Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

конструкционные и строительные материалы

Энциклопедия Кольера

Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и технических изделий. Возможность создания какой-либо конструкции и ее работоспособность зависят от наличия материалов с подходящими механическими свойствами. Например, для изготовления современного автомобиля необходимы легированные стали, а металлический самолет стал реальностью лишь с появлением технологичных и прочных алюминиевых сплавов. Для гидроэлектростанций необходимы те сорта бетона и цемента, из которых можно построить долговечные плотины. Современные высотные здания выглядели бы по-другому, если бы не было стеклянных материалов. Историю культуры часто делят на каменный, бронзовый и железный века - по тем материалам, из которых изготавливались орудия труда и оружие. В наши дни в распоряжении конструктора имеется широкий спектр материалов: чугуны, стали и сплавы цветных металлов, керамические, каменные материалы, бетон, стекло и полимеры. Разработка и применение таких материалов - профессиональное занятие инженера-технолога и инженера-конструктора.

ЧУГУНЫ И СТАЛИ

Серый чугун, содержащий 3,5-4% углерода, около 1% кремния и столько же марганца, - самый распространенный в мире литейный материал, применяемый для изготовления блоков и головок цилиндров, редукторных корпусов, тормозных барабанов, станин металлорежущих станков и многих других изделий. Белый чугун представляет собой более твердую форму серого с содержанием 2,5% углерода, менее 1% кремния и менее 1% марганца. Углерод входит в состав чугуна в виде карбидов (цементита). Белый чугун весьма тверд, но, как и серый, малопластичен. Он используется в основном в качестве износостойкого материала, например для шаров и броневых плит мельниц, размалывающих минералы. Белый чугун можно термообработкой превратить в т.н. ковкий чугун. Ковкий чугун гораздо более пластичен, чем серый и белый, но менее прочен и не так тверд. Ковкие чугуны применяются в основном для сложных отливок, таких, как трубопроводная арматура, цепи, крепеж для строительных лесов. Высокопрочные чугуны получают из серых путем модифицирования их кристаллической структуры для получения шаровидного графита. Чугун с шаровидным графитом широко применяется в автомобильной промышленности (коленчатые и распределительные валы, кронштейны, ступицы, суппорты тормозных систем, шестерни главной передачи и т.д.), в металлургии (изложницы), в тяжелом машиностроении (детали турбин, прокатные валки), в транспортном и сельскохозяйственном машиностроении. Самый распространенный вид стали, применяемой в строительстве зданий и мостов, - это конструкционная сталь, содержащая 0,1-0,25% углерода и легирующие элементы, такие, как марганец и кремний, в количествах менее 1%. Предел текучести таких сталей свыше 250 МПа, предел прочности при растяжении свыше 450 МПа. Относительное удлинение, как правило, больше 20%. Тонколистовые стали для автомобильных кузовов и бытовой техники содержат лишь около 0,05% углерода. Они менее прочны, нежели конструкционные стали, но более пластичны, что позволяет обрабатывать их методами холодного штампования и высадки. В процессе формообразования их прочность повышается (деформационное упрочнение), чем компенсируется влияние пониженного содержания углерода. Содержание примесей контролируется, в частности, содержание серы и фосфора поддерживается на уровне ниже 0,02%, при котором эти элементы не снижают вязкости и пластичности материала.

<a href='/dict/двадцатиэтажный' class='wordLink' target='_blank'>ДВАДЦАТИЭТАЖНЫЙ</a> <a href='/dict/геодезический' class='wordLink' target='_blank'>ГЕОДЕЗИЧЕСКИЙ</a> <a href='/dict/купол' class='wordLink' target='_blank'>КУПОЛ</a> из <a href='/dict/стали' class='wordLink' target='_blank'>стали</a> и <a href='/dict/пластмасс' class='wordLink' target='_blank'>пластмасс</a> на <a href='/dict/всемирной' class='wordLink' target='_blank'>всемирной</a> <a href='/dict/выставке' class='wordLink' target='_blank'>выставке</a> в <a href='/dict/монреале' class='wordLink' target='_blank'>Монреале</a> (1967).

ДВАДЦАТИЭТАЖНЫЙ ГЕОДЕЗИЧЕСКИЙ КУПОЛ из стали и пластмасс на всемирной выставке в Монреале (1967).

Легированные стали. Легированные стали - это стали с добавкой элементов, улучшающих те или иные свойства: прочность, ударную вязкость, сопротивление ползучести или коррозионную стойкость. Закаленные и отпущенные стали применяются для аэрокосмических и автомобильных деталей, крупных турбин, скальпелей и ножей, режущего инструмента и других изделий, от которых требуется высокая прочность. Отдельную группу составляют нержавеющие стали. Такие стали содержат много хрома (обычно свыше 12%) и могут содержать другие легирующие элементы, например никель и молибден. Они обладают повышенной коррозионной стойкостью. Типичная область их применения - химико-технологическая аппаратура, оборудование пищевой промышленности и всевозможные декоративные металлические изделия. Нержавеющие стали представляют собой сложные сплавы, и некоторые из них могут быть термообработаны на высокую прочность. Они применяются в виде отливок, а также полуфабрикатов, получаемых формообразованием в холодном или нагретом состоянии - листового проката, толстых листов, труб, прутков и проволоки.

См. также МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА. Еще одна группа сталей - жаростойкие (окалиностойкие) сплавы. Они отличаются высоким содержанием хрома, молибдена или никеля и применяются в паровых котлах, газотурбинных установках, авиационных двигателях, печах и печных конвейерах - всюду, где температура может составлять 400-1400° C. Самой важной характеристикой таких сталей является сопротивление ползучести при высоких температурах. Важное значение имеет также сопротивление окислению (окалиностойкость). К специальным сталям относятся инструментальные стали. Они содержат много углерода (0,8-2,0%) и достаточно много легирующих элементов для образования не только твердого мартенсита, но и твердых карбидов. Типичные легирующие элементы таких сталей - хром, молибден, вольфрам и ванадий. Инструментальные стали обычно термообрабатываются на высокую прочность. Некоторые из инструментальных сталей, т.н. быстрорежущие, способны сохранять свою твердость в режущих инструментах до температур, достигающих 600° C. Содержание легирующих элементов в инструментальных сталях обычно выше, чем в любых других легированных сталях. Прочность на растяжение таких материалов составляет 1400-2800 МПа. Ударная вязкость инструментальных сталей, как правило, низка.

См. также

СТАНКИ МЕТАЛЛОРЕЖУЩИЕ;

МЕТАЛЛОВ ОБРАБОТКА ДАВЛЕНИЕМ;

МЕТАЛЛОПОКРЫТИЯ.

ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ

Цветные металлы и их сплавы широко применяются в технике. К наиболее важным цветным металлам относятся алюминий, медь, магний, никель, титан и (в меньшей степени) мягкие металлы - олово, свинец и цинк. В сплавах часто используются такие металлы, как сурьма, висмут, кадмий, ртуть, кобальт, хром, молибден, вольфрам и ванадий. Последние четыре металла условно относят к ферросплавам, хотя они могут содержать железо лишь в виде примеси.

Алюминий. Чистый алюминий широко применяется там, где важное значение имеет высокая электропроводность, например в проводах для линий электропередачи (ЛЭП). Алюминиевые сплавы пригодны также для опор ЛЭП, поскольку конструкции, выполненные из таких сплавов, стойки к атмосферной коррозии. Алюминиевые сплавы можно разделить на упрочняемые и не упрочняемые термической обработкой. Сплавы, упрочнение которых термической обработкой не удается, обычно содержат кремний, магний и марганец. Сплавы же, упрочняемые термической обработкой, содержат медь, цинк и определенные сочетания магния с кремнием. Предел текучести сплавов, не упрочняемых термообработкой, составляет 50-280 МПа, а их прочность на растяжение лежит в пределах от 100 до 350 МПа. Предел текучести термообрабатываемых сплавов может превышать 500 МПа, а прочность на растяжение - 550 МПа. Термообрабатываемые сплавы (из которых наиболее известны дуралюмины и авиаль) чаще всего применяются в аэрокосмической промышленности, где требуется высокая прочность при малой массе. Но алюминиевые сплавы широко применяются и практически во всех транспортных средствах - легковых автомобилях, автобусах, железнодорожных вагонах и даже морских и речных судах.

Медь. Поскольку медь довольно легко восстанавливается из руды, она явилась одним из первых металлов, которыми научился пользоваться человек. Это произошло, по-видимому, раньше 4000 до н.э. У меди высокая электропроводность, и она была первым материалом, примененным для передачи электричества. Она до сих пор широко применяется в бытовой электропроводке и электрооборудовании. Предел текучести чистой меди составляет около 170 МПа, а прочность на растяжение - около 280 МПа; относительное удлинение обычно превышает 35%. Холодная прокатка и волочение повышают указанные характеристики меди. Жесткость меди примерно вдвое меньше, чем стали. Медь чаще всего применяется в виде сплавов, в первую очередь с цинком и оловом. В сплавах с цинком, называемых латунями, содержание цинка составляет от 2 до 40%. Прочность латуней, как правило, повышается с увеличением содержания цинка. Весьма распространена т.н. патронная латунь с 30% цинка. Ее предел текучести составляет ок. 280 МПа, а прочность на растяжение - ок. 530 МПа. Сплавы меди с оловом, называемые бронзами, были одними из первых медных сплавов, использовавшихся человеком. Содержание олова в бронзах - от 2 до 30%. Используются также тройные сплавы меди с оловом и цинком. Другие широко применяемые сплавы меди - с никелем или с никелем и цинком. Такие сплавы типа нейзильбера отличаются высокой коррозионной стойкостью, а также прочностью. Высокопрочные медные сплавы содержат алюминий, кремний или бериллий. Путем термической обработки их предел текучести можно повысить до 1000 МПа и более, а прочность на растяжение - до 1300 МПа. Эти сплавы применяются там, где требуются коррозионно-стойкие, немагнитные, неискрящие материалы с высокими электропроводностью и прочностью. Многие медные сплавы, особенно с оловом и никелем, предпочитаются инженерами за их коррозионную стойкость в таком оборудовании, как теплообменники, перегонные аппараты, испарители, конденсаторы и трубопроводы. В бытовых системах для горячей воды часто используются медные трубки.

Магний. Как и алюминий, магний широко применяется в промышленности благодаря своей низкой относительной плотности (около 1,7, меньше, чем у алюминия). Он часто применяется в виде отливок, и в этом случае его предел текучести составляет от 85 до 140 МПа, а прочность на растяжение - от 140 до 280 МПа. У магниевого проката (прутка, профилей, листа) предел текучести и прочность на растяжение несколько выше. Магниевые сплавы менее пластичны, чем алюминиевые и медные (относительное удлинение составляет 4-15%). Наиболее важная область их применения - аэрокосмическая промышленность, где большие преимущества дает их легкость. Аэрокосмические магниевые материалы - это по большей части термообрабатываемые специальные сплавы. В сплавах с магнием чаще всего используются алюминий, марганец и цинк (обычно в малых количествах, хотя содержание алюминия может достигать 10%). После термообработки предел текучести таких сплавов может составлять до 310, а прочность на растяжение - до 390 МПа.

Титан. Титановые сплавы начали применяться в качестве конструкционных материалов лишь после Второй мировой войны. Производство титана затрудняется тем, что он очень активно взаимодействует с кислородом, водородом и азотом, а также (при высоких температурах) почти со всеми материалами плавильных тиглей. Тем не менее в настоящее время выпускается и применяется целый ряд титановых сплавов. Благодаря своей легкости (плотность ок. 4,5 г/см3) и высокой прочности, превышающей прочность алюминиевых и магниевых сплавов, титановые сплавы находят применение в ответственных деталях аэрокосмической техники. Но титан довольно дорог, что ограничивает его применение. Технический титан имеет предел текучести более 400 МПа, прочность на растяжение от 500 до 630 МПа, относительное удлинение ок. 20%. Почти весь производимый титан используется в виде сплавов, улучшаемых термической обработкой. Обычные легирующие элементы титана - алюминий, ванадий, молибден и олово. Самый распространенный титановый сплав - с 6% алюминия и 4% ванадия - применяется в аэрокосмической промышленности. Его предел текучести составляет ок. 900 МПа, а прочность на растяжение - более 1000 МПа. Прочность этого сплава можно повысить путем сложной термообоработки. Будучи стойкими к некоторым кислотам, титановые сплавы применяются в соответствующей аппаратуре. Кроме того, такие сплавы находят применение как материалы трубных коммуникаций и арматуры, деталей корпуса и обшивки высокоскоростных военных самолетов.

Никель. Никель редко применяется в чистом виде, но его сплав с хромом и молибденом широко используется для высокотемпературных деталей и элементов конструкций. Такой сплав характеризуется высоким сопротивлением ползучести и высокой коррозионной стойкостью в диапазоне температуры от 800 до 1100° C. Типичное применение хромомолибденовых сплавов никеля - лопатки турбин и другие высокотемпературные компоненты. Никель применяется также в некоторых медно-никелевых сплавах для повышения коррозионной стойкости меди.

Другие металлы. Олово, цинк и свинец используются главным образом для повышения коррозионной стойкости сплавов, причем олово и цинк - чаще всего в виде антикоррозионных покрытий для стальных изделий. Принцип такой "протекторной" защиты в том, чтобы корродировало покрытие, а не сталь. Цинковые "гальванические" покрытия наносят электролитическим осаждением. Свинец без дополнительных компонентов используется в качестве коррозионно-стойкого материала в виде труб и листов. Свинец применяется вместе с оловом в виде припоев, особенно в электронной промышленности. Содержание свинца в таких припоях может составлять от 50 до близкого к 100%. Цинк используется в легкоплавких сплавах для литья под давлением в некоторых отраслях промышленности, особенно в автомобильной. Прочность этих сплавов невысока, зато они пригодны для литья в сложные формы.

См. также

СПЛАВЫ;

МЕТАЛЛЫ ЧЕРНЫЕ;

ПОРОШКОВАЯ МЕТАЛЛУРГИЯ.

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Полимеры, на основе которых создаются пластмассы, все шире применяются в качестве конструкционных и строительных материалов. Длительное время они использовались почти исключительно в бытовой технике и детских игрушках. Малая относительная плотность, низкая стоимость и удовлетворительные механические характеристики конструкционных пластмасс делают их особенно привлекательными там, где важное значение имеет экономичность и где они уже заменили ряд металлов, - в транспортных средствах. Они также все шире применяются в строительстве, особенно в качестве изоляционных материалов, а также в конструкциях. Из-за низкой относительной плотности (около 1,0) они ценятся также в авиакосмической промышленности. Полимеры часто делят на группы по их свойствам и по веществам, из которых они получаются. Их структура довольно сложна и в значительной мере зависит от химико-технологического процесса их производства. Большую группу т.н. термопластичных полимеров, или термопластов, составляют полимеры, которые размягчаются при нагревании и восстанавливают свои свойства при охлаждении. Простые термопласты - это в основном соединения углерода с водородом. Примером может служить хорошо известный полиэтилен, из которого изготавливают пленку, упаковочные материалы, сосуды и т.д. Технические полимеры - это обычно термопласты, в состав которых для улучшения механических свойств введены такие элементы, как кислород, азот и сера. Их часто называют гетероцепными полимерами. Предел текучести таких материалов невелик, 7-35 МПа, а прочность на растяжение значительно ниже, чем у металлов: 20-70 МПа. Они применяются в производстве мебели, для изготовления слабонагружаемых деталей, в том числе зубчатых колес, подшипников, втулок, труб разного диаметра и изоляции. Примером применения технических полимеров не очень высокой прочности в инфраструктуре жилых домов могут служить канализационные трубы. Ранее изготавливавшиеся литьем из чугуна, они теперь все чаще выполняются из гетероцепных термопластов. Некоторые полимеры особого назначения используются благодаря их особым свойствам, например, найлон и тефлон - как прочные материалы с очень скользкой поверхностью. Тефлон (фторопласт), используемый в кухонной утвари в качестве противопригарного покрытия, применяется и для изготовления различных технических деталей (например, прокладок) как материал, стойкий к повышенным температурам. Другую крупную группу полимеров составляют термореактивные полимеры, или реактопласты. Эти материалы полимеризуются (отверждаются) при нагревании под давлением, иногда с применением катализатора, и после этого не размягчаются при нагревании вплоть до разрушения. Они прочнее термопластов. Их типичные применения - нагружаемые зубчатые колеса, прутки, детали насосов, изоляторы и некоторые легкие детали конструкций. И в термопластах, и в реактопластах часто используют наполнители, т.е. вещества, которые вводятся для улучшения свойств или для удешевления изделия. Наполнителем могут служить опилки, слюда, стекловолокно и стеклоткань. Стекловолокно позволяет повысить прочность полимера на растяжение до 700 МПа. Полимеры такого типа, называемые композиционными материалами, применяются для вертолетных винтов, элементов ракетно-космических конструкций и для авиационных поверхностей управления. Поскольку свойства композиционных материалов такого рода ухудшаются с повышением температуры, они редко эксплуатируются при температурах выше 150° C. В технике применяется также полимерное волокно - в виде канатов и стропов. Природные полимеры, например пенька, в значительной мере вытеснены синтетическими. Классический пример технического полимера - резина. Вулканизованный каучук, т.е. каучук, термообработанный с применением серы и других добавок, уже многие десятилетия является важным техническим полимером. Резиновая автомобильная шина представляет собой камеру высокого давления, способную поддерживать большие грузы. Транспорт как отрасль потребляет огромные количества резины только в виде шин.

См. также

ПЛАСТМАССЫ;

КАУЧУК И РЕЗИНА.

КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

В строительных и машиностроительных конструкциях применяются различные керамические материалы. К ним в первую очередь относится стекло. Стекло выделяется своей прозрачностью, но его механические свойства оставляют желать лучшего. Однако оно может быть модифицировано на повышенную ударную прочность. Стекла - это "сплавы", основным ингредиентом которых является диоксид кремния. Наиболее распространено натриево-кальциево-силикатное стекло, которое состоит из диоксида кремния, оксида натрия и оксида кальция.

<a href='/dict/стеклянная' class='wordLink' target='_blank'>СТЕКЛЯННАЯ</a> <a href='/dict/пирамида' class='wordLink' target='_blank'>ПИРАМИДА</a> <a href='/dict/лувра' class='wordLink' target='_blank'>ЛУВРА</a>

СТЕКЛЯННАЯ ПИРАМИДА ЛУВРА

Термостойкое стекло получают, уменьшая содержание оксида натрия и добавляя оксид алюминия или бериллия. В таком стекле коэффициенты теплового расширения ингредиентов настолько согласованы, что растрескивания при нагревании и охлаждении не происходит. Термостойкое стекло применяется для изготовления лабораторной стеклянной аппаратуры, химико-технологических трубопроводов и соответствующего оборудования. Упрочненное стекло можно получить путем быстрого нагрева и охлаждения. Такое стекло хорошо сопротивляется ударному разрушению, а если и разбивается, то, как правило, на мелкие неострые частицы. Все шире применяются автомобильные ветровые стекла из упрочненного стекла. Стойкость стекла к ударам можно еще более повысить, поместив между двумя его слоями тонкий слой пластика. В качестве технических керамик применяются также оксиды металлов. Их пластичность невелика, а поэтому они используются там, где исключены удары. Огромные количества керамических материалов потребляются строительной промышленностью в виде кирпича, черепицы и других обожженных изделий.

См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.

ВЯЖУЩИЕ МАТЕРИАЛЫ

Основные вяжущие материалы - гипсовый цемент, известь и портландцемент.

Гипсовый цемент. Гипсовые цементы изготавливаются из природного гипсового камня путем дробления, измельчения, обжига в тигельной или непрерывно действующей печи и помола полученного продукта в тонкий порошок. Температура обжига не превышает 190° C, так что дегидратация гипса оказывается неполной. При схватывании гипсового цемента происходит гидратация с возвратом к исходной форме природного гипса (гидратированного сульфата кальция). Гипс - превосходный огнестойкий материал. Под действием огня выделяется гидратационная вода, и поверхность гипса покрывается порошком, защищающим глубинные слои. Стены и потолки помещений часто облицовывают гипсовыми листами.

Известь. Известь выпускается в двух видах: негашеная и гидратная. Негашеная известь получается обжигом известняка CaCO3 в непрерывно действующих печах (при температуре 900-1000° C) для удаления диоксида углерода. Гидратная известь Ca(OH)2 производится на заводах путем размельчения комовой негашеной извести, смешивания ее с водой и превращения в сухой хлопьевидный порошок. На строительной площадке негашеную известь необходимо загасить добавлением воды, а затем выдержать (не менее двух недель) перед смешиванием с песком для образования известкового раствора. Гидратную же известь достаточно смешать с песком, чтобы получить раствор. Поскольку она имеет вид порошка, ее легче смешивать с песком. Но раствор из гидратной извести не столь пластичен, как из негашеной. Затвердевание известкового раствора обусловлено поглощением диоксида углерода CO2 из воздуха. При этом избыточная вода испаряется, замещаясь диоксидом углерода, и гидратная известь снова превращается в CaCO3, причем эта реакция протекает только в присутствии избытка влаги. Но известковый раствор не твердеет под водой, так как ему для этого нужен диоксид углерода из воздуха. Раствор для кирпичной кладки содержит около 2,5 части (по объему) песка на 1 часть извести. При производстве штукатурных работ известковый раствор можно наносить на протяжении нескольких дней в три слоя (обрызг, грунт и накрывка), причем последний слой часто делается смесью гидратной извести с гипсовым цементом.

Портландцемент. Изобретение портландцемента было запатентовано в 1824 Дж.Эспдином, каменщиком из Лидса (Англия), который дал ему это название, поскольку цемент походил на природный камень, добывавшийся на о. Портленд. Портландцемент по масштабам своего применения уступает лишь стали. Портландцемент изготавливается совместным тонким измельчением клинкера, гипса и активных добавок. (Клинкер состоит в основном из силикатов кальция и получается обжиганием до спекания сырьевой смеси из известняка и глины.) В работе с портландцементом важное значение имеет проверка качества. Она проводится с образцом чистого цементного теста, помещаемым в автоклав. По увеличению длины образца можно судить о расширении цемента при схватывании.

Прочные цементы. Разработаны цементы, прочность которых выше, чем обычных гидравлических, в том числе и портландцементов, и в отдельных случаях приближается к прочности керамических материалов. Главным принципом при их разработке было уменьшение отношения воды к цементу при сохранении необходимой пластичности цементного теста.

БЕТОН

Бетон - один из важнейших строительных материалов. Он получается (формованием с последующим схватыванием) из смеси вяжущего вещества (цемента) с водой, мелким заполнителем (песком) и крупным заполнителем (обычно гравием, щебнем или другим крупно размолотым материалом). Поскольку бетонная смесь до затвердевания имеет тестообразный характер, бетон пригоден для изготовления конструкций разного типа, но форма (опалубка) не должна удаляться до полного схватывания смеси. В тех случаях, когда возможны растягивающие или изгибающие напряжения, бетон армируют сталью. Таким образом, бывает неармированный бетон, железобетон, бетон с волокнистым заполнителем (фибробетон) и предварительно напряженный бетон. Он может быть изготовлен с одним из пяти типов цемента: тип I - цемент общего назначения (обычный портландцемент); тип II - модифицированный портландцемент, умеренно сульфатостойкий для сооружений в грунте; тип III - быстротвердеющий; тип IV - с низкой экзотермией; тип V - сульфатостойкий для неблагоприятных грунтовых условий.

Заполнители. Природные заполнители бетона должны быть долговечными, твердыми и без излишнего количества глины, суглинка, ила, слюды, сланца, черта (кремнистого сланца), щелочей и органических веществ. Заполнитель должен тщательно выбираться. Крупный песок лучше мелкого, а песок с разными зернами от крупных до умеренно мелких более предпочтителен, нежели однородно крупный или однородно мелкий. Заполнители разделяют по крупности зерен. Максимально допустимый размер зерна зависит от рода работ. В тонких стенах, а также вблизи арматурных стержней размер зерна должен быть небольшим, но в массивном бетоне допустимы зерна размером до 15-20 см. Обычно при строительстве предпочитают природные заполнители, такие, как гравий, щебень, рваный камень, но используются и искусственные заполнители, например шлак доменных печей.

Вода. Вода для бетонной смеси должна быть чистой и несоленой. Морская вода вызывает коррозию стали и поэтому не должна применяться для изготовления железобетона. Вода служит смазкой между зернами заполнителя, делая смесь пластичной и удобоукладываемой, а также реагирует с портландцементом.

Состав бетонной смеси. Прочность и другие желательные свойства бетона определяются количеством воды в бетонной смеси. Чаще всего на мешок цемента массой 43 кг добавляется 15-23 л воды в зависимости от влажности используемого песка и от требуемой прочности и стойкости бетона, причем меньшее количество воды дает более прочный бетон.

Торкрет-бетон. При помощи т.н. цемент-пушки раствор и бетонная смесь разбрызгиваются под давлением сжатого воздуха на поверхность конструкций и сооружений в виде торкрет-бетона. Цемент-пушка непрерывно загружается сухой смесью песка и цемента; дальность подачи раствора по горизонтали достигает 70 м. Торкрет-бетон отличается высокой плотностью и водонепроницаемостью; он применяется при возведении ответственных тонкостенных железобетонных конструкций, ремонте и усилении конструкций, устройстве покрытий и водонепроницаемых обделок (например, тоннелей).

Декоративный бетон. Для декоративной отделки в бетон вводят окрашивающий заполнитель - молотый мрамор или молотое стекло. Терраццо - это декоративный бетон из цветных цементов и дробленого мрамора, формуемый на месте в стенах и особенно в полу. Из декоративного бетона можно изготавливать облицовочные детали любой формы и любых размеров, чем они выгодно отличаются от изделий из керамики и естественного камня.

Бетон с воздухововлекающими добавками. Вовлечение воздуха повышает долговечность бетона, в частности его стойкость к замерзанию-оттаиванию и крошению. Это особенно важно для дорожных покрытий и панельных конструкций, подвергающихся воздействию неблагоприятных погодных условий. Промышленность выпускает много различных воздухововлекающих добавок, а также воздухововлекающий цемент.

Тяжелый бетон. Тяжелый бетон применяется в качестве биологической защиты от гамма-излучения ядерных реакторов. Из такого бетона выполняются, например, стены, окружающие активную зону реактора. Для тяжелого бетона используются заполнители с высокой относительной плотностью (вплоть до стальных отходов штамповки с магнетитом) и цемент, не вовлекающий воздуха, причем обязательно производится виброуплотнение бетонной смеси после укладки.

Специальные бетоны. Поскольку прочность на растяжение обычного бетона значительно меньше, чем на сжатие, разработан фибробетон - бетон с волокнистым заполнителем. При его изготовлении в бетоносмеситель вводится стальное, углеродное, стеклянное, асбестовое, полипропиленовое или бамбуковое волокно. Волокно повышает прочность бетона на растяжение и на изгиб, а также ударную прочность. К специальным бетонам относятся также бетоны, пропитываемые полимером после удаления влагипоследующим отверждением), получаемые добавлением мономера или полимера в бетоносмеситель, и бетоны с полной заменой цемента полимером. Они применяются для ямочного ремонта и нанесения покрытий.

Испытания бетона. Испытания на сжатие проводятся с цилиндрическими образцами диаметром 15 см и высотой 30 см. Равномерно нагружаемый цилиндр при разрушении обычно образует двойной конус с общей вершиной в средней точке цилиндра. Прочность на сжатие имеет важное значение при проектировании массивных сооружений. При проектировании дорожных и защитных покрытий важна прочность на изгиб, которая определяется путем нагружения модельных балок.

Огнестойкость. Бетон - это материал с высокой огнестойкостью и низкой теплопроводностью. Он особенно подходит для защиты стальных конструкций, поскольку его коэффициент теплового расширения (около 0,00001 на 1° C для обычных смесей) почти такой же, как и у стали.

Предварительно напряженный железобетон. В предварительно напряженном железобетоне растягивающие напряжения от нагрузки устраняются путем предварительного создания напряжений сжатия. При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается механическим устройством и заливается бетонной смесью. После схватывания сила предварительного натяжения освобожденной стальной проволоки или троса передается окружающему бетону, так что он оказывается сжатым. Предварительное напряжение железобетона может производиться не только до, но и после схватывания бетонной смеси.

СТРОИТЕЛЬНЫЙ КАМЕНЬ

Наиболее важные виды строительного камня - гранит, известняк, мрамор и песчаник.

Гранит. Относится к вулканическим горным породам, состоит из зерен трех минералов: кварца, слюды и полевого шпата. В зависимости от окраски полевого шпата гранит имеет голубовато-серый, розовый, красный или (реже) черный цвет. Он тверд и плохо поддается обработке. Поскольку гранит отличается малой пористостью и большой морозоустойчивостью, его применяют для наружной облицовки стен, цоколей и колонн. Из него устраивают также фундаменты особо тяжелых сооружений - мостовых опор, колонн и т.д. Он долговечен, но не огнестоек, растрескивается и крошится под действием огня и воды. См. также ГРАНИТ.

Известняк. Относится к осадочным горным породам, содержащим карбонат кальция. Весьма ценный материал для сооружения фундаментов (применяется в виде бутового камня), а также для облицовки зданий. Качество известняка можно определить по виду его излома: матовая поверхность излома свидетельствует о низком качестве камня. Известняк огнестоек до КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ600° С. См. также ИЗВЕСТНЯК.

Мрамор. Природный камень, образовавшийся из осадочных пород - известняка и доломита - при местных сжатиях земной коры. Мрамор в виде пиленых полированных плит применяют главным образом для внутренних облицовок общественных зданий, а также для полов, ступеней, подоконных досок и других изделий. Его не рекомендуется применять для наружных облицовок в больших и промышленных городах, так как атмосферный сернистый газ в присутствии влаги превращает наружный слой мрамора в гипс, в результате чего поверхность камня тускнеет и быстро разрушается. См. также МРАМОР.

<a href='/dict/добыча' class='wordLink' target='_blank'>ДОБЫЧА</a> <a href='/dict/мрамора' class='wordLink' target='_blank'>МРАМОРА</a> в <a href='/dict/тосканском' class='wordLink' target='_blank'>тосканском</a> <a href='/dict/карьере' class='wordLink' target='_blank'>карьере</a> (<a href='/dict/италия' class='wordLink' target='_blank'>Италия</a>).

ДОБЫЧА МРАМОРА в тосканском карьере (Италия).

Песчаник. Состоит из зерен кварца, сцементированных, как правило, кремнеземом, кальцитом или гипсом. Наиболее прочные песчаники используют в виде плит для облицовки стен, для полов и т.д. Песчаник - очень теплопроводный материал, и для стен отапливаемых зданий он не применяется. Качество песчаника определяют по роду и количеству связующего вещества, угловатости зерен и виду поверхности излома.

См. также ПЕСЧАНИК.

СТРОИТЕЛЬНАЯ КЕРАМИКА

Типичными изделиями из строительной керамики являются керамический кирпич, полнотелый и пустотелый стеновые камни, терракота, канализационные и дренажные трубы, шамотный кирпич и дорожный клинкер. В производстве таких изделий используются глина и сланцы.

Стеновые камни. Размеры и важнейшие характеристики (такие, как предел прочности при сжатии) керамических стеновых камней (полнотелых и пустотелых), к которым относится и обычный керамический кирпич, определяются государственными стандартами.

См. также КАМЕННАЯ КЛАДКА.

Облицовочный кирпич. Применяется для облицовки наружных поверхностей стен. К стабильности размеров и качеству поверхности облицовочного кирпича предъявляются более жесткие требования, чем в случае обычного кирпича.

Архитектурная терракота. Архитектурно-керамические детали постоянного профиля изготавливаются в виде пустотелых блоков путем пластического прессования. Используются они для устройства карнизов, тяг, поясков и других элементов при облицовке фасадов зданий.

Кровельная черепица. Отличается высокой твердостью, прочностью и плотностью, а также широкими возможностями применения. Черепица должна быть единообразной формы без короблений, способных приводить к протечкам.

Канализационная труба. Изготавливается из плотноспеченной глины без пор, с оглазурованной поверхностью. Секции обычно выполняются с монтажным раструбом на одном конце. Канализационная труба предназначена для бытовых и промышленных сточных вод. Дренажная труба, используемая для дренажа при избыточном увлажнении в сельском хозяйстве, изготавливается из пористой глины и не имеет раструбов.

Шамотный кирпич. Огнеупорный материал (обожженный каолин) для дымоходов, печей, конвертеров и тиглей. Обжигается при температурах до 1650° C и поэтому способен выдерживать высокие температуры. Он не вступает в реакцию с газами, шлаками, металлами и колошниковой пылью.

Дорожный клинкер. Это кирпич пластического формования из сланцев, сланцевой и неочищенной огнеупорной глин. Для увеличения плотности подвергается вакуумной сушке. Спекается обжигом при высокой температуре. Дорожный клинкер - твердый, жесткий, не поглощает влаги, применяется для дорожного покрытия.

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

К ним относятся материалы, используемые для сохранения тепла, предотвращающие конденсацию на трубах и защищающие стальные конструкции от огня. В теплоизолированном здании летом прохладнее, а зимой теплее, чем в здании без теплоизоляции. Теплоизоляция обеспечивает более равномерное распределение температуры в зданиях, камерах холодильного хранения, топках и печах. В качестве низкотемпературных (ниже 100° C) теплоизоляционных материалов для зданий, горячих водяных труб и холодильных камер используются минеральная вата и такие органические материалы, как пробковый лист, обработанное древесное волокно, войлок, пеностекло и др. Минеральная вата состоит из волокон, получаемых продуванием водяного пара через расплавы доменного шлака, горных пород или стекла. Ее можно укладывать навалом между стойками каркасного здания или в виде матов, обшитых огнестойким полотном. Минеральная вата выдерживает температуру до 800° C. Органические материалы - хорошие теплоизоляторы, но требуют обработки антипиринами, предотвращающими их воспламенение и самостоятельное горение. Для теплоизоляции низкотемпературных печей и паровых труб (от 100 до 540° C) применяются минеральная вата, асбест и диатомитовая земля. Ниже 300° C используется смесь оксида магния с асбестовым волокном. Высокотемпературные топки и обжиговые печи (750-900° C) теплоизолируются блоками из глины и диатомитовой земли. Выше 900° C применяются огнеупорные материалы, а некоторые виды керамического волокна, укладываемого навалом, в матах, блоками или листами, выдерживают температуру до 1200° C. См. также ТЕПЛОИЗОЛЯЦИЯ.

БИТУМНЫЕ МАТЕРИАЛЫ

Битумы - это твердые или жидкие водонерастворимые смеси углеводородов (природного или пирогенного происхождения), растворимые в дисульфиде углерода. Существуют два важных ви

Полезные сервисы

ациклические соединения

Энциклопедия Кольера

А. МОНОФУНКЦИОНАЛЬНЫЕ СОЕДИНЕНИЯ

1. С1-: металлоорганические соединения. Эти соединения обычно получают двумя методами: а) действием активного металла (Na, Li, Mg, Zn) на органический галогенид, например:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

или б) действием галогенида менее активного металла на металлоорганическое соединение более активного металла, например:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Металлоорганические соединения обычно называют, ставя на первое место название радикала и прибавляя к нему название металла (или соли металла), к которому присоединен радикал, например, метилнатрий CH3Na; диэтилцинк (C2H5)2Zn; этилртутьхлорид C2H5HgCl. Вообще говоря, реакционная способность этих соединений возрастает с ростом активности металла; так, реакции алкилпроизводных цинка или ртути протекают медленнее, чем реакции алкилпроизводных магния или натрия. Алкилпроизводные щелочных металлов (Li, Na, K) можно приготовить взаимодействием свободного металла с алкилгалогенидами или с диалкилртутью:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Метод (а) (см. выше) можно использовать для натрия и калия только в таком инертном растворителе, как пентан. Тонко раздробленный металл должен присутствовать в большом избытке, а реакционную смесь необходимо очень сильно перемешивать, в противном случае реакция

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

разрушает металлалкил по мере его образования. Для синтетической органической химии очень ценны алкилмагнийгалогениды RMgX (реактивы Гриньяра). Обычно их готовят непосредственным действием магния на соответствующий органический бромид (или иодид) в эфирном растворе, как сказано выше. Из них можно приготовить:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Реакции литийорганических соединений RLi очень похожи на реакции реактивов Гриньяра. Действием реактивов Гриньяра на соответствующие галогениды цинка, кадмия или ртути можно получить как моноалкил- (R-M-Cl), так и диалкилпроизводные (R-M-R ) этих металлов. Из этих соединений цинк- и кадмийалкилы почти так же реакционноспособны, как и реактив Гриньяра, хотя они слабо реагируют с более инертными карбонильными соединениями (кетонами, сложным эфирами). Ртутьалкилы инертны в большинстве реакций, в которые вступают реактивы Гриньяра. Они легко расщепляются только свободными галогенами и сильными неорганическими кислотами. Действием реактивов Гриньяра на хлориды алюминия, олова, германия и свинца можно приготовить частично или полностью алкилированные производные. Из них тетраэтилсвинец имел большое значение как антидетонаторэтилированном бензине):

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

2. С0: углеводороды. Парафиновые углеводороды (алканы). Эти соединения, многие из которых встречаются в нефти, соответствуют общей формуле CnH2n + 2. Поскольку в них каждая из связей углерода имеет ковалентный характер, так как замыкается либо на углерод, либо на водород, валентная оболочка углерода полностью насыщена, в результате чего парафиновые углеводороды химически очень инертны. Синтетически парафины могут быть получены восстановлением алкилгалогенидов водородом на таких катализаторах, как палладий на карбонате кальция, действием цинка в спирте или магния (через RMgBr) с последующей обработкой водой:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Их можно также приготовить прямым восстановлением спиртов водородом на медно-хромовых катализаторах при высоких температурах и давлениях, а также действием иодоводорода на спирты при 180° С или гидрированием олефинов и ацетиленов на таких катализаторах, как палладий, платина или никель. Технически важным методом получения низших гомологов, которые представляют собой ценное топливо, является крекинг. В этом процессе высшие гомологи, проходя через нагретую до 500-700° С трубку, расщепляются на более простые соединения, например:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Смесь углеводородов, пригодных в качестве топлива, можно приготовить в промышленных масштабах по Фишеру - Тропшу. В этом процессе смесь СО и H2 (в отношении 1:2) пропускают над кобальтовым или никелевым катализатором при 200° С. Из-за их инертности к большинству химических реагентов углеводороды не представляют большого интереса для синтетической органической химии. На солнечном свету они реагируют с хлором, производя хлорированные углеводороды, например:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Обычно образуются смеси различных возможных продуктов, поэтому реакция имеет ценность главным образом для получения растворителей, где разделение компонентов несущественно. В некоторых случаях посредством фракционной перегонки получают чистые продукты. При высоких температурах парафины реагируют также с азотной кислотой, производя нитропарафины:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Образующееся вещество, 2-нитро-2-метилпропан, является ценным растворителем. Нормальные углеводороды часто удается изомеризовать в разветвленные углеводороды при действии безводного хлорида алюминия. Эта реакция важна для производства моторных топлив с низкой способностью к детонации. Мерой склонности к детонации (преждевременному воспламенению смеси горючего и воздуха в двигателях внутреннего сгорания) служит октановое число бензина, которое определяют сравнением со стандартными смесями гептана (октановое число 0) и 2,2,4-триметилпентана (т.н. "изооктана", октановое число 100):

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Олефины (алкены). Эти соединения, простейшим представителем которых является этилен H2C=CH2, соответствуют общей формуле CnH2n. Они содержат двойную связь

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

Такая связь способна присоединять реакционноспособные атомы и группы, причем каждый из участвующих в ней атомов углерода в результате образует четыре простые связи, поэтому двойная связь называется ненасыщенной. Олефины могут быть получены: а) каталитическим дегидрированием парафинов над оксидом хрома или другими катализаторами

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

б) дегидрацией спиртов в присутствии серной кислоты или оксида алюминия при высоких температурах

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

в) отщеплением галогеноводорода от алкилгалогенидов при помощи сильных оснований, например этилата калия:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

(когда может образоваться более одного олефина, преобладает наиболее разветвленный). Олефины вступают в следующие реакции: а) с водородом на платиновых и сходных с ними катализаторах, давая парафины (см. выше); б) с галогенами, давая вицинальные (виц) дигалогениды, в которых атомы галогенов присоединены к двум соседним углеродным атомам:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

в) с пероксидом водорода, перманганатом калия или тетраоксидом осмия, давая гликоли:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

г) с серной кислотой, давая алкилсерные кислоты, которые можно прогидролизовать до спирта:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

д) с галогеноводородами, давая алкилгалогениды:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

е) с хлорноватистой кислотой, давая хлоргидрины:

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

(По правилу Марковникова, при присоединении протонных кислот или воды к несимметричным алкенам или алкинам атом водорода присоединяется к наиболее гидрированному атому углерода.) В присутствии свободных радикалов, например радикалов, образующихся при разложении ацетилоксида H3C-C(O)-O-O-C(O)CH3, многие органические соединения гладко присоединяются к олефиновым связям, например,

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.

Простейший олефин - этилен - применяется как регулятор роста растений, ускоряющий созревание плодовтом числе цитрусовых), и как исходное соединение в производстве полиэтилена, полиэтилен-пропиленовых каучуков, а также для синтеза этиленгликоля CH2OH-CH2OH. Во время Первой мировой войны его широко применяли для производства иприта (горчичного газа) ClCH2CH2SCH2CH2Cl, который получают действием дихлорида серы на этилен.

См. также ХИМИЧЕСКОЕ И БИОЛОГИЧЕСКОЕ ОРУЖИЕ. Многие диены, т.е. углеводороды, содержащие две двойные связи, представляют промышленный интерес. Бутадиен H2C=CH-CH=CH2, хлоропрен H2C=CCl-CH=CH2 и изопрен H2C=C(CH3)CH=CH2 полимеризуются, давая каучук. Природный каучук также можно рассматривать как полиизопреноиды природного происхождения (см. разд. IV-1.А.4 и IV-2.Б.1).

См. также КАУЧУК И РЕЗИНА.

Ацетилены. Карбид кальция CaC2 при обработке водой выделяет газ ацетилен C2H2, имеющий структуру H-C=C-H. Это вещество является первым членом гомологического ряда ацетиленовых углеводородов CnH2n - 2. Наиболее общий путь получения соединений этого ряда состоит в присоединении брома к соответствующим олефинам с последующей обработкой спиртовым раствором гидроксида калия. Присоединением воды в присутствии сульфата ртути и серной кислоты ацетилен превращается в уксусный альдегид, из которого можно получить уксусную кислоту и другие ценные технические продукты:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

(Соединения со структурой

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

неустойчивы, так как самопроизвольно перегруппировываются в

<a href='/dict/энциклопедия' class='wordLink' target='_blank'>Энциклопедия</a> <a href='/dict/кольера' class='wordLink' target='_blank'>Кольера</a> <a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

.)

Ацетилен и те из его гомологов, у которых имеется водород при связанном тройной связью углероде, ведут себя как очень слабые кислоты. Их соли со щелочными металлами можно получить действием амида натрия или амида калия:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

С аммиачным раствором серебра или одновалентной меди ацетилены образуют нерастворимые взрывчатые соли серебра и одновалентной меди. У всех соединений ряда тройная связь способна присоединять реагенты подобно двойной связи.

3. Окислительное состояние С+. Алкилгалогениды можно рассматривать как производные углеводородов, у которых водород заменен галогеном. Они имеют общую формулу R-X, где X может быть F, Cl, Br или I. Прямое замещение водорода галогеном редко может служить препаративным методом получения алкилгалогенидов (см. выше). Более подходящий метод состоит в обработке соответствующего спирта (ROH) галогеноводородом или галогенидом фосфора, чтобы заменить гидроксильную группу на галоген. По многим физическим свойствам, таким, как низкие температуры кипения и плавления, алкилгалогениды напоминают углеводороды, поскольку оба класса соединений относительно неполярны. Химически алкилгалогениды гораздо более реакционноспособны, причем иодиды наиболее активны, а хлориды - наименее. По реакционной способности, реакциям и методам получения алкилфториды сильно отличаются от других галогенидов. Получение металлалкилов, например реактивов Гриньяра, уже обсуждалось в разд. IV-1.А.1. Атом галогена можно также заменить на самые разнообразные простые неорганические или органические основания, например:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Такие реакции замещения лучше идут с алкилбромидами и алкилиодидами, хлор в алкилхлоридах заменить труднее. Параллельно с написанными выше идут побочные процессы - реакция с растворителем и отщепление HX с образованием олефина. Природа R оказывает сильнейшее влияние на скорость и состав продуктов реакции. Реакции замещения могут протекать по двум различным механизмам: мономолекулярному (SN1) или бимолекулярному (SN2). Согласно первому механизму сначала происходит диссоциация алкилгалогенида на галогенид-анион и ион карбения - нестабильную высокореакционноспособную частицу, которая немедленно реагирует с добавленным основанием или молекулой растворителя. Поскольку стабильность карбениевых ионов растет от первичных к третичным

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

этот механизм замещения должен быть преобладающим для третичных алкилгалогенидов R3CX, его роль должна снижаться для вторичных алкилгалогенидов R2CHX. По второму механизму вступающая группа постепенно вытесняет уходящую, причем в переходном состоянии обе группы связаны с углеродом в реакционном центре приблизительно одинаково. Наиболее энергетически выгодным направлением атаки для вступающей группы является подход со стороны, обратной направлению, в котором удаляется входящая группа:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Поскольку в переходном состоянии электронная плотность на реакционном центре выше, чем в исходном и конечном, скорость такого процесса должна падать в ряду RCH2X > R2CHX > R3CX, т.е. в последовательности, обратной той, которая характерна для SN1-реакций.

Реальные процессы замещения являются чем-то промежуточным по отношению к двум описанным крайним идеальным случаям, причем реальный механизм замещения для первичных алкилгалогенидов RCH2X будет близок к SN2, а для третичных алкилгалогенидов R3CX - к SN1, тогда как для вторичных алкилгалогенидов R2CHX реальный механизм будет представлять собой нечто среднее. Поэтому наблюдаемые скорости замещения обычно уменьшаются при переходе от RCH2X к R2CHX. Одновременно при переходе от первичных алкилгалогенидов ко вторичным и третичным возрастает роль упомянутых выше побочных процессов - реакций с растворителем (водой, спиртом и т.п.) и образования олефинов, которые в случае некоторых вторичных и особенно третичных алкилгалогенидов могут стать преобладающими. Присутствие двойной связи вблизи галогена также сильно изменяет реакционную способность. Так, винилгалогениды R-CH=CH-X и арилгалогениды ArX исключительно малоактивны; наоборот, аллилгалогениды R-CH=CH-CH2X и бензилгалогениды Ar-CH2X необычайно реакционноспособны. Все перечисленные выше реагенты являются основаниями Льюиса и могут вызывать конкурирующую реакцию отщепления, в которой отщепляется галогеноводород и образуется олефин:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Эта реакция идет особенно хорошо с такими сильными основаниями, как OH- и RO-, и становится преобладающей, когда используются третичные галогениды или если реагентами являются спиртовые растворы сильных оснований:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Простые полихлорированные углеводороды широко применяются в промышленности в качестве растворителей. Среди наиболее важных растворителей можно упомянуть хлороформ CHCl3, дихлорэтан ClCH2CH2Cl и тетрахлорэтан Cl2CHCHCl2.

Спирты и простые эфиры. Одноатомные спирты имеют общую формулу R-OH, представляющую углеводород, в котором водород заменен гидроксильной группой. Далее они могут быть подразделены на первичные RCH2OH, вторичные RR'CHOH и третичные спирты, RR'R "COH, в зависимости от того, одна, две или три алкильные группы присоединены к углероду, несущему гидроксильную группу. Низшие спирты находят широкое применение в промышленности в качестве растворителей и как промежуточные вещества для синтеза. Метанол (т. кип. 64,7° С) получают взаимодействием CO и H2 при высоком давлении над хромо-цинковым оксидным катализатором при 350-400° С. Этанол (обычный этиловый спирт, т. кип. 78,3° С) традиционно получают сбраживанием сахара или крахмала в присутствии дрожжей, хотя некоторое количество его производят путем поглощения этилена серной кислотой с последующим гидролизом образующейся этилсерной кислоты C2H5OSO3H водой. Оба процесса дают разбавленные спиртовые растворы, из которых получают перегонкой поступающий в продажу 95%-й спирт. Изопропиловый спирт (пропанол-2, т. кип. 82,3° С) обычно делают сернокислотным методом из пропилена CH3CH=CH2, побочного продукта производства бензина крекингом. Он находил некоторое применение как заменитель этанола в качестве растворителя и в спиртовых растираниях. Некоторые из высших спиртов, например 2-этилгексанол-1 (или "612"), действуют на насекомых как репелленты. Общие методы лабораторного получения спиртов включают а) гидролиз алкилгалогенидов; б) гидратацию олефинов в присутствии минеральных кислот, например описанным выше сернокислотным методом; в) действие реактивов Гриньяра RMgX на альдегиды R'-CHO и кетоны R'-CO-R ". Формальдегид дает первичные спирты, альдегиды - вторичные спирты, а кетоны - третичные:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Спирты обнаруживают свойства очень слабых кислот. Водород гидроксильной группы в спиртах несколько менее кислый, чем водород воды. Он может быть замещен на активные металлы с образованием алкоголятов:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Эта реакция легче всего протекает с первичными спиртами и медленнее - с третичными. Na реагирует очень медленно с трет-бутиловым спиртом, но K (более активный) реагирует быстро. Вообще реакции спиртов, в которых рвется O-H-связь, легче всего протекают с первичными спиртами и медленнее всего - с третичными. Сложные эфиры можно получить следующим образом:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Образование сложных эфиров по первым двум из этих реакций идет быстро и необратимо и, как правило, не требует катализаторов (хотя обычно к реакционной смеси прибавляют такие основания, как пиридин или триэтиламин, которые связывают образующиеся кислоты в виде солей). Третий метод основан на обратимой равновесной реакции и требует катализатора, обычно кислоты (этерификация по Фишеру). Так, реакцию можно заставить протекать слева направо (гидролиз), если использовать избыток спирта и удалять воду по мере ее образования. Ни один из трех указанных выше методов не применим к третичным спиртам. Спирты, однако, амфотерны и в присутствии сильных кислот ведут себя как очень слабые основания:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Способность к замещению группы -OH в этой и других реакциях убывает от третичных к первичным спиртам. В присутствии таких дегидратирующих агентов, как серная или фосфорная кислота, при более низких температурах из спиртов образуются простые эфиры R-O-R, тогда как при более высоких температурах путем отщепления воды получаются олефины. Этот метод не годится для получения простых эфиров из вторичных спиртов, а с третичными дает только олефины. Дегидратация спиртов с образованием олефинов может быть осуществлена каталитически в паровой фазе над такими оксидами металлов, как оксид алюминия. Окисление спиртов можно осуществить при помощи сильных окислителей (хромовая или азотная кислота). Продукты окисления различны по своей природе для первичных, вторичных и третичных спиртов. Так, первичные спирты сначала окисляются в альдегиды, которые, если их немедленно не удалить из окислительной среды, окисляются далее до кислот:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

Вторичные спирты окисляются до устойчивых кетонов RCOR', тогда как третичные спирты окисляются только очень сильными окислителями, расщепляющими молекулу на кислоты и кетоны с меньшим числом углеродных атомов. Амины можно рассматривать как производные аммиака, получаемые последовательным замещением атомов водорода алкильными группами, аналогично тому, как спирты и просто эфиры можно представить как производные воды. В соответствии с числом замещенных атомов водорода различают первичные (R-NH2), вторичные (RR'NH) и третичные амины (RR'R "N). Дальнейшее алкилирование дает четвертичные аммониевые соли RR'R "R "'N+X-, которые можно рассматривать как полностью алкилированную аммониевую соль NH4+X-. Прямое алкилирование аммиака алкилгалогенидами имеет очень ограниченную ценность для получения первичных аминов, поскольку эту реакцию трудно контролировать и она ведет к смесям первичных, вторичных и третичных продуктов. Прямое алкилирование первичных аминов, однако, часто используют для получения вторичных и третичных аминов, а также четвертичных аммониевых солей. Для приготовления первичных аминов существует много хороших альтернативных методов, например: 1) расщепление амидов щелочным гипобромитом или гипохлоритом (реакция Гофмана). Промежуточными соединениями в этой реакции являются изоцианаты, и этот метод можно использовать для их получения:

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

2) перегруппировка азидов кислот в изоцианаты (см. разд. IV-1.А.6) с последующим их гидролизом до аминов (реакция Курциуса):

<a href='/dict/ациклические' class='wordLink' target='_blank'>АЦИКЛИЧЕСКИЕ</a> <a href='/dict/соединения' class='wordLink' target='_blank'>СОЕДИНЕНИЯ</a>

3) реакция алкилгалогенидов с фталимидом калия с последующим гидролизом продукта (реакция Габриэля):

Полезные сервисы