряжением 1 млн. вольт, которые строились в прошлом. Современные высоковольтные микроскопы достаточно компактны и могут быть установлены в обычном лабораторном помещении. Их повышенная проникающая способность оказывается очень ценным свойством при исследовании дефектов в более толстых кристаллах, особенно таких, из которых невозможно сделать тонкие образцы. В биологии их высокая проникающая способность дает возможность исследовать целые клетки, не разрезая их. Кроме того, с помощью таких микроскопов можно получать объемные изображения толстых объектов.

Низковольтная микроскопия. Выпускаются также РЭМ с ускоряющим напряжением, составляющим всего несколько сот вольт. Даже при столь низких напряжениях длина волны электронов меньше 0,1 нм, так что пространственное разрешение и здесь ограничивается аберрациями магнитных линз. Однако, поскольку электроны с такой низкой энергией проникают неглубоко под поверхность образца, почти все электроны, участвующие в формировании изображения, приходят из области, расположенной очень близко к поверхности, благодаря чему повышается разрешение поверхностного рельефа. С помощью низковольтных РЭМ были получены изображения на твердых поверхностях объектов размером менее 1 нм.

Радиационное повреждение. Поскольку электроны представляют собой ионизирующее излучение, образец в ЭМ постоянно подвергается его воздействию. (В результате этого воздействия возникают вторичные электроны, используемые в РЭМ.) Следовательно, образцы всегда подвергаются радиационному повреждению. Типичная доза излучения, поглощаемая тонким образцом за время регистрации микрофотографии в ОПЭМ, примерно соответствует энергии, которой было бы достаточно для полного испарения холодной воды из пруда глубиной 4 м с площадью поверхности 1 га. Чтобы уменьшить радиационное повреждение образца, необходимо использовать различные методы его подготовки: окрашивание, заливку, замораживание. Кроме того, можно регистрировать изображение при дозах электронов, в 100-1000 раз меньших, нежели по стандартной методике, а затем улучшать его методами компьютерной обработки изображений.

ИСТОРИЧЕСКАЯ СПРАВКА

История создания электронного микроскопа - замечательный пример того, как самостоятельно развивающиеся области науки и техники могут, обмениваясь полученной информацией и объединяя усилия, создавать новый мощный инструмент научных исследований. Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, возникновение электрических и магнитных полей, движение заряженных частиц в этих полях как распространение электромагнитных волн. Волновая оптика сделала понятными явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение, в световом микроскопе. Успехам в области теоретической и экспериментальной физики мы обязаны открытием электрона с его специфическими свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию основ электронной оптики, одним из важнейших приложений которой являлось изобретение ЭМ в 1930-х годах. Прямым намеком на такую возможность можно считать гипотезу о волновой природы электрона, выдвинутую в 1924 Луи де Бройлем и экспериментально подтвержденную в 1927 К.Дэвиссоном и Л.Джермером в США и Дж.Томсоном в Англии. Тем самым была подсказана аналогия, позволившая построить ЭМ по законам волновой оптики. Х.Буш обнаружил, что с помощью электрических и магнитных полей можно формировать электронные изображения. В первые два десятилетия 20 в. были созданы и необходимые технические предпосылки. Промышленные лаборатории, работавшие над электронно-лучевым осциллографом, дали вакуумную технику, стабильные источники высокого напряжения и тока, хорошие электронные эмиттеры. В 1931 Р. Руденберг подал патентную заявку на просвечивающий электронный микроскоп, а в 1932 М.Кнолль и Э.Руска построили первый такой микроскоп, применив магнитные линзы для фокусировки электронов. Этот прибор был предшественником современного ОПЭМ. (Руска был вознагражден за свои труды тем, что стал лауреатом Нобелевской премии по физике за 1986.) В 1938 Руска и Б.фон Боррис построили прототип промышленного ОПЭМ для фирмы "Сименс-Хальске" в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). Широкие возможности ОПЭМ почти сразу же стали очевидны. Его промышленное производство было начато одновременно фирмой "Сименс-Хальске" в Германии и корпорацией RCA в США. В конце 1940-х годов такие приборы стали выпускать и другие компании. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в 1940-х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов. Круг потребителей такого довольно простого в обращении прибора с объемным изображением и электронным выходным сигналом расширился с быстротой взрыва. В настоящее время насчитывается добрый десяток промышленных изготовителей РЭМ'ов на трех континентах и десятки тысяч таких приборов, используемых в лабораториях всего мира. В 1960-х годах разрабатывались сверхвысоковольтные микроскопы для исследования более толстых образцов. Лидером этого направления разработок был Г.Дюпуи во Франции, где в 1970 был введен в действие прибор с ускоряющим напряжением, равным 3,5 млн. вольт. РТМ был изобретен Г.Биннигом и Г.Рорером в 1979 в Цюрихе. Этот весьма простой по устройству прибор обеспечивает атомное разрешение поверхностей. За свою работу по созданию РТМ Бинниг и Рорер (одновременно с Руской) получили Нобелевскую премию по физике.

См. также

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ;

МОЛЕКУЛ СТРОЕНИЕ;

НУКЛЕИНОВЫЕ КИСЛОТЫ;

ФИЗИКА ТВЕРДОГО ТЕЛА;

ВИРУСЫ.

ЛИТЕРАТУРА

Полянкевич А.Н. Электронные микроскопы. Киев, 1976 Спенс Дж. Экспериментальная ионная микроскопия высокого разрешения. М., 1986

Полезные сервисы