Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

ядер деление

Энциклопедия Кольера

ЯДЕР ДЕЛЕНИЕ - ядерная реакция, в которой атомное ядро при бомбардировке нейтронами расщепляется на два или несколько осколков. Полная масса осколков обычно меньше суммы масс исходного ядра и бомбардирующего нейтрона. "Недостающая масса" m превращается в энергию E в соответствии с формулой Эйнштейна E = mc2, где c - скорость света. Поскольку скорость света очень велика (299 792 458 м/с), небольшой массе соответствует огромная энергия. Эту энергию можно преобразовать в электричество. Энергия, выделяющаяся при делении ядер, превращается в теплоту при торможении осколков деления. Скорость тепловыделения зависит от числа ядер, делящихся в единицу времени. Когда в небольшом объеме за короткое время происходит деление большого числа ядер, то реакция имеет характер взрыва. Таков принцип действия атомной бомбы. Если же сравнительно небольшое число ядер делится в большом объеме в течение более длительного времени, то результатом будет выделение теплоты, которую можно использовать. На этом основаны атомные электростанции. На атомных электростанциях теплота, выделяющаяся в ядерных реакторах в результате деления ядер, используется для производства пара, который подается на турбины, вращающие электрогенераторы. Для практического использования процессов деления больше всего подходят уран и плутоний. У них имеются изотопы (атомы данного элемента с различными массовыми числами), которые делятся при поглощении нейтронов даже с очень небольшими энергиями. Энергия, высвобождаемая при делении ядер, в миллионы раз превышает энергию, выделяющуюся в таких химических процессах, как горение. Кроме того, полное количество энергии, которое можно извлечь за счет деления, гораздо больше энергии, которую можно получить в результате сжигания всех мировых запасов обычного топлива, такого, как уголь и нефть. В некоторых регионах, где уголь и нефть обходятся относительно дорого, стоимость электроэнергии, полученной за счет деления ядер, ниже, чем при сжигании ископаемого топлива. Этот экономический фактор наряду с доступностью больших запасов ядерного топлива привел к быстрому росту энергетики, основанной на делении ядер. Ядерные реакторы деления вносят значительный вклад в мировое производство электроэнергии. В середине 1980-х годов во всем мире работало более 500 атомных электростанций. В некоторых странах (например, во Франции) они обеспечивают более половины национального потребления электроэнергии. В США в конце века примерно 150 реакторов деления производили ок. 15% электроэнергии, потребляемой в стране.

См. также

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ;

АТОМНАЯ ЭНЕРГЕТИКА. Ключом к практическому использованию энергии деления явилось то обстоятельство, что некоторые элементы испускают нейтроны в процессе деления. Хотя при делении ядра один нейтрон поглощается, эта потеря восполняется благодаря возникновению новых нейтронов в процессе деления. Если устройство, в котором происходит деление, обладает достаточно большой ("критической") массой, то за счет новых нейтронов может поддерживаться "цепная реакция". Цепной реакцией можно управлять, регулируя число нейтронов, способных вызывать деление. Если оно больше единицы, то интенсивность деления увеличивается, а если меньше единицы - уменьшается.

ИСТОРИЧЕСКАЯ СПРАВКА

История открытия деления ядер берет начало с работы А. Беккереля (1852-1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения). Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов - кислорода и водорода - превышает массу частиц, вступающих в реакцию, - азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж. Кокрофту и Э. Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии. В 1932 Дж. Чедвик открыл нейтрон - нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила "искусственная" радиоактивность в форме гамма и бета-излучений.

См. также РАДИОАКТИВНОСТЬ.

Первые указания на возможность деления ядер. Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции 238U + 1n -> 239Np + b-, где 238U - изотоп урана-238, 1n - нейтрон, 239Np - нептуний и b - электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов. Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.

Подтверждение возможности деления. После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении.

См. также ДЕТЕКТОРЫ ЧАСТИЦ. Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.

Разработки в период Второй мировой войны. С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении "Манхаттанского военно-инженерного округа", которому 13 августа 1942 был передан "Урановый проект". В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита - атомном "котле". В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).

ЯДЕРНЫЕ РЕАКТОРЫ

Ядерный реактор - это установка, в которой возможно осуществление управляемой самоподдерживающейся цепной реакции деления ядер. Реакторы можно классифицировать по используемому топливу (делящимся и сырьевым изотопам), по виду замедлителя, по типу тепловыделяющих элементов и по роду теплоносителя.

Делящиеся изотопы. Имеются три делящихся изотопа - уран-235, плутоний-239 и уран-233. Уран-235 получают разделением изотопов; плутоний-239 - в реакторах, в которых уран-238 превращается в плутоний, 238U -> 239U -> 239Np -> 239Pu; уран-233 - в реакторах, в которых торий-232 перерабатывается в уран. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости. В приводимой ниже таблице представлены основные параметры делящихся изотопов. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления. Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.

Данные таблицы показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтроновэнергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.

Сырьевые изотопы. Имеются два сырьевых изотопа: торий-232 и уран-238, из которых получаются делящиеся изотопы уран-233 и плутоний-239. Технология использования сырьевых изотопов зависит от разных факторов, например от необходимости обогащения. В урановой руде содержится 0,7% урана-235, а в ториевой нет делящихся изотопов. Поэтому к торию необходимо добавлять обогащенный делящийся изотоп. Важное значение имеет и число новых нейтронов, приходящееся на один поглощенный нейтрон. С учетом этого фактора приходится отдать предпочтение урану-233 в случае тепловых нейтронов (замедленных до энергии 0,025 эВ), поскольку при таких условиях больше число испускаемых нейтронов, а следовательно, и коэффициент преобразования - число новых делящихся ядер на одно "затраченное" делящееся ядро. Замедлители. Замедлитель служит для уменьшения энергии нейтронов, испускаемых в процессе деления, примерно от 1 МэВ до тепловых энергий около 0,025 эВ. Поскольку замедление происходит главным образом в результате упругого рассеяния на ядрах неделящихся атомов, масса атомов замедлителя должна быть как можно меньше, чтобы нейтрон мог передавать им максимальную энергию. Кроме того, у атомов замедлителя должно быть мало (по сравнению с сечением рассеяния) сечение захвата, так как нейтрону приходится многократно сталкиваться с атомами замедлителя, прежде чем он замедляется до тепловой энергии. Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Но обычный (легкий) водород слишком сильно поглощает нейтроны, а потому более подходящими замедлителями, несмотря на несколько большую массу, оказываются дейтерий (тяжелый водород) и тяжелая вода, так как они меньше поглощают нейтроны. Хорошим замедлителем можно считать бериллий. У углерода столь малое сечение поглощения нейтронов, что он эффективно замедляет нейтроны, хотя для замедления в нем требуется гораздо больше столкновений, чем в водороде. Среднее число N упругих столкновений, необходимое для замедления нейтрона от 1 МэВ до 0,025 эВ, при использовании водорода, дейтерия, беррилия и углерода составляет приблизительно 18, 27, 36 и 135 соответственно. Приближенный характер этих значений обусловлен тем, что из-за наличия химической энергии связи в замедлителе столкновения при энергиях ниже 0,3 эВ вряд ли могут быть упругими. При низких энергиях атомная решетка может передавать энергию нейтронам или изменять эффективную массу в столкновении, нарушая этим процесс замедления.

Теплоносители. В качестве теплоносителей в ядерных реакторах используются вода, тяжелая вода, жидкий натрий, жидкий сплав натрия с калием (NaK), гелий, диоксид углерода и такие органические жидкости, как терфенил. Эти вещества являются хорошими теплоносителями и имеют малые сечения поглощения нейтронов. См. также ТЕПЛООБМЕННИК. Вода представляет собой прекрасный замедлитель и теплоноситель, но слишком сильно поглощает нейтроны и имеет слишком высокое давление паров (14 МПа) при рабочей температуре 336° С. Лучший из известных замедлителей - тяжелая вода. Ее характеристики близки к характеристикам обычной воды, а сечение поглощения нейтронов - меньше. Натрий является прекрасным теплоносителем, но не эффективен как замедлитель нейтронов. Поэтому его используют в реакторах на быстрых нейтронах, где при делении испускается больше нейтронов. Правда, натрий имеет ряд недостатков: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий - прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов.

<a href='/dict/канадский' class='wordLink' target='_blank'>КАНАДСКИЙ</a> <a href='/dict/реактор' class='wordLink' target='_blank'>РЕАКТОР</a> CANDU на <a href='/dict/тяжелой' class='wordLink' target='_blank'>тяжелой</a> <a href='/dict/воде' class='wordLink' target='_blank'>воде</a>. <a href='/dict/тяжелая' class='wordLink' target='_blank'>Тяжелая</a> <a href='/dict/вода' class='wordLink' target='_blank'>вода</a> <a href='/dict/служит' class='wordLink' target='_blank'>служит</a> <a href='/dict/теплоносителем' class='wordLink' target='_blank'>теплоносителем</a>, <a href='/dict/охлаждающим' class='wordLink' target='_blank'>охлаждающим</a> <a href='/dict/реактор' class='wordLink' target='_blank'>реактор</a> и <a href='/dict/создающим' class='wordLink' target='_blank'>создающим</a> <a href='/dict/пар' class='wordLink' target='_blank'>пар</a>, <a href='/dict/который' class='wordLink' target='_blank'>который</a> <a href='/dict/вращает' class='wordLink' target='_blank'>вращает</a> <a href='/dict/турбину' class='wordLink' target='_blank'>турбину</a>.

КАНАДСКИЙ РЕАКТОР CANDU на тяжелой воде. Тяжелая вода служит теплоносителем, охлаждающим реактор и создающим пар, который вращает турбину.

Тепловыделяющие элементы. Тепловыделяющий элемент (твэл) представляет собой топливный сердечник с герметичной оболочкой. Оболочка предотвращает утечку продуктов деления и взаимодействие топлива с теплоносителем. Материал оболочки должен слабо поглощать нейтроны и обладать приемлемыми механическими, гидравлическими и теплопроводящими характеристиками. Тепловыделяющие элементы - это обычно таблетки спеченного оксида урана в трубках из алюминия, циркония или нержавеющей стали; таблетки сплавов урана с цирконием, молибденом и алюминием, покрытые цирконием или алюминиемслучае алюминиевого сплава); таблетки графита с диспергированным карбидом урана, покрытые непроницаемым графитом. Все эти твэлы находят свое применение, но для водо-водяных реакторов наиболее предпочтительны таблетки оксида урана в трубках из нержавеющей стали. Диоксид урана не вступает в реакцию с водой, отличается высокой радиационной стойкостью и характеризуется высокой температурой плавления. Для высокотемпературных газоохлаждаемых реакторов, по-видимому, весьма подходят графитовые топливные элементы, но у них имеется серьезный недостаток - за счет диффузии или из-за дефектов в графите через их оболочку могут проникать газообразные продукты деления. Органические теплоносители несовместимы с циркониевыми твэлами и поэтому требуют применения алюминиевых сплавов. Перспективы реакторов с органическими теплоносителями зависят от того, будут ли созданы алюминиевые сплавы или изделия порошковой металлургии, которые обладали бы прочностью (при рабочих температурах) и теплопроводностью, необходимыми для применения ребер, повышающих перенос тепла к теплоносителю. Поскольку теплообмен между топливом и органическим теплоносителем за счет теплопроводности мал, желательно использовать поверхностное кипение для увеличения теплопередачи. С поверхностным кипением будут связаны новые проблемы, но они должны быть решены, если использование органических теплоносителей окажется выгодным.

См. также СПЛАВЫ.

ТИПЫ РЕАКТОРОВ

Теоретически возможны более 100 разных типов реакторов, различающихся топливом, замедлителем и теплоносителями. В большинстве обычных реакторов в качестве теплоносителя используется вода, либо под давлением, либо кипящая.

Реактор с водой под давлением. В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину.

<a href='/dict/реактор' class='wordLink' target='_blank'>РЕАКТОР</a> С <a href='/dict/водой' class='wordLink' target='_blank'>ВОДОЙ</a> <a href='/dict/под' class='wordLink' target='_blank'>ПОД</a> <a href='/dict/давлением' class='wordLink' target='_blank'>ДАВЛЕНИЕМ</a>. <a href='/dict/нагретая' class='wordLink' target='_blank'>Нагретая</a> <a href='/dict/вода' class='wordLink' target='_blank'>вода</a> <a href='/dict/подается' class='wordLink' target='_blank'>подается</a> <a href='/dict/насосом' class='wordLink' target='_blank'>насосом</a> в <a href='/dict/парогенератор' class='wordLink' target='_blank'>парогенератор</a>, <a href='/dict/где' class='wordLink' target='_blank'>где</a> <a href='/dict/теплота' class='wordLink' target='_blank'>теплота</a> <a href='/dict/передается' class='wordLink' target='_blank'>передается</a> во <a href='/dict/вторичный' class='wordLink' target='_blank'>вторичный</a> <a href='/dict/контур' class='wordLink' target='_blank'>контур</a>, в <a href='/dict/котором' class='wordLink' target='_blank'>котором</a> <a href='/dict/образуется' class='wordLink' target='_blank'>образуется</a> <a href='/dict/пар' class='wordLink' target='_blank'>пар</a>, <a href='/dict/приводящий' class='wordLink' target='_blank'>приводящий</a> в <a href='/dict/действие' class='wordLink' target='_blank'>действие</a> <a href='/dict/турбину' class='wordLink' target='_blank'>турбину</a>.

РЕАКТОР С ВОДОЙ ПОД ДАВЛЕНИЕМ. Нагретая вода подается насосом в парогенератор, где теплота передается во вторичный контур, в котором образуется пар, приводящий в действие турбину.

Кипящий реактор. В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель.

<a href='/dict/кипящий' class='wordLink' target='_blank'>КИПЯЩИЙ</a> <a href='/dict/реактор' class='wordLink' target='_blank'>РЕАКТОР</a>. <a href='/dict/кипение' class='wordLink' target='_blank'>Кипение</a> <a href='/dict/воды' class='wordLink' target='_blank'>воды</a> <a href='/dict/происходит' class='wordLink' target='_blank'>происходит</a> в <a href='/dict/активной' class='wordLink' target='_blank'>активной</a> <a href='/dict/зоне' class='wordLink' target='_blank'>зоне</a> <a href='/dict/реактора' class='wordLink' target='_blank'>реактора</a>. <a href='/dict/образующийся' class='wordLink' target='_blank'>Образующийся</a> <a href='/dict/пар' class='wordLink' target='_blank'>пар</a> <a href='/dict/приводит' class='wordLink' target='_blank'>приводит</a> в <a href='/dict/действие' class='wordLink' target='_blank'>действие</a> <a href='/dict/турбогенератор' class='wordLink' target='_blank'>турбогенератор</a>.

КИПЯЩИЙ РЕАКТОР. Кипение воды происходит в активной зоне реактора. Образующийся пар приводит в действие турбогенератор.

Реактор с жидкометаллическим охлаждением. В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий по трубам. Почти во всех реакторах этого типа теплоносителем служит натрий. Пар, образующийся на другой стороны труб первого контура, подается на обычную турбину. В реакторе с жидкометаллическим охлаждением могут использоваться нейтроны со сравнительно высокой энергией (реактор на быстрых нейтронах) либо нейтроны, замедленные в графите или оксиде бериллия. В качестве реакторов-размножителей более предпочтительны реакторы на быстрых нейтронах с жидкометаллическим охлаждением, поскольку в этом случае отсутствуют потери нейтронов, связанные с замедлением.

Газоохлаждаемый реактор. В таком реакторе теплота, выделяющаяся в процессе деления, переносится в парогенератор газом - диоксидом углерода или гелием. Замедлителем нейтронов обычно служит графит. Газоохлаждаемый реактор может работать при гораздо более высоких температурах, нежели реактор с жидким теплоносителем, а потому пригоден для системы промышленного теплоснабжения и для электростанций с высоким кпд. Небольшие газоохлаждаемые реакторы отличаются повышенной безопасностью в работе, в частности отсутствием риска расплавления реактора.

Гомогенные реакторы. В активной зоне гомогенных реакторов используется однородная жидкость, содержащая делящийся изотоп урана. Жидкость обычно представляет собой расплавленное соединение урана. Она закачивается в большой сферический сосуд, работающий под давлением, где в критической массе происходит цепная реакция деления. Затем жидкость подается в парогенератор. Гомогенные реакторы не получили распространения из-за конструктивных и технологических трудностей.

РЕАКТИВНОСТЬ И УПРАВЛЕНИЕ

Возможность самоподдерживающейся цепной реакции в ядерном реакторе зависит от того, какова утечка нейтронов из реактора. Нейтроны, возникающие в процессе деления, исчезают в результате поглощения. Кроме того, возможна утечка нейтронов вследствие диффузии через вещество, аналогичной диффузии одного газа сквозь другой. Чтобы управлять ядерным реактором, нужно иметь возможность регулировать коэффициент размножения нейтронов k, определяемый как отношение числа нейтронов в одном поколении к числу нейтронов в предыдущем поколении. При k = 1 (критический реактор) имеет место стационарная цепная реакция с постоянной интенсивностью. При k > 1 (надкритический реактор) интенсивность процесса нарастает, а при k < 1 (подкритический реактор) спадает. (Величина r = 1 - (1/k) называется реактивностью.) Благодаря явлению запаздывающих нейтронов время "рождения" нейтронов увеличивается от 0,001 с до 0,1 с. Это характерное время реакции позволяет управлять ею с помощью механических исполнительных органов - управляющих стержней из материала, поглощающего нейтроны (B, Cd, Hf, In, Eu, Gd и др.). Постоянная времени регулирования должна быть порядка 0,1 с или больше. Для обеспечения безопасности выбирают такой режим работы реактора, в котором для поддержания стационарной цепной реакции необходимы запаздывающие нейтроны в каждом поколении. Для обеспечения заданного уровня мощности используются управляющие стержни и отражатели нейтронов, но задачу управления можно значительно упростить правильным расчетом реактора. Например, если реактор спроектировать так, чтобы при увеличении мощности или температуры реактивность уменьшалась, то он будет более устойчивым. Например, при недостаточном замедлении из-за повышения температуры расширяется вода в реакторе, т.е. уменьшается плотность замедлителя. В результате усиливается поглощение нейтронов в уране-238, поскольку они не успевают эффективно замедлиться. В некоторых реакторах используется то, что из-за уменьшения плотности воды увеличивается утечка нейтронов из реактора. Еще один способ стабилизации реактора основан на нагревании "резонансного поглотителя нейтронов", такого, как уран-238, который тогда сильнее поглощает нейтроны.

Системы безопасности. Безопасность реактора обеспечивается тем или иным механизмом его остановки в случае резкого увеличения мощности. Это может быть механизм физического процесса или действие системы управления и защиты, либо то и другое. При проектировании водо-водяных реакторов предусматриваются аварийные ситуации, связанные с поступлением холодной воды в реактор, падением расхода теплоносителя и слишком большой реактивностью при пуске. Поскольку интенсивность реакции возрастает с понижением температуры, при резком поступлении в реактор холодной воды повышаются реактивность и мощность. В системе защиты обычно предусматривается автоматическая блокировка, предотвращающая поступление холодной воды. При снижении расхода теплоносителя реактор перегревается, даже если его мощность не увеличивается. В таких случаях необходим автоматический останов. Кроме того, насосы теплоносителя должны быть рассчитаны на подачу охлаждающего теплоносителя, необходимую для остановки реактора. Аварийная ситуация может возникнуть при пуске реактора со слишком высокой реактивностью. Из-за низкого уровня мощности реактор не успевает нагреться настолько, чтобы сработала защита по температуре, пока не оказывается слишком поздно. Единственная надежная мера в таких случаях - осторожный пуск реактора. Избежать перечисленных аварийных ситуаций довольно просто, если руководствоваться следующим правилом: все действия, способные увеличить реактивность системы, должны выполняться осторожно и медленно. Самое важное в вопросе о безопасности реактора - это абсолютная необходимость длительного охлаждения активной зоны реактора после прекращения в нем реакции деления. Дело в том, что радиоактивные продукты деления, остающиеся в топливных кассетах, выделяют тепло. Оно гораздо меньше тепла, выделяющегося в режиме полной мощности, но его достаточно, чтобы в отсутствие необходимого охлаждения расплавить твэлы. Кратковременное прекращение подачи охлаждающей воды привело к значительному повреждению активной зоны и аварии реактора в Три-Майл-Айленде (США). Разрушение активной зоны реактора - это минимальный ущерб в случае подобной аварии. Хуже, если произойдет утечка опасных радиоактивных изотопов. Большинство промышленных реакторов снабжено герметическими страховочными корпусами, которые должны в случае аварии предотвратить выброс изотопов в окружающую среду. В заключение отметим, что возможность разрушения реактора в значительной степени зависит от его схемы и конструкции. Реакторы могут быть спроектированы таким образом, что снижение расхода теплоносителя не будет приводить к большим неприятностям. Таковы различные типы газоохлаждаемых реакторов.

ЛИТЕРАТУРА

Дементьев Б.А. Ядерные энергетические реакторы. М., 1984 Робертсон Б. Современная физика в прикладных науках. М., 1985 Тепловые и атомные электростанции. М., 1989

Полезные сервисы

ядерка

ядерная астрофизика

Энциклопедический словарь

Я́дерная астрофи́зика - раздел астрофизики, изучающий распространённость химических элементов во Вселенной и ядерные процессы в звёздах и других космических объектах.

* * *

ЯДЕРНАЯ АСТРОФИЗИКА - Я́ДЕРНАЯ АСТРОФИ́ЗИКА, раздел астрофизики, изучающий роль процессов микромира в космических явлениях. Предметом изучения ядерной астрофизики являются ядерные реакции и радиоактивный распад неустойчивых ядер в звездах и других космических объектах, которые приводят к выделению энергии и образованию химических элементов, т. е. к изменению химического состава космических объектов. К ядерной астрофизике относятся нейтринная астрофизика, которая изучает процессы испускания и поглощения нейтрино (см. НЕЙТРИНО) при взрывах сверхновых звезд (см. СВЕРХНОВЫЕ ЗВЕЗДЫ) и гравитационном коллапсе звезд, а также астрофизика космических лучей. Достижения ядерной астрофизики позволили создать качественно согласующуюся с наблюдениями теорию образования, строения и эволюции звезд, теорию взрыва сверхновых звезд и образования пульсаров (см. ПУЛЬСАРЫ), теорию образования химических элементов.

Большой энциклопедический словарь

Полезные сервисы

ядерная батарея

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерная бомба

Энциклопедический словарь

Я́дерная бо́мба - авиационная бомба с ядерным зарядом, обладает большой разрушительной силой. Первые две ядерные бомбы с тротиловым эквивалентом около 20 кт каждая были сброшены американской авиацией на японские города Хиросима и Нагасаки соответственно 6 и 9 августа 1945 и вызвали огромные жертвы и разрушения. Современные ядерные бомбы имеют тротиловый эквивалент от десятков до миллионов тонн.

* * *

ЯДЕРНАЯ БОМБА - Я́ДЕРНАЯ БО́МБА, авиационная бомба с ядерным зарядом (см. ЯДЕРНЫЙ ЗАРЯД), обладает большой разрушительной силой. Первые две ядерные бомбы с тротиловым эквивалентом ок. 20 кт каждая были сброшены американской авиацией на японские города Хиросима и Нагасаки, соответственно 6 и 9 августа 1945, и вызвали огромные жертвы и разрушения. Современные ядерные бомбы имеют тротиловый эквивалент от десятков до миллионов тонн.

Большой энциклопедический словарь

Полезные сервисы

ядерная композиция лингвистическая

ядерная медицина

Синонимы к слову ядерная медицина

сущ., кол-во синонимов: 1

Полезные сервисы

ядерная реакция

ядерная силовая установка

Энциклопедический словарь

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

Полезные сервисы

ядерная спектроскопия

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерная стратегия

Словарь народов и культуры

Ядерная стратегия

(nuclear strategy), полит, и стратег, аспекты ядерного вооружения, в т.ч. проблемы ядерного сдерживания. С 1949 г., когда СССР стал обладателем ядерного оружия, мир волновало, каким образом - в контексте холодной войны ( Восток- Запад, отношения) - противоборствующие стороны, добиваясь полит, преимущества, будут одновременно проводить политику гонки вооружений и разрабатывать меры предотвращения реальной опасности ядерной войны. Чтобы ядерное сдерживание было действенным, угроза ответного удара должна быть правдоподобной. Концепция расширенного сдерживания включает возможность нанесения ответного удара в защиту союзника, как в случае обязательства США защитить Европу. Сдерживание предусматривает не только внесение ясности в намерение использовать в случае необходимости ядерное оружие, но и сохранение способности его применения - отсюда эскалация гонки ядерных вооружений обеими сторонами. Еще одним приемом является т.н. стратег, триада: развертывание ядерных систем в трех средах - на суше, море и в воздухе - для гарантии потерпевшей стороной ответить (гарантированная способность нанесения ответного удара) в случае нанесения противником первого удара (т.е. в случае упреждающего удара). Я.с. включает также контроль за вооружениями и сохранение ядерного баланса сторон.

Полезные сервисы

ядерная техника

Энциклопедический словарь

Я́дерная те́хника - отрасль техники, связанная с использованием ядерной энергии; совокупность технических средств, предназначенных для целесообразного использования внутренней энергии атомного ядра, выделяющейся при ядерных превращениях. Основные направления: реакторостроение, производство ядерного топлива и радиоактивных изотопов, а также ядерного оружия, разработка методов и средств защиты персонала от излучения.

* * *

ЯДЕРНАЯ ТЕХНИКА - Я́ДЕРНАЯ ТЕ́ХНИКА, отрасль техники, охватывающая использование ядерной энергии; совокупность технических средств, связанных с использованием внутренней энергии атомного ядра, выделяющейся при ядерных превращениях. Основное направление - реакторостроение, производство ядерного топлива и радиоактивных изотопов, а также ядерного оружия, разработка методов и средств защиты персонала от излучения.

Большой энциклопедический словарь

Полезные сервисы

ядерная физика

Энциклопедический словарь

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

ЯДЕРНАЯ ФИЗИКА, раздел физики, в котором изучаются структура и свойства атомных ядер и их превращения - радиоактивный распад, деление ядер, ядерные реакции. В 1895 А. Беккерель открыл явление радиоактивности. В 1911 Э. Резерфорд установил, что в центре атома находится тяжелое положительно заряженное ядро ничтожно малого по сравнению с атомом размера, в котором сосредоточена почти вся масса атома. В 1932 установлено, что ядро атомное состоит из протонов и нейтронов, в 1935 предложена идея ядерных сил, удерживающих эти частицы в ядре. В дальнейшем в ядерной физике определилось несколько направлений: физика ядерных реакций, нейтронная физика, ядерная спектроскопия и др.; в самостоятельные разделы выделились физика элементарных частиц, физика и техника ускорителей заряженных частиц. Изучение деления ядер в 1940 - 50-х годов привело к открытию цепных реакций деления ядер урана, созданию ядерных реакторов (Э. Ферми, 1942), ядерной энергетики и ядерного оружия. Был открыт также термоядерный синтез легких ядер в звездах (смотри Солнце), создано термоядерное оружие, начаты работы по осуществлению управляемого термоядерного синтеза. Результаты и методы исследования ядерной физики получили применение как в других областях физики, так и в химии, биологии, геологии, технике, медицине и др. Развитие ядерной физики привело к необходимости решения проблем, связанных с воздействием радиации на природную среду и человека, захоронением ядерных отходов и т.п.

Синонимы к слову ядерная физика

сущ., кол-во синонимов: 2

Полезные сервисы

ядерная химия

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерная электроника

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерная электростанция

ядерная энергетика

Энциклопедический словарь

Я́дерная энерге́тика (атомная энергетика), отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая АЭС (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К середине 90-х гг. в 33 странах мира работало свыше 430 ядерных энергетических реакторов общей мощностью около 340 ГВт; в стадии строительства - 55 блоков общей мощностью около 45 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности АЭС. Главные принципы этой концепции - существенная модернизация современных ядерных реакторов, усиление мер защиты населения и окружающей среды от вредного техногенного воздействия, подготовка высококвалифицированных кадров для АЭС, разработка надёжных хранилищ радиоактивных отходов.

* * *

ЯДЕРНАЯ ЭНЕРГЕТИКА - Я́ДЕРНАЯ ЭНЕРГЕ́ТИКА (атомная энергетика), отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К нач. 90-х гг. в 27 странах мира работало св. 430 ядерных энергетических реакторов общей мощностью ок. 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций. Главные принципы этой концепции - существенная модернизация современных ядерных реакторов, усиление мер защиты населения и окружающей среды от вредного техногенного воздействия, подготовка высококвалифицированных кадров для атомных электростанций, разработка надежных хранилищ радиоактивных отходов и др.

Большой энциклопедический словарь

ЯДЕРНАЯ энергетика (атомная энергетика) - отрасль энергетики, использующая ядерную энергию для электрификации и теплофикации; область науки и техники, разрабатывающая методы и средства преобразования ядерной энергии в электрическую и тепловую. Основа ядерной энергетики - атомные электростанции. Первая атомная электростанция (5 МВт), положившая начало использованию ядерной энергии в мирных целях, была пущена в СССР в 1954. К нач. 90-х гг. в 27 странах мира работало св. 430 ядерных энергетических реакторов общей мощностью ок. 340 ГВт. По прогнозам специалистов, доля ядерной энергетики в общей структуре выработки электроэнергии в мире будет непрерывно возрастать при условии реализации основных принципов концепции безопасности атомных электростанций. Главные принципы этой концепции - существенная модернизация современных ядерных реакторов, усиление мер защиты населения и окружающей среды от вредного техногенного воздействия, подготовка высококвалифицированных кадров для атомных электростанций, разработка надежных хранилищ радиоактивных отходов и др.

Полезные сервисы

ядерная энергия

Энциклопедический словарь

Я́дерная эне́ргия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных превращениях. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжёлых ядер и реакций термоядерного синтеза лёгких ядер.

* * *

ЯДЕРНАЯ ЭНЕРГИЯ - Я́ДЕРНАЯ ЭНЕ́РГИЯ (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных превращениях. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза легких ядер.

* * *

Я́ДЕРНАЯ ЭНЕ́РГИЯ (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях (см. ЯДЕРНЫЕ РЕАКЦИИ)).

Энергия связи ядра. Дефект массы

Нуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами (см. ЯДЕРНЫЕ СИЛЫ). Чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру значительную энергию. Под энергией связи (см. ЭНЕРГИЯ СВЯЗИ) ядра понимают энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии можно утверждать, что энергия связи равна энергии, которая выделяется при образовании ядра из отдельных частиц. Энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром.

Определить энергию связи ядра можно, зная массу ядра и массы частиц -протонов и нейтронов, из которых оно состоит. Существует т. н. дефект массы (см. ДЕФЕКТ МАССЫ): масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. Энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна для связи энергии Е и массы m: E = mc 2 (где с -скорость света) и равна произведению дефекта массы (т. е. суммарной массы свободных нуклонов минус масса ядра) на квадрат скорости света.

Удельная энергия связи

Важную информацию о свойствах ядер дает знание удельной энергии связи ядра, т. е. энергии связи, приходящейся на один нуклон. Она определяется делением энергии связи на массовое число (см. МАССОВОЕ ЧИСЛО), равное числу нуклонов в ядре. С увеличением массового числа удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума в области железа (массовое число 56), после чего плавно снижается. Для большинства химических элементов (за исключением самых легких ядер) эта энергия примерно равна 8 МэВ/нуклон. Наиболее устойчивыми являются ядра, обладающие самой большой удельной энергией связи, т. е. железо и близкие к нему химические элементы периодической системы.

Рост энергии связи легких элементов с увеличением атомного номера (см. АТОМНЫЙ НОМЕР) происходит из-за того, что значительная доля нуклонов этих элементов находится на периферии ядра. Каждый нуклон из-за короткодействия ядерных сил взаимодействует лишь с небольшим числом соседних нуклонов, и чем меньше массовое число, тем меньше число нуклонов участвует в полноценной ядерной связи со своими соседями. Уменьшение удельной энергии связи у тяжелых ядер обусловлено растущей с увеличением атомного номера энергией отталкивания протонов и означает относительную неустойчивость таких ядер. Становится энергетически выгодно их деление. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза -слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.

Механизм деления ядер

В тяжелых ядрах, наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют еще значительные ядерные силы, которые удерживают ядро от распада.

Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Оно растягивается до тех пор, пока силы отталкивания половинок ядра не начинают преобладать над силами притяжения, действующими в перешейке. В результате ядро разрывается на две части (так называемые осколки). Под действием кулоновского отталкивания осколки разлетаются со скоростью, равной 1/30 скорости света; одновременно испускается излучение высокой частоты. Большая часть выделяемой энергии приходится на кинетическую энергию осколков.

Ядерная цепная реакция

Не все ядра способны к делению. Наиболее легко делится изотоп урана 23592U, составляющий всего 1/140 от более распространенного изотопа 23892U. Это деление вызывается как медленными, так и быстрыми нейтронами, попавшими в ядро. При каждом акте деления ядра испускается 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер. В результате возникает ядерная цепная реакция (см. ЯДЕРНЫЕ ЦЕПНЫЕ РЕАКЦИИ). Она сопровождается выделением огромной энергии. При делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВт·ч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти.

Управляемая реакция деления ядер используется в ядерных реакторах (см. ЯДЕРНЫЙ РЕАКТОР). Вероятность захвата ядрами урана медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов (см. ЗАМЕДЛИТЕЛЬ НЕЙТРОНОВ). Лучшим замедлителем нейтронов является тяжелая вода (см. ТЯЖЕЛАЯ ВОДА). Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов. Цепная реакция начинает идти, как только масса делящегося вещества превышает некую критическую массу (см. КРИТИЧЕСКАЯ МАССА). Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор, являющиеся хорошими поглотителями нейтронов.

Неуправляемая цепная реакция осуществляется в атомной бомбе. Для того, чтобы происходило практически мгновенное выделение энергии (ядерный взрыв), реакция должна идти на быстрых нейтронах (без замедлителей). Взрывчатым веществом служит чистый уран 23592U или плутоний 23994Pu.

Термоядерные реакции

Выделение энергии при слиянии ядер легких атомов дейтерия (см. ДЕЙТЕРИЙ), трития (см. ТРИТИЙ)или лития (см. ЛИТИЙобразованием гелия происходит в ходе термоядерных реакций (см. ТЕРМОЯДЕРНЫЕ РЕАКЦИИ). Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы.

Осуществление управляемого термоядерного синтеза (см. УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ (УТС)) на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития. Экономически выгодная реакция может идти только при нагревании реагирующих веществ до температуры порядка 108 К при большой плотности вещества (1014-1015 частиц в 1 см3). Такие температуры могут быть достигнуты путем создания в плазме (см. ПЛАЗМА) мощных электрических разрядов. Основная трудность заключается в том, чтобы удержать плазму столь высокой температуры внутри установки в течение 0,1-1,0 с. Из-за неустойчивости высокотемпературной плазмы эта задача пока остается нерешенной, и в качестве промышленного источника ядерной энергии в настоящее время используются только реакции деления ядер.

Большой энциклопедический словарь

ЯДЕРНАЯ энергия (атмная энергия) - внутренняя энергия атомных ядер, выделяющаяся при некоторых ядерных превращениях. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза легких ядер.

-----------------------------------

ЯДЕРНАЯ энергия (атомная энергия) - внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). энергия связи ядра. дефект массыНуклоны (протоны и нейтроны) в ядре прочно удерживаются ядерными силами. Чтобы удалить нуклон из ядра, надо совершить большую работу, т. е. сообщить ядру значительную энергию. Под энергией связи ядра понимают энергию, которая необходима для полного расщепления ядра на отдельные нуклоны. На основании закона сохранения энергии можно утверждать, что энергия связи равна энергии, которая выделяется при образовании ядра из отдельных частиц. энергия связи атомных ядер очень велика по сравнению с энергией связи электронов с атомным ядром.Определить энергию связи ядра можно, зная массу ядра и массы частиц - протонов и нейтронов, из которых оно состоит. Существует т. н. дефект массы: масса покоя ядра всегда меньше суммы масс покоя входящих в него нуклонов. энергия связи ядер вычисляется с помощью известного соотношения Эйнштейна для связи энергии Е и массы m: E = m/c2 (где с - скорость света) и равна произведению дефекта массы (т. е. суммарной массы свободных нуклонов минус масса ядра) на квадрат скорости света.Удельная энергия связиВажную информацию о свойствах ядер дает знание удельной энергии связи ядра, т. е. энергии связи, приходящейся на один нуклон. Она определяется делением энергии связи на массовое число, равное числу нуклонов в ядре.

С увеличением массового числа удельная энергия связи, начиная с гелия, сначала слабо растет, достигает максимума в области железа (массовое число 56), после чего плавно снижается. Для большинства химических элементов (за исключением самых легких ядер) эта энергия примерно равна 8 МэВ/нуклон. Наиболее устойчивыми являются ядра, обладающие самой большой удельной энергией связи, т. е. железо и близкие к нему химические элементы периодической системы.Рост энергии связи легких элементов с увеличением атомного номера происходит из-за того, что значительная доля нуклонов этих элементов находится на периферии ядра. Каждый нуклон из-за короткодействия ядерных сил взаимодействует лишь с небольшим числом соседних нуклонов, и чем меньше массовое число, тем меньше число нуклонов участвует в полноценной ядерной связи со своими соседями. Уменьшение удельной энергии связи у тяжелых ядер обусловлено растущей с увеличением атомного номера энергией отталкивания протонов и означает относительную неустойчивость таких ядер. Становится энергетически выгодно их деление. Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.Механизм деления ядерВ тяжелых ядрах, наряду с большими силами электрического отталкивания, стремящимися разорвать ядро на части, действуют еще значительные ядерные силы, которые удерживают ядро от распада.Под влиянием поглощенного нейтрона ядро возбуждается и начинает деформироваться, приобретая вытянутую форму. Оно растягивается до тех пор, пока силы отталкивания половинок ядра не начинают преобладать над силами притяжения, действующими в перешейке. В результате ядро разрывается на две части (так называемые осколки). Под действием кулоновского отталкивания осколки разлетаются со скоростью, равной 1/30 скорости света; одновременно испускается излучение высокой частоты. Большая часть выделяемой энергии приходится на кинетическую энергию осколков.Ядерная цепная реакцияНе все ядра способны к делению. Наиболее легко делится изотоп урана 23592U, составляющий всего 1/140 от более распространенного изотопа 23892U. Это деление вызывается как медленными, так и быстрыми нейтронами, попавшими в ядро. При каждом акте деления ядра испускается 2-3 нейтрона, которые в свою очередь могут вызывать деление других ядер. В результате возникает ядерная цепная реакция. Она сопровождается выделением огромной энергии. При делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВтч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти.Управляемая реакция деления ядер используется в ядерных реакторах. Вероятность захвата ядрами урана медленных нейтронов с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используются замедлители нейтронов. Лучшим замедлителем нейтронов является тяжелая вода. Хорошим замедлителем считается также графит, ядра которого не поглощают нейтронов. Цепная реакция начинает идти, как только масса делящегося вещества превышает некую критическую массу. Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор, являющиеся хорошими поглотителями нейтронов.Неуправляемая цепная реакция осуществляется в атомной бомбе. Для того, чтобы происходило практически мгновенное выделение энергии (ядерный взрыв), реакция должна идти на быстрых нейтронах (без замедлителей). Взрывчатым веществом служит чистый уран 23592U или плутоний 23994Pu.Термоядерные реакцииВыделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций. Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы.Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития. Экономически выгодная реакция может идти только при нагревании реагирующих веществ до температуры порядка 108 К при большой плотности вещества (1014-1015 частиц в 1 см³). Такие температуры могут быть достигнуты путем создания в плазме мощных электрических разрядов. Основная трудность заключается в том, чтобы удержать плазму столь высокой температуры внутри установки в течение 0,1-1,0 с. Из-за неустойчивости высокотемпературной плазмы эта задача пока остается нерешенной, и в качестве промышленного источника ядерной энергии в настоящее время используются только реакции деления ядер.Литература:Ландау Л. Д., Смородинский Я. А. Лекции по теории атомного ядра. М., 1955.Давыдов А. С. Теория атомного ядра. М., 1958.Широков Ю. М., Юдин Н. П. Ядерная физика. М., 1980.Г. Я. Мякишев ЯДЕРНОЕ время - характерное время протекания процессов, обусловленных сильным взаимодействием (напр., ядерными силами); составляет по порядку величины 10-23с.

Иллюстрированный энциклопедический словарь

Полезные сервисы

ядерник

Орфографический словарь

Словарь ударений

Формы слов для слова ядерник

Синонимы к слову ядерник

сущ., кол-во синонимов: 1

Морфемно-орфографический словарь

Грамматический словарь

Полезные сервисы

ядерно безопасный

Орфографический словарь

Полезные сервисы

ядерно опасный

Слитно. Раздельно. Через дефис

Орфографический словарь

Полезные сервисы

ядерно-активный

Слитно. Раздельно. Через дефис

Морфемно-орфографический словарь

я́дер/н/о/-акти́в/н/ый.

Полезные сервисы

ядерно-генетический

Слитно. Раздельно. Через дефис

Полезные сервисы

ядерно-космический

ядерно-магнитный

Слитно. Раздельно. Через дефис

Синонимы к слову ядерно-магнитный

прил., кол-во синонимов: 1

Полезные сервисы

ядерно-минный

Слитно. Раздельно. Через дефис

Полезные сервисы

ядерно-плазменный

ядерно-ракетный

Слитно. Раздельно. Через дефис

Синонимы к слову ядерно-ракетный

прил., кол-во синонимов: 1

Полезные сервисы

ядерно-реактивный

Слитно. Раздельно. Через дефис

Орфографический словарь

Словарь ударений

Морфемно-орфографический словарь

Полезные сервисы

ядерно-реакторный

Слитно. Раздельно. Через дефис

Полезные сервисы

ядерно-резонансный

Морфемно-орфографический словарь

Полезные сервисы

ядерно-физический

Слитно. Раздельно. Через дефис

Полезные сервисы

ядерно-электрический

Слитно. Раздельно. Через дефис

Полезные сервисы

ядерно-электронный

Слитно. Раздельно. Через дефис

Синонимы к слову ядерно-электронный

прил., кол-во синонимов: 1

Полезные сервисы

ядерно-энергетический

Слитно. Раздельно. Через дефис

Орфографический словарь

Морфемно-орфографический словарь

Полезные сервисы

ядерное время

ядерное окружение лексического значения

ядерное оружие

Энциклопедический словарь

Большой энциклопедический словарь

Энциклопедия Кольера

ЯДЕРНОЕ ОРУЖИЕ - в отличие от обычного оружия, оказывает разрушающее действие за счет ядерной, а не механической или химической энергии. По разрушительной мощи только взрывной волны одна единица ядерного оружия может превосходить тысячи обычных бомб и артиллерийских снарядов. Кроме того, ядерный взрыв оказывает на все живое губительное тепловое и радиационное действие, причем иногда на больших площадях. См. также ВОЙНА ЯДЕРНАЯ.

<a href='/dict/атомное' class='wordLink' target='_blank'>АТОМНОЕ</a> <a href='/dict/оружие' class='wordLink' target='_blank'>ОРУЖИЕ</a> <a href='/dict/имплозионного' class='wordLink' target='_blank'>ИМПЛОЗИОННОГО</a> <a href='/dict/типа' class='wordLink' target='_blank'>ТИПА</a> <a href='/dict/представляет' class='wordLink' target='_blank'>представляет</a> <a href='/dict/собой' class='wordLink' target='_blank'>собой</a> <a href='/dict/полую' class='wordLink' target='_blank'>полую</a> <a href='/dict/сферу' class='wordLink' target='_blank'>сферу</a> из <a href='/dict/делящегося' class='wordLink' target='_blank'>делящегося</a> <a href='/dict/материала' class='wordLink' target='_blank'>материала</a>, <a href='/dict/окруженную' class='wordLink' target='_blank'>окруженную</a> <a href='/dict/слоем' class='wordLink' target='_blank'>слоем</a> <a href='/dict/обычного' class='wordLink' target='_blank'>обычного</a> <a href='/dict/взрывчатого' class='wordLink' target='_blank'>взрывчатого</a> <a href='/dict/вещества' class='wordLink' target='_blank'>вещества</a>. <a href='/dict/при' class='wordLink' target='_blank'>При</a> <a href='/dict/детонации' class='wordLink' target='_blank'>детонации</a> <a href='/dict/наружной' class='wordLink' target='_blank'>наружной</a> <a href='/dict/сферы' class='wordLink' target='_blank'>сферы</a> <a href='/dict/внутренняя' class='wordLink' target='_blank'>внутренняя</a> <a href='/dict/сжимается' class='wordLink' target='_blank'>сжимается</a> до <a href='/dict/критической' class='wordLink' target='_blank'>критической</a> <a href='/dict/массы' class='wordLink' target='_blank'>массы</a> и <a href='/dict/происходит' class='wordLink' target='_blank'>происходит</a> <a href='/dict/ядерный' class='wordLink' target='_blank'>ядерный</a> <a href='/dict/взрыв' class='wordLink' target='_blank'>взрыв</a>. <a href='/dict/устройства' class='wordLink' target='_blank'>Устройства</a>, <a href='/dict/взорванные' class='wordLink' target='_blank'>взорванные</a> в <a href='/dict/аламогордо' class='wordLink' target='_blank'>Аламогордо</a> и <a href='/dict/над' class='wordLink' target='_blank'>над</a> <a href='/dict/нагасаки' class='wordLink' target='_blank'>Нагасаки</a>, <a href='/dict/были' class='wordLink' target='_blank'>были</a> <a href='/dict/такого' class='wordLink' target='_blank'>такого</a> <a href='/dict/типа' class='wordLink' target='_blank'>типа</a>. а - до <a href='/dict/взрыва' class='wordLink' target='_blank'>взрыва</a>; б - <a href='/dict/после' class='wordLink' target='_blank'>после</a> <a href='/dict/взрыва' class='wordLink' target='_blank'>взрыва</a>; 1 - <a href='/dict/корпус' class='wordLink' target='_blank'>корпус</a>; 2 - <a href='/dict/обычное' class='wordLink' target='_blank'>обычное</a> ВВ; 3 - <a href='/dict/докритическая' class='wordLink' target='_blank'>докритическая</a> <a href='/dict/масса' class='wordLink' target='_blank'>масса</a> Pu-239; 4 - <a href='/dict/воздушная' class='wordLink' target='_blank'>воздушная</a> <a href='/dict/полость' class='wordLink' target='_blank'>полость</a> и <a href='/dict/зазоры' class='wordLink' target='_blank'>зазоры</a>; 5 - <a href='/dict/провода' class='wordLink' target='_blank'>провода</a> <a href='/dict/системы' class='wordLink' target='_blank'>системы</a> <a href='/dict/детонации' class='wordLink' target='_blank'>детонации</a>; 6 - <a href='/dict/критическая' class='wordLink' target='_blank'>критическая</a> <a href='/dict/масса' class='wordLink' target='_blank'>масса</a>.

АТОМНОЕ ОРУЖИЕ ИМПЛОЗИОННОГО ТИПА представляет собой полую сферу из делящегося материала, окруженную слоем обычного взрывчатого вещества. При детонации наружной сферы внутренняя сжимается до критической массы и происходит ядерный взрыв. Устройства, взорванные в Аламогордо и над Нагасаки, были такого типа. а - до взрыва; б - после взрыва; 1 - корпус; 2 - обычное ВВ; 3 - докритическая масса Pu-239; 4 - воздушная полость и зазоры; 5 - провода системы детонации; 6 - критическая масса.

<a href='/dict/атомное' class='wordLink' target='_blank'>АТОМНОЕ</a> <a href='/dict/оружие' class='wordLink' target='_blank'>ОРУЖИЕ</a> <a href='/dict/орудийного' class='wordLink' target='_blank'>ОРУДИЙНОГО</a> <a href='/dict/типа' class='wordLink' target='_blank'>ТИПА</a>. С <a href='/dict/помощью' class='wordLink' target='_blank'>помощью</a> <a href='/dict/заряда' class='wordLink' target='_blank'>заряда</a> <a href='/dict/обычного' class='wordLink' target='_blank'>обычного</a> <a href='/dict/взрывчатого' class='wordLink' target='_blank'>взрывчатого</a> <a href='/dict/вещества' class='wordLink' target='_blank'>вещества</a> <a href='/dict/одно' class='wordLink' target='_blank'>одно</a> <a href='/dict/полушарие' class='wordLink' target='_blank'>полушарие</a> из <a href='/dict/делящегося' class='wordLink' target='_blank'>делящегося</a> <a href='/dict/материала' class='wordLink' target='_blank'>материала</a> <a href='/dict/докритической' class='wordLink' target='_blank'>докритической</a> <a href='/dict/массы' class='wordLink' target='_blank'>массы</a> <a href='/dict/выстреливается' class='wordLink' target='_blank'>выстреливается</a> в <a href='/dict/другое' class='wordLink' target='_blank'>другое</a>, <a href='/dict/такое' class='wordLink' target='_blank'>такое</a> же. В <a href='/dict/результате' class='wordLink' target='_blank'>результате</a> <a href='/dict/начинается' class='wordLink' target='_blank'>начинается</a> <a href='/dict/цепная' class='wordLink' target='_blank'>цепная</a> <a href='/dict/реакция' class='wordLink' target='_blank'>реакция</a> и <a href='/dict/происходит' class='wordLink' target='_blank'>происходит</a> <a href='/dict/ядерный' class='wordLink' target='_blank'>ядерный</a> <a href='/dict/взрыв' class='wordLink' target='_blank'>взрыв</a>. 1 - <a href='/dict/корпус' class='wordLink' target='_blank'>корпус</a>; 2 - <a href='/dict/обычное' class='wordLink' target='_blank'>обычное</a> ВВ; 3 - <a href='/dict/детонатор' class='wordLink' target='_blank'>детонатор</a>; 4 - <a href='/dict/воздушный' class='wordLink' target='_blank'>воздушный</a> <a href='/dict/промежуток' class='wordLink' target='_blank'>промежуток</a>; 5 - <a href='/dict/нейтронный' class='wordLink' target='_blank'>нейтронный</a> <a href='/dict/отражатель' class='wordLink' target='_blank'>отражатель</a>; 6 - <a href='/dict/докритическая' class='wordLink' target='_blank'>докритическая</a> <a href='/dict/масса' class='wordLink' target='_blank'>масса</a> U-235.

АТОМНОЕ ОРУЖИЕ ОРУДИЙНОГО ТИПА.

С помощью заряда обычного взрывчатого вещества одно полушарие из делящегося материала докритической массы выстреливается в другое, такое же. В результате начинается цепная реакция и происходит ядерный взрыв. 1 - корпус; 2 - обычное ВВ; 3 - детонатор; 4 - воздушный промежуток; 5 - нейтронный отражатель; 6 - докритическая масса U-235.

Испытания ядерного оружия впервые были проведены на Аламогордской базе ВВС, расположенной в пустынной части шт. Нью-Мексико. Плутониевое ядерное устройство, установленное на стальной башне, было успешно взорвано 16 июля 1945. Энергия взрыва приблизительно соответствовала 20 кт тротила. При взрыве образовалось грибовидное облако, башня обратилась в пар, а характерный для пустыни грунт под ней расплавился, превратившись в сильно радиоактивное стеклообразное вещество. (Через 16 лет после взрыва уровень радиоактивности в этом месте все еще был выше нормы.) Информация об удачном опытном взрыве сохранялась в тайне от общественности, но была передана президенту Г.Трумэну, который в то время находился в Потсдаме на переговорах о послевоенном устройстве Германии. Проинформированы были также У.Черчилль и И.Сталин. В это время велась подготовка к вторжению войск союзников в Японию. Чтобы обойтись без вторжения и избежать связанных с ним потерь - сотен тысяч жизней военнослужащих союзных войск, - 26 июля 1945 президент Трумэн из Потсдама предъявил ультиматум Японии: либо безоговорочная капитуляция, либо "быстрое и полное уничтожение". Японское правительство не ответило на ультиматум, и президент отдал приказ сбросить атомные бомбы. 6 августа самолет B-29 "Энола-Гэй", поднявшийся в воздух с базы на Марианских островах, сбросил на Хиросиму бомбу из урана-235 мощностью ок. 20 кт. Большой город состоял в основном из легких деревянных построек, но в нем было много и железобетонных зданий. Бомба, взорвавшаяся на высоте 560 м, опустошила зону площадью ок. 10 кв. км. Были разрушены практически все деревянные строения и многие даже самые прочные дома. Пожары нанесли городу непоправимый ущерб. Было убито и ранено 140 тыс. человек из 255-тысячного населения города.

<a href='/dict/взрыв' class='wordLink' target='_blank'>ВЗРЫВ</a> <a href='/dict/атомной' class='wordLink' target='_blank'>АТОМНОЙ</a> <a href='/dict/бомбы' class='wordLink' target='_blank'>БОМБЫ</a> <a href='/dict/над' class='wordLink' target='_blank'>над</a> <a href='/dict/хиросимой' class='wordLink' target='_blank'>Хиросимой</a> 6 <a href='/dict/августа' class='wordLink' target='_blank'>августа</a> 1945.

ВЗРЫВ АТОМНОЙ БОМБЫ над Хиросимой 6 августа 1945.

Японское правительство и после этого не сделало недвусмысленного заявления о капитуляции, и поэтому 9 августа была сброшена вторая бомба - на этот раз на Нагасаки. Людские потери, хотя и не такие, как в Хиросиме, были тем не менее огромны. Вторая бомба убедила японцев в невозможности сопротивления, и император Хирохито предпринял шаги в направлении капитуляции Японии. В октябре 1945 президент Трумэн законодательным порядком передал ядерные исследования под гражданский контроль. Законопроектом, принятым в августе 1946, была учреждена комиссия по атомной энергии из пяти членов, назначаемых президентом США. Эта комиссия прекратила свою деятельность 11 октября 1974, когда президент Дж.Форд создал комиссию по ядерной регламентации и управление по энергетическим исследованиям и разработкам, причем на последнее возлагалась ответственность за дальнейшие разработки ядерного оружия. В 1977 было создано министерство энергетики США, которое должно было контролировать научные исследования и разработки в области ядерного оружия. В 1956 было создано Международное агентство по атомной энергии (МАГАТЭ). В 1970, когда был заключен договор о нераспространении ядерного оружия, МАГАТЭ взяло на себя дополнительную важную функцию - контролировать выполнение названного договора его участниками, не входящими в число ядерных держав. Примерно треть ресурсов МАГАТЭ идет на деятельность, связанную с таким контролем, а другие две трети - на помощь и кооперацию в разработках и обеспечении безопасности энергетики, а также на другие мирные ядерные программы. В 1958 было создано Европейское сообщество по атомной энергии (Евратом), тоже для контроля за применением ядерной энергии в мирных целях. Первоначально его членами были Франция, Италия, Нидерланды, Люксембург и ФРГ. В 1973 в него вошли также Великобритания, Ирландия и Дания, в 1981 - Греция, в 1986 - Испания и Португалия и в 1995 - Австрия, Швеция и Финляндия.

ПОСЛЕВОЕННЫЕ РАЗРАБОТКИ ОРУЖИЯ

После 1945 дальнейшее развитие в области ядерного оружия шло в двух основных направлениях: усовершенствование оружия, созданного в период Второй мировой войны, и создание термоядерного оружия. Бомба, взорванная над Хиросимой, была изготовлена из урана-235, а по конструкции относилась к т.н. орудийному типу. В бомбах такого типа делящийся материал состоит из двух частей, расположенных в противоположных концах орудийного ствола. Масса каждой из этих двух половин - докритическая. Одна из них называется мишенью, другая - снарядом. Чтобы бомба взорвалась, производится детонация неядерного взрывного заряда, в результате чего снаряд выстреливается в мишень. Образуется критическая масса, что приводит к ядерному взрыву. В бомбе имплозионной конструкции, сброшенной на Нагасаки, требуется меньше делящегося материала для заданной мощности взрыва, она меньше по размерам; мощность оружия можно изменять соответственно типу носителя. В результате параллельных разработок были созданы ядерные артиллерийские снаряды.

Водородная бомба. Поскольку масса каждого заряда урана или плутония в бомбе, основанной на делении ядер, должна быть докритической, мощность атомной бомбы можно наращивать, только увеличивая число зарядов. Таким образом, с повышением мощности бомбы она быстро растет в размерах и в конце концов становится нетранспортабельной. Поэтому исследователи, работавшие в области ядерного оружия, обратились к реакции термоядерного синтеза как возможному источнику энергии взрыва (см. также ЯДЕРНЫЙ СИНТЕЗ). Термоядерную ("водородную") бомбу в принципе можно сделать любых размеров. Соответствующие исследования в США вначале почти не получили поддержки, и до 1950 разработки и испытания практически не проводились. Лишь некоторые ученые, в частности Э.Теллер, продолжали заниматься этим вопросом и совершенствовали теорию, на которой могли основываться испытания. Советский Союз взорвал свою первую атомную бомбу в 1949. Президент Трумэн 13 января 1951 распорядился ускорить разработку водородной бомбы. В ноябре 1952 в США было взорвано нетранспортабельное термоядерное устройство. Это был первый термоядерный взрыв, мощность его составила несколько мегатонн тротилового эквивалента. В 1953 о взрыве своей термоядерной бомбы объявило советское правительство.

Оружие повышенной радиации. Оружие повышенной радиации по проникающей радиации не уступает атомному (основанному на делении), которое оно призвано заменить, но выделяет значительно меньше тепла, создает более слабую ударную волну и меньше радиоактивных осадков. Такая "нейтронная бомба" (на самом деле не бомба, а артиллерийский снаряд), уничтожающая живую силу, представляет собой тактическое оружие, рассчитанное на применение против бронетехники на малых полях сражения. Нейтронная бомба была испытана в США, Франции, Советском Союзе и, вероятно, в КНР, но, по-видимому, не была принята на вооружение.

См. также ЯДЕР ДЕЛЕНИЕ; ЯДЕРНЫЙ СИНТЕЗ.

ИСПЫТАНИЯ

Ядерные испытания проводятся в целях общего исследования ядерных реакций, совершенствования оружейной техники, проверки новых средств доставки, а также надежности и безопасности методов хранения и обслуживания оружия. Одна из главных проблем при проведении испытаний связана с необходимостью обеспечения безопасности. При всей важности вопросов защиты от прямого воздействия ударной волны, нагрева и светового излучения первостепенное значение имеет все-таки проблема радиоактивных осадков. Пока что не создано "чистого" ядерного оружия, не приводящего к выпадению радиоактивных осадков. Испытания ядерного оружия могут проводиться в космосе, в атмосфере, на воде или на суше, под землей или под водой. Если они проводятся над землей или над водой, то в атмосферу вносится облако мелкой радиоактивной пыли, которая затем широко рассеивается. При испытаниях в атмосфере образуется зона долго сохраняющейся остаточной радиоактивности. Соединенные Штаты, Великобритания и Советский Союз отказались от атмосферных испытаний, ратифицировав в 1963 договор о запрещении ядерных испытаний в трех средах. Франция последний раз провела атмосферное испытание в 1974. Самое последнее испытание в атмосфере было проведено в КНР в 1980. После этого все испытания проводились под землей, а Францией - под океанским дном.

ДОГОВОРЫ И СОГЛАШЕНИЯ

В 1958 Соединенные Штаты и Советский Союз договорились о моратории на испытания в атмосфере. Тем не менее СССР возобновил испытания в 1961, а США - в 1962. В 1963 комиссия ООН по разоружению подготовила договор о запрещении ядерных испытаний в трех средах: атмосфере, космическом пространстве и под водой. Договор ратифицировали Соединенные Штаты, Советский Союз, Великобритания и свыше 100 других государств-членов ООН. (Франция и КНР тогда его не подписали.) В 1968 был открыт к подписанию договор о нераспространении ядерного оружия, подготовленный тоже комиссией ООН по разоружению. К середине 1990-х годов его ратифицировали все пять ядерных держав, а всего подписали 181 государство. В число 13 не подписавших входили Израиль, Индия, Пакистан и Бразилия. Договор о нераспространении ядерного оружия запрещает владеть ядерным оружием всем странам, кроме пяти ядерных держав (Великобритании, КНР, России, Соединенных Штатов и Франции). В 1995 этот договор был продлен на неопределенный срок. Среди двусторонних соглашений, заключенных между США и СССР, были договоры об ограничении стратегических вооружений (ОСВ-I в 1972, ОСВ-II в 1979), об ограничении подземных испытаний ядерного оружия (1974) и о подземных ядерных взрывах в мирных целях (1976). В конце 1980-х годов упор был перенесен со сдерживания роста вооружений и ограничения ядерных испытаний на сокращение ядерных арсеналов сверхдержав. Договор о ядерных вооружениях средней и меньшей дальности, подписанный в 1987, обязывал обе державы ликвидировать свои запасы ядерных ракет наземного базирования с дальностью 500-5500 км. Переговоры между США и СССР о сокращении наступательных вооружений (СНВ), проводившиеся как продолжение переговоров ОСВ, завершились в июле 1991 заключением договора (СНВ-1), по которому обе стороны согласились сократить примерно на 30% свои запасы ядерных баллистических ракет большой дальности. В мае 1992, когда распался Советский Союз, США подписали соглашение (т.н. Лиссабонский протокол) с бывшими республиками СССР, владевшими ядерным оружием, - Россией, Украиной, Белоруссией и Казахстаном, - в соответствии с которым все стороны обязаны выполнять договор СНВ-1. Был также подписан договор СНВ-2 между Россией и США. Им устанавливается предельное число боеголовок для каждой из сторон, равное 3500. Сенат США ратифицировал этот договор в 1996. Договором по Антарктике от 1959 был введен принцип безъядерной зоны. С 1967 вошел в силу договор о запрещении ядерного оружия в Латинской Америке (Тлателолькский договор), а также договор о мирном исследовании и использовании космического пространства. Велись переговоры и о других безъядерных зонах.

РАЗРАБОТКИ В ДРУГИХ СТРАНАХ

Советский Союз взорвал свою первую атомную бомбу в 1949, а термоядерную - в 1953. В арсеналах СССР имелось тактическое и стратегическое ядерное оружие, в том числе совершенные системы доставки. После распада СССР в декабре 1991 российский президент Б.Ельцин стал добиваться того, чтобы ядерное оружие, размещенное на Украине, в Белоруссии и Казахстане, было перевезено для ликвидации или хранения в Россию. Всего к июню 1996 было приведено в неработоспособное состояние 2700 боеголовок в Белоруссии, Казахстане и Украине, а также 1000 - в России. В 1952 Великобритания взорвала свою первую атомную бомбу, а в 1957 - водородную. Эта страна полагается на небольшой стратегический арсенал баллистических ракет подводного базирования БРПЛ (т.е. запускаемых с подлодок), а также на использование (до 1998) авиационных средств доставки. Франция провела испытания ядерного оружия в пустыне Сахара в 1960, а термоядерного - в 1968. До начала 1990-х годов французский арсенал тактического ядерного оружия состоял из баллистических ракет малой дальности и ядерных бомб, доставляемых самолетами. Стратегические вооружения Франции - это баллистические ракеты промежуточной дальности и БРПЛ, а также ядерные бомбардировщики. В 1992 Франция приостановила проведение испытаний ядерного оружия, но в 1995 возобновила их - для модернизации боеголовок ракет подводного базирования. В марте 1996 французское правительство объявило, что полигон для запуска стратегических баллистических ракет, расположенный на плато д'Альбион в центральной Франции, будет поэтапно ликвидирован. КНР в 1964 стала пятой ядерной державой, а в 1967 взорвала термоядерное устройство. Стратегический арсенал КНР состоит из ядерных бомбардировщиков и баллистических ракет промежуточной дальности, а тактический - из баллистических ракет средней дальности. В начале 1990-х годов КНР дополнила свой стратегический арсенал баллистическими ракетами подводного базирования. После апреля 1996 КНР оставалась единственной ядерной державой, не прекратившей ядерных испытаний.

Распространение ядерного оружия. Кроме перечисленных выше, имеются и другие страны, располагающие технологией, необходимой для разработки и создания ядерного оружия, но те из них, которые подписали договор о нераспространении ядерного оружия, отказались от применения ядерной энергии в военных целях. Известно, что Израиль, Пакистан и Индия, не подписавшие названного договора, имеют ядерное оружие. КНДР, подписавшая договор, подозревается в скрытном проведении работ по созданию ядерного оружия. В 1992 ЮАР объявила, что в ее распоряжении имелось шесть единиц ядерного оружия, но они были уничтожены, и ратифицировала договор о нераспространении. Инспектирование, проведенное специальной комиссией ООН и МАГАТЭ в Ираке после войны в Персидском заливе (1990-1991), показало, что у Ирака имелась серьезно поставленная программа разработки ядерного, биологического и химического оружия. Что касается его ядерной программы, то ко времени войны в Персидском заливе Ираку оставалось лишь два-три года до создания готового к применению ядерного оружия. Правительства Израиля и США утверждают, что своя программа разработки ядерного оружия имеется у Ирана. Но Иран подписал договор о нераспространении, а в 1994 вошло в силу соглашение с МАГАТЭ о международном контроле. С тех пор инспекторы МАГАТЭ не сообщали фактов, свидетельствующих о работах по созданию ядерного оружия в Иране.

ДЕЙСТВИЕ ЯДЕРНОГО ВЗРЫВА

Ядерное оружие предназначено для уничтожения живой силы и военных объектов противника. Важнейшими поражающими факторами для людей являются ударная волна, световое излучение и проникающая радиация; разрушающее действие на военные объекты обусловлено в основном ударной волной и вторичными тепловыми эффектами. При детонации взрывчатых веществ обычного типа почти вся энергия выделяется в виде кинетической энергии, которая практически полностью переходит в энергию ударной волны. При ядерном и термоядерном взрывах по реакции деления ок. 50% всей энергии переходит в энергию ударной волны, а ок. 35% - в световое излучение. Остальные 15% энергии высвобождаются в форме разных видов проникающей радиации. При ядерном взрыве образуется сильно нагретая, светящаяся, приблизительно сферическая масса - т.н. огненный шар. Он сразу же начинает расширяться, охлаждаться и подниматься вверх. По мере его охлаждения пары в огненном шаре конденсируются, образуя облако, содержащее твердые частицы материала бомбы и капельки воды, что придает ему вид обычного облака. Возникает сильная воздушная тяга, всасывающая в атомное облако подвижный материал с поверхности земли. Облако поднимается, но через некоторое время начинает медленно опускаться. Опустившись до уровня, на котором его плотность близка к плотности окружающего воздуха, облако расширяется, принимая характерную грибовидную форму.

Таблица 1. ДЕЙСТВИЕ УДАРНОЙ ВОЛНЫ

Прямое энергетическое действие. Действие ударной волны. Через долю секунды после взрыва от огненного шара распространяется ударная волна - как бы движущаяся стена горячего сжатого воздуха. Толщина этой ударной волны значительно больше, чем при обычном взрыве, и поэтому она дольше воздействует на встречный объект. Скачок давления причиняет ущерб из-за увлекающего действия, приводящего к перекатыванию, обрушению и разметыванию объектов. Сила ударной волны характеризуется создаваемым ею избыточным давлением, т.е. превышением нормального атмосферного давления. При этом пустотелые структуры легче разрушаются, нежели сплошные или армированные. Приземистые и подземные сооружения в меньшей мере подвержены разрушительному действию ударной волны, чем высокие здания. Тело человека обладает удивительной

стойкостью к ударной волне. Поэтому прямое воздействие избыточного давления ударной волны не приводит к значительным людским потерям. Большей частью люди гибнут под обломками обрушивающихся зданий и получают травмы от быстро движущихся предметов. В табл. 1 представлен ряд различных объектов с указанием избыточного давления, вызывающего серьезные повреждения, и радиуса зоны, в которой наблюдается серьезное повреждение при взрывах мощностью 5, 10 и 20 кт тротилового эквивалента.

Действие светового излучения. Как только возникает огненный шар, он начинает испускать световое излучение, в том числе инфракрасное и ультрафиолетовое. Происходят две вспышки светового излучения: интенсивная, но малой длительности, при взрыве, обычно слишком короткая, чтобы вызвать значительные людские потери, а затем вторая, менее интенсивная, но более длительная. Вторая вспышка оказывается причиной почти всех людских потерь, обусловленных световым излучением. Световое излучение распространяется прямолинейно и действует в пределах видимости огненного шара, но не обладает сколько-нибудь значительной проникающей способностью. Надежной защитой от него может быть непрозрачная ткань, например палаточная, хотя сама она может загореться. Светлоокрашенные ткани отражают световое излучение, а поэтому требуют для воспламенения большей энергии излучения, чем темные. После первой вспышки света можно успеть спрятаться за тем или иным укрытием от второй вспышки. Степень поражения человека световым излучением зависит от того, в какой мере открыта поверхность его тела. Прямое действие светового излучения обычно не приводит к большим повреждениям материалов. Но поскольку такое излучение вызывает возгорание, оно может причинять большой ущерб вследствие вторичных эффектов, о чем свидетельствуют колоссальные пожары в Хиросиме и Нагасаки.

Проникающая радиация. Проникающая ядерная радиация действует почти исключительно на людей и другие живые организмы. Возникают два вида проникающей радиации: начальная и остаточная. Начальная радиация, состоящая в основном из гамма-излучения и нейтронов, испускается самим взрывом в течение примерно 60 с. Она действует в пределах прямой видимости. Ее поражающее действие можно уменьшить, если, заметив первую взрывную вспышку, сразу спрятаться в укрытие. Начальная радиация обладает значительной проникающей способностью, так что для защиты от нее требуется толстый лист металла или толстый слой грунта. Стальной лист толщиной 40 мм пропускает половину падающей на него радиации. Как поглотитель радиации сталь в 4 раза эффективнее бетона, в 5 раз - земли, в 8 раз - воды, и в 16 раз - дерева. Но она в 3 раза менее эффективна, чем свинец. Остаточная радиация испускается длительное время. Она может быть связана с наведенной радиоактивностью и с радиоактивными осадками. В результате действия нейтронной составляющей начальной радиации на грунт вблизи эпицентра взрыва грунт становится радиоактивным. При взрывах на поверхности земли и на небольшой высоте наведенная радиоактивность особенно велика и может сохраняться длительное время. "Радиоактивными осадками" называется загрязнение частицами, выпадающими из радиоактивного облака. Это частицы делящегося материала самой бомбы, а также материала, затянутого в атомное облако с земли и ставшего радиоактивным в результате облучения нейтронами, высвобождающимися в ходе ядерной реакции. Такие частицы постепенно оседают, что приводит к радиоактивному загрязнению поверхностей. Более тяжелые из них быстро оседают неподалеку от места взрыва. Более легкие радиоактивные частицы, уносимые ветром, могут оседать на расстоянии многих километров, заражая большие площади на протяжении длительного времени. Прямые людские потери от радиоактивных осадков могут быть значительны вблизи эпицентра взрыва. Но с увеличением расстояния от эпицентра интенсивность радиации быстро уменьшается.

Виды поражающего действия радиации. Радиация разрушает ткани тела. Поглощенная доза излучения - это энергетическая величина, измеряемая в радах (1 рад = 0,01 Дж/кг) для всех видов проникающего излучения. Разные виды излучения оказывают разное действие на организм человека. Поэтому экспозиционная доза рентгеновского и гамма-излучения измеряется в рентгенах (1Р = 2,58Ч10-4 Кл/кг). Вред, нанесенный человеческой ткани поглощением радиации, оценивается в единицах эквивалентной дозы излучения - бэрах (бэр - биологический эквивалент рентгена). Чтобы вычислить дозу в рентгенах, необходимо дозу в радах умножить на т.н. относительную биологическую эффективность рассматриваемого вида проникающей радиации. Все люди на протяжении своей жизни поглощают некоторое природное (фоновое) проникающее излучение, а многие - искусственное, например рентгеновское. Человеческий организм, по-видимому, справляется с таким уровнем облучения. Вредные же последствия наблюдаются тогда, когда либо полная накопленная доза слишком велика, либо облучение произошло за короткое время. (Правда, доза, полученная в результате равномерного облучения на протяжении более длительного времени, тоже может приводить к тяжелым последствиям.) Как правило, полученная доза облучения не приводит к немедленному поражению. Даже летальные дозы могут в течение часа и более никак не сказываться. Ожидаемые результаты облучения (всего тела) человека разными дозами проникающей радиации представлены в табл. 2.

Влияние высоты взрыва. Поражающее действие взрыва зависит от высоты, на которой он произведен. Взрыв в воздухе над водой оказывает примерно такое же поражающее действие на надводные цели, как и на наземные. Кроме того, над водой возникает базисная волна высокорадиоактивного белого тумана, распространяющаяся от базиса взрыва со скоростью ок. 80 км/ч.

Электромагнитный импульс. При взрыве ядерного оружия возникает сильное электрическое поле. Взрыв на большой высоте создает на поверхности Земли интенсивные поля электромагнитного излучения на площадях, измеряемых сотнями и тысячами квадратных километров. Действие таких полей на живую силу отнюдь нельзя считать незначительным, но все же сильнее всего они повреждают, на короткое время или окончательно, электронные и электрические устройства, что может иметь самые серьезные последствия для многих систем управления, контроля, связи и наблюдения.

См также ВОЙНА ЯДЕРНАЯ; ВОЙНЫ ЗВЕЗДНЫЕ; РАКЕТНОЕ ОРУЖИЕ.

ЛИТЕРАТУРА

Ядерный взрыв в космосе, на земле и под землей. М., 1974 Харитон Ю.Б. и др. О создании советской водородной (термоядерной) бомбы. - УФН, 1996, № 2 Ядерные испытания СССР. Общие характеристики, цели, организация. М., 1997

Иллюстрированный энциклопедический словарь

ЯДЕРНОЕ ОРУЖИЕ, оружие массового поражения взрывного действия, основанное на использовании внутренней энергии атомного ядра (термоядерное и др.). Включает различные ядерные боеприпасы, средства их доставки к цели и средства управления. По мощности зарядов и дальности действия делится на тактическое, оперативно-тактическое и стратегическое. Впервые применено США в августе 1945 при бомбардировках японских городов Хиросима и Нагасаки. Борьба за запрещение испытаний и применения ядерного оружия - одна из важнейших проблем современности. В 60-х годах были заключены: Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой (так называемый Московский договор, 1963), Договор о нераспространении ядерного оружия (1968), Договор о запрещении размещения на дне морей и океанов ядерного оружия (Договор о морском дне, 1970) и др. В 90-х годах между СССР и США заключено несколько договоров о сокращении ядерных вооружений. Некоторые ядерные державытом числе Россия, США) заявили о моратории на испытания ядерного оружия.

Словарь народов и культуры

Ядерное оружие

(nuclear weapons), взрывное устр-во, разрушительная сила к-рого образуется благодаря внутриядерной энергии, выделяющейся в резте ядерного расщепления или ядерного синтеза. Ок. половины разрушительной силы обычной ядерной бомбы приходится на момент взрыва и ударную волну, а остальная часть - на тепловое излучение и радиацию. Ядерными бомбами оснащали авиацию, но в 1950-х гг. были созданы баллистические ракеты дальнего радиуса действия, способные покрывать расстояние в неск. тысяч километров. Появились также ракеты ср. дальности и тактические ракеты. Крылатая ракета, приводимая в действие реактивным двигателем, способна с большой точностью поражать цели благодаря компьютерной системе наведения. Поскольку Я.о. является оружием массового поражения, а последствия мировой ядерной войны губительны для окруж. среды и жизни на Земле, поэтому его распространение контролируется (вооруженные силы) и регламентируется целой системой междунар. договоров. В основе ядерной стратегии лежат не планы использования Я.о., а политика сдерживания и сохранения баланса сил.

Полезные сервисы

ядерное топливо

Энциклопедический словарь

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

Полезные сервисы

ядерной физики институт

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерной физики институт со ран

ядерные модели

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерные предложения

ядерные реакции

Энциклопедический словарь

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

Полезные сервисы

ядерные силы

Энциклопедический словарь

Большой энциклопедический словарь

Иллюстрированный энциклопедический словарь

Полезные сервисы

ядерные структуры

Переводоведческий словарь

Лингвистические термины

Полезные сервисы

ядерные фотографические эмульсии

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерные цепные реакции

Энциклопедический словарь

Большой энциклопедический словарь

Полезные сервисы

ядерный

Толковый словарь

Толковый словарь Ушакова

Толковый словарь Ожегова

Энциклопедический словарь

Академический словарь

Орфографический словарь

Полезные сервисы