Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

нуклеиновые кислоты

Энциклопедия Кольера

НУКЛЕИНОВЫЕ КИСЛОТЫ - биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными. В 1928 английский бактериолог Ф. Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж. Бидл и Э. Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э. Чаргафф в США и Дж. Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Структура ДНК была установлена в 1953 М.

Уилкинсом, Дж. Уотсоном и Ф. Криком в Англии. Это фундаментальное открытие позволило понять, как происходит удвоение (репликация) нуклеиновых кислот. Вскоре после этого американские исследователи А. Даунс и Дж. Гамов предположили, что структура белков каким-то образом закодирована в нуклеиновых кислотах, а к 1965 эта гипотеза была подтверждена многими исследователями: Ф. Криком в Англии, М. Ниренбергом и С. Очоа в США, Х. Кораной в Индии. Все эти открытия, результат столетнего изучения нуклеиновых кислот, произвели подлинную революцию в биологии. Они позволили объяснить феномен жизни в рамках взаимодействия между атомами и молекулами.

Типы и распространение. Как мы уже говорили, есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией. Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны. Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Большую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК. Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.

ОБЩИЕ СВОЙСТВА

Молекулы нуклеиновых кислот содержат множество отрицательно заряженных фосфатных групп и образуют комплексы с ионами металлов; их калиевая и натриевая соли хорошо растворимы в воде. Концентрированные растворы нуклеиновых кислот очень вязкие и слегка опалесцируют, а в твердом виде эти вещества белые. Нуклеиновые кислоты сильно поглощают ультрафиолетовый свет, и это свойство лежит в основе определения их концентрации. С этим же свойством связан и мутагенный эффект ультрафиолетового света. Длинные молекулы ДНК хрупки и легко ломаются, например при продавливании раствора через шприц. Поэтому работа с высокомолекулярными ДНК требует особой осторожности.

Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1' до 5'. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше. Фрагменты полинуклеотидных цепей ДНК и РНК показаны на рисунке.

<a href='/dict/первичная' class='wordLink' target='_blank'>ПЕРВИЧНАЯ</a> <a href='/dict/структура' class='wordLink' target='_blank'>СТРУКТУРА</a> <a href='/dict/дезоксирибонуклеиновой' class='wordLink' target='_blank'>дезоксирибонуклеиновой</a> (а) и <a href='/dict/рибонуклеиновой' class='wordLink' target='_blank'>рибонуклеиновой</a> (б) <a href='/dict/кислот' class='wordLink' target='_blank'>кислот</a>

ПЕРВИЧНАЯ СТРУКТУРА дезоксирибонуклеиновой (а) и рибонуклеиновой (б) кислот

Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3' и 5', молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул. Азотистые основания - это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1ў. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин.

<a href='/dict/структура' class='wordLink' target='_blank'>СТРУКТУРА</a> <a href='/dict/фрагмента' class='wordLink' target='_blank'>ФРАГМЕНТА</a> <a href='/dict/конкретной' class='wordLink' target='_blank'>КОНКРЕТНОЙ</a> <a href='/dict/днк' class='wordLink' target='_blank'>ДНК</a>

СТРУКТУРА ФРАГМЕНТА КОНКРЕТНОЙ ДНК

Трехмерная структура. Важной особенностью нуклеиновых кислот является регулярность пространственного расположения составляющих их атомов, установленная рентгеноструктурным методом. Молекула ДНК состоит из двух противоположно направленных цепей (иногда содержащих миллионы нуклеотидов), удерживаемых вместе водородными связями между основаниями:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Водородные связи, соединяющие основания противоположных цепей, относятся к категории слабых, но благодаря своей многочисленности в молекуле ДНК они прочно стабилизируют ее структуру. Однако если раствор ДНК нагреть примерно до 60° С, эти связи рвутся и цепи расходятся - происходит денатурация ДНК (плавление). Обе цепи ДНК закручены по спирали относительно воображаемой оси, как будто они навиты на цилиндр. Эта структура называется двойной спиралью. На каждый виток спирали приходится десять пар оснований.

<a href='/dict/двойная' class='wordLink' target='_blank'>ДВОЙНАЯ</a> <a href='/dict/спираль' class='wordLink' target='_blank'>СПИРАЛЬ</a> <a href='/dict/днк' class='wordLink' target='_blank'>ДНК</a>. По <a href='/dict/своей' class='wordLink' target='_blank'>своей</a> <a href='/dict/структуре' class='wordLink' target='_blank'>структуре</a> <a href='/dict/днк' class='wordLink' target='_blank'>ДНК</a> <a href='/dict/напоминает' class='wordLink' target='_blank'>напоминает</a> <a href='/dict/винтовую' class='wordLink' target='_blank'>винтовую</a> <a href='/dict/лестницу' class='wordLink' target='_blank'>лестницу</a>. Ее <a href='/dict/боковины' class='wordLink' target='_blank'>боковины</a> <a href='/dict/составлены' class='wordLink' target='_blank'>составлены</a> из <a href='/dict/чередующихся' class='wordLink' target='_blank'>чередующихся</a> <a href='/dict/остатков' class='wordLink' target='_blank'>остатков</a> <a href='/dict/сахара' class='wordLink' target='_blank'>сахара</a> и <a href='/dict/фосфатных' class='wordLink' target='_blank'>фосфатных</a> <a href='/dict/групп' class='wordLink' target='_blank'>групп</a>; <a href='/dict/каждый' class='wordLink' target='_blank'>каждый</a> <a href='/dict/остаток' class='wordLink' target='_blank'>остаток</a> <a href='/dict/сахара' class='wordLink' target='_blank'>сахара</a> в <a href='/dict/одной' class='wordLink' target='_blank'>одной</a> <a href='/dict/боковине' class='wordLink' target='_blank'>боковине</a> <a href='/dict/соединен' class='wordLink' target='_blank'>соединен</a> со <a href='/dict/своим' class='wordLink' target='_blank'>своим</a> <a href='/dict/партнером' class='wordLink' target='_blank'>партнером</a> в <a href='/dict/другой' class='wordLink' target='_blank'>другой</a> с <a href='/dict/помощью' class='wordLink' target='_blank'>помощью</a> <a href='/dict/перекладины' class='wordLink' target='_blank'>перекладины</a>, <a href='/dict/состоящей' class='wordLink' target='_blank'>состоящей</a> из <a href='/dict/пурина' class='wordLink' target='_blank'>пурина</a> (<a href='/dict/аденина' class='wordLink' target='_blank'>аденина</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/гуанина' class='wordLink' target='_blank'>гуанина</a>) и <a href='/dict/пиримидина' class='wordLink' target='_blank'>пиримидина</a> (<a href='/dict/цитозина' class='wordLink' target='_blank'>цитозина</a> <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/тимина' class='wordLink' target='_blank'>тимина</a>), <a href='/dict/при' class='wordLink' target='_blank'>при</a> <a href='/dict/этом' class='wordLink' target='_blank'>этом</a> <a href='/dict/аденин' class='wordLink' target='_blank'>аденин</a> <a href='/dict/соединяется' class='wordLink' target='_blank'>соединяется</a> <a href='/dict/только' class='wordLink' target='_blank'>только</a> с <a href='/dict/тимином' class='wordLink' target='_blank'>тимином</a>, а <a href='/dict/гуанин' class='wordLink' target='_blank'>гуанин</a> - с <a href='/dict/цитозином' class='wordLink' target='_blank'>цитозином</a>.

ДВОЙНАЯ СПИРАЛЬ ДНК. По своей структуре ДНК напоминает винтовую лестницу. Ее боковины составлены из чередующихся остатков сахара и фосфатных групп; каждый остаток сахара в одной боковине соединен со своим партнером в другой с помощью "перекладины", состоящей из пурина (аденина или гуанина) и пиримидина (цитозина или тимина), при этом аденин соединяется только с тимином, а гуанин - с цитозином.

Правило комплементарности. Уотсон и Крик показали, что образование водородных связей и регулярной двойной спирали возможно только тогда, когда более крупное пуриновое основание аденин (А) в одной цепи имеет своим партнером в другой цепи меньшее по размерам пиримидиновое основание тимин (Т), а гуанин (Г) связан с цитозином (Ц). Эту закономерность можно представить следующим образом:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Соответствие А"Т и Г"Ц называют правилом комплементарности, а сами цепи - комплементарными. Согласно этому правилу, содержание аденина в ДНК всегда равно содержанию тимина, а количество гуанина - количеству цитозина. Следует отметить, что две цепи ДНК, различаясь химически, несут одинаковую информацию, поскольку вследствие комплементарности одна цепь однозначно задает другую. Структура РНК менее упорядочена. Обычно это одноцепочечная молекула, хотя РНК некоторых вирусов состоит из двух цепей. Но даже такая РНК более гибка, чем ДНК. Некоторые участки в молекуле РНК взаимно комплементарны и при изгибании цепи спариваются, образуя двухцепочечные структуры (шпильки). В первую очередь это относится к транспортным РНК (тРНК). Некоторые основания в тРНК подвергаются модификации уже после синтеза молекулы. Например, иногда происходит присоединение к ним метильных групп.

ФУНКЦИЯ НУКЛЕИНОВЫХ КИСЛОТ

Одна из основных функций нуклеиновых кислот состоит в детерминации синтеза белков. Информация о структуре белков, закодированная в нуклеотидной последовательности ДНК, должна передаваться от одного поколения к другому, и поэтому необходимо ее безошибочное копирование, т.е. синтез точно такой же же молекулы ДНК (репликация).

Репликация и транскрипция. С химической точки зрения синтез нуклеиновой кислоты - это полимеризация, т.е. последовательное присоединение строительных блоков. Такими блоками служат нуклеозидтрифосфаты; реакцию можно представить следующим образом:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Энергия, необходимая для синтеза, высвобождается при отщеплении пирофосфата, а катализируют реакцию особые ферменты - ДНК-полимеразы. В результате такого синтетического процесса мы получили бы полимер со случайной последовательностью оснований. Однако большинство полимераз работает только в присутствии уже существующей нуклеиновой кислоты -матрицы, диктующей, какой именно нуклеотид присоединится к концу цепи. Этот нуклеотид должен быть комплементарен соответствующему нуклеотиду матрицы, так что новая цепь оказывается комплементарной исходной. Используя затем комплементарную цепь в качестве матрицы, мы получим точную копию оригинала. ДНК состоит из двух взаимно комплементарных цепей. В ходе репликации они расходятся, и каждая из них служит матрицей для синтеза новой цепи:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Так образуются две новые двойные спирали с той же последовательностью оснований, что и у исходной ДНК. Иногда в процессе репликации происходит "сбой", и возникают мутации (см. также НАСЛЕДСТВЕННОСТЬ). В результате транскрипции ДНК образуются клеточные РНК (мРНК, рРНК и тРНК):

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Они комплементарны одной из цепей ДНК и являются копией другой цепи, за исключением того, что место тимина у них занимает урацил. Таким способом можно получить множество РНК-копий одной из цепей ДНК. В нормальной клетке передача информации осуществляется только в направлении ДНК -> ДНК и ДНК -> РНК. Однако в клетках, инфицированных вирусом, возможны и другие процессы: РНК -> РНК и РНК -> ДНК. Генетический материал многих вирусов представлен молекулой РНК, обычно одноцепочечной. Проникнув в клетку-хозяина, эта РНК реплицируется с образованием комплементарной молекулы, на которой, в свою очередь, синтезируется множество копий исходной вирусной РНК:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Вирусная РНК может транскрибироваться ферментом - обратной транскриптазой - в ДНК, которая иногда включается в хромосомную ДНК клетки-хозяина. Теперь эта ДНК несет вирусные гены, и после транскрипции в клетке может появиться вирусная РНК. Таким образом, спустя длительное время, в течение которого никакого вируса в клетке не обнаруживается, он снова в ней появится без повторного заражения. Вирусы, генетический материал которых включается в хромосому клетки-хозяина, часто являются причиной рака.

Трансляция нуклеиновых кислот в белки. Генетическая информация, закодированная в нуклеотидной последовательности ДНК, переводится не только на язык нуклеотидной последовательности РНК, но и на язык аминокислот - мономерных единиц белков. Белковая молекула - это цепочка из аминокислот. Каждая аминокислота содержит кислую карбоксильную группу -COOH и оснвную аминогруппу -NH2. Карбоксильная группа одной аминокислоты связывается с аминогруппой другой, образуя амидную связь, и этот процесс продолжается, пока не образуется цепь, содержащая до 1000 аминокислот (см. также БЕЛКИ). В белках присутствует 20 разных аминокислот, от последовательности которых зависят их природа и функции. Эта последовательность определяется нуклеотидной последовательностью соответствующего гена - участка ДНК, кодирующего данный белок. Однако сама ДНК не является матрицей при синтезе белка. Сначала она транскрибируется в ядре с образованием матричной РНК (мРНК), которая диффундирует в цитоплазму, и на ней как на матрице синтезируется белок. Процесс ускоряется благодаря тому, что на каждой молекуле мРНК может одновременно синтезироваться множество белковых молекул. Репликация нуклеиновых кислот осуществляется благодаря образованию водородных связей между комплементарными основаниями исходной и дочерней цепей. Аминокислоты не образуют водородных связей с основаниями, так что прямое копирование матрицы невозможно. Они взаимодействуют с матрицей опосредованно, через "адапторные" нуклеиновые кислоты - небольшие молекулы транспортных РНК (тРНК), состоящие примерно из 80 оснований и способные связываться с мРНК. Каждая тРНК содержит специфическую последовательность из трех оснований, антикодон, который комплементарен группе из трех оснований, кодону, в мРНК. Антикодоны взаимодействуют с кодонами по правилу комплементарности, примерно так же, как взаимодействуют две цепи ДНК. Таким образом, последовательность оснований в мРНК определяет порядок присоединения тРНК, несущих аминокислоты. Схематически перенос информации от ДНК к белку можно представить следующим образом:

<a href='/dict/нуклеиновые' class='wordLink' target='_blank'>НУКЛЕИНОВЫЕ</a> <a href='/dict/кислоты' class='wordLink' target='_blank'>КИСЛОТЫ</a>

Последовательность оснований в ДНК задает порядок следования аминокислот в белке, поскольку каждая аминокислота присоединяется специфическим ферментом только к определенным тРНК, а те, в свою очередь, - только к определенным кодонам в мРНК. Комплексы тРНК-аминокислота связываются с матрицей по одному в каждый данный момент времени. Ниже перечислены основные этапы белкового синтеза (см. также рисунок).

<a href='/dict/этапы' class='wordLink' target='_blank'>ЭТАПЫ</a> <a href='/dict/белкового' class='wordLink' target='_blank'>БЕЛКОВОГО</a> <a href='/dict/синтеза' class='wordLink' target='_blank'>СИНТЕЗА</a>

ЭТАПЫ БЕЛКОВОГО СИНТЕЗА

1. Ферменты, называемые аминоацил-тРНК-синтетазами, присоединяют аминокислоты к соответствующим тРНК. Таких ферментов 20, по одному для каждой аминокислоты. 2. Молекула мРНК присоединяется своим первым кодоном к небольшой частице, называемой рибосомой. Рибосомы состоят из примерно равных количеств рРНК и белка. Структура и функция рибосом весьма сложны, но главная их задача - облегчение взаимодействия мРНК и тРНК и ускорение полимеризации аминокислот, связанных с разными тРНК. 3. тРНК, нагруженная аминокислотой, связывается с соответствующим кодоном мРНК, которая, в свою очередь, контактирует с рибосомой. Образуется комплекс рибосома-мРНК-тРНК-аминокислота. 4. мРНК, подобно ленте на конвейере, продвигается по рибосоме на один кодон вперед. 5. Следующая тРНК, нагруженная аминокислотой, присоединяется ко второму кодону. 6. Первая и вторая аминокислоты связываются между собой. 7. Первая тРНК отсоединяется от комплекса, и теперь вторая тРНК несет две аминокислоты, связанные между собой. 8. мРНК снова продвигается на один кодон вперед, и все события повторяются, а растущая аминокислотная цепь удлиняется на одну аминокислоту. Процесс продолжается, пока не будет достигнут последний, "стоп"-кодон и последняя тРНК не отделится от готовой белковой цепи. В бактериальных клетках цепь из 100-200 аминокислот собирается за несколько секунд. В животных клетках этот процесс занимает около минуты.

Генетический код. Итак, каждая аминокислота в белке опосредованно детерминируется определенным кодоном (группой из 3 оснований) в мРНК и в конечном счете в ДНК. Поскольку в нуклеиновых кислотах имеется четыре вида оснований, число возможных кодонов составляет 4ґ4ґ4 = 64. Соответствие между кодонами и аминокислотами, которые они кодируют, называется генетическим или биологическим кодом. Это соответствие было установлено опытным путем: к разрушенным клеткам добавляли синтетические полинуклеотиды известного состава и смотрели, какие аминокислоты включаются в белки. Позднее появилась возможность прямо сравнить последовательности аминокислот в вирусных белках и оснований в вирусных нуклеиновых кислотах. Чрезвычайно интересно, что генетический код, за редкими исключениями, одинаков для всех организмов - от вирусов до человека. Одно из таких исключений составляют изменения в генетическом коде, используемом митохондриями. Митохондрии - это небольшие автономные субклеточные частицы (органеллы), присутствующие во всех клетках, кроме бактерий и зрелых эритроцитов. Предполагают, что когда-то митохондрии были самостоятельными организмами; проникнув в клетки, они со временем стали их неотъемлемой частью, но сохранили некоторое количество собственной ДНК и синтезируют несколько митохондриальных белков.

Вообще говоря, каждой аминокислоте соответствует более одного кодона. Большинство кодонов, кодирующих одну и ту же аминокислоту, имеют два одинаковых первых основания, но в трех случаях (для лейцина, серина и аргинина) имеются два альтернативных набора первых дублетов в кодонах, соответствующих одной и той же аминокислоте. Природа основания в третьем положении не столь важна; одна и та же аминокислота - глицин - может кодироваться по-разному: ГГУ, ГГЦ, ГГА и ГГГ. Однако кодоны для двух разных аминокислот могут иметь два одинаковых первых основания, и тогда различие между ними будет определяться природой третьего основания - пурином или пиримидином. Так, гистидин кодируется триплетами ЦАУ и ЦАЦ, а глутамин - ЦАА и ЦАГ. Три кодона, УАА, УАГ и УГА, не кодируют никаких аминокислот и называются "бессмысленными". Одна молекула ДНК кодирует много белковых цепей. Каждый отрезок, кодирующий одну цепь, называют цистроном. Начало и конец цистрона, а также граница раздела между ними помечаются с помощью своего рода знаков химической пунктуации. По крайней мере у бактерий в начале цистрона находится метиониновый кодон АУГ. Логично предположить, что первой аминокислотой в белке всегда должен быть метионин, но часто несколько первых аминокислот отщепляются ферментативно после окончания синтеза белка. Конец белковой цепи помечается одним или несколькими "бессмысленными" кодонами. У бактерий (прокариот) практически вся ДНК кодирует какие-либо белки или тРНК. Однако у высших форм (эукариот) значительная часть ДНК состоит из простых повторяющихся последовательностей и "молчащих" генов, которые не транскрибируются в РНК и поэтому не транслируются в белки. Кроме того, исходно синтезированная мРНК содержит участки, не детерминирующие никаких белковых последовательностей. Такие участки (интроны), расположенные между кодирующими участками (экзонами), перед началом синтеза белка удаляются специальными ферментами. Почему в ДНК существуют эти казалось бы бесполезные сегменты - неясно; возможно, они выполняют регуляторные функции. У простейшей Tetrahymena РНК сама удаляет свои интроны и соединяет свободные концы цепей, действуя как фермент по отношению к себе самой. Это единственное известное исключение из правила, согласно которому нуклеиновые кислоты не обладают ферментативной активностью.

Транспортные РНК и супрессия. Смысл информации, содержащейся в ДНК, если переводить ее на язык аминокислот, определяется как самой ДНК, так и считывающим механизмом, т.е. зависит не только от того, какие кодоны есть в ДНК и в какой последовательности они расположены, но также и от того, какие именно аминокислоты (и к каким тРНК) присоединяют аминоацил-тРНК-синтетазы. Конечно, природа синтетаз и тРНК тоже определяется ДНК, и в этом смысле ДНК является первичным детерминантом белковой последовательности. Тем не менее суммарная детерминация представляет собой функцию всей системы, поскольку результат зависит от исходных компонентов. Если бы соответствие между тРНК и аминокислотами было другим, смысл кодонов тоже изменился бы. Известно, что мутации в ДНК изменяют считывающий механизм и в результате меняют - пусть и незначительно - смысл кодонов. Так, в бактерии Escherichia coli глициновая тРНК обычно узнает в мРНК кодон ГГА; мутация в ДНК, с которой транскрибируется эта тРНК, изменяет антикодон глициновой тРНК таким образом, что теперь он узнает кодон АГА, соответствующий аргинину, и в белковой молекуле вместо аргинина появляется глицин. Это не обязательно имеет фатальные последствия, поскольку не все аргинины кодируются триплетом АГА и есть аргининовые тРНК, по-прежнему узнающие "свои" АГА. В результате измененными оказываются не все белковые молекулы. Иногда такие мутации, изменяющие антикодон, подавляют (супрессируют) мутации в кодоне. Например, если в результате мутации глициновый кодон ГГА превращается в АГА, он все же может прочитываться как глицин, если антикодон глициновой тРНК, в свою очередь, изменился так, что эта тРНК стала узнавать АГА. В этом случае вторая "ошибка" устраняет первую. Мутации, приводящие к изменению антикодонов, могут иметь разные последствия, поскольку один и тот же кодон может узнаваться несколькими тРНК. Вообще говоря, узнавание осуществляется благодаря комплементарности оснований кодона и антикодона, однако одно из оснований кодона может модифицироваться таким образом, что антикодон будет узнавать даже неполностью комплементарный кодон. В результате одна и та же тРНК может взаимодействовать с несколькими разными кодонами, кодирующими одну и ту же аминокислоту. Этот феномен неполного соответствия кодона и антикодона был назван Ф. Криком "шатанием".

Регуляция активности генов. Для организма было бы катастрофой, если бы во всех его клетках одновременно работали все гены и синтезировались все закодированные ими белки. Бактерии, например, должны все время приспосабливаться к условиям среды, синтезируя нужные ферменты. Все клетки высших организмов имеют один и тот же набор генов, но, к счастью, клетки мозга не продуцируют пищеварительные ферменты, а в хрусталике глаза не синтезируются мышечные белки. Активность гена характеризуется тем, транскрибируется ли он с образованием соответствующей мРНК. ДНК - длинная молекула, и в определенных ее участках имеются последовательности, называемые промоторами, которые распознаются специфическим транскрибирующим ферментом - полимеразой. В этих участках и только в них начинается транскрипция, продолжаясь до тех пор, пока не достигнет последовательности оснований, означающей конец считывания. Существуют особые репрессорные белки, которые связываются с ДНК поблизости от промотора в участке, называемом оператором. Образовавшийся комплекс блокирует транскрипцию, и мРНК не синтезируется. Таким образом, репрессорные белки являются ингибиторами транскрипции. С другой стороны, существуют небольшие молекулы, которые образуют комплекс с репрессорами и снимают их блокирующее действие на транскрипцию. Иными словами, они ингибируют ингибиторы. Так, у бактерий в норме отсутствуют ферменты, катализирующие расщепление некоторых сахаров; однако если один из этих сахаров появляется в среде, он образует комплекс с репрессором, ингибирование снимается и запускается синтез соответствующего фермента. Ферменты, синтез которых индуцируется собственными субстратами, называются индуцибельными. В ряде случаев, наоборот, репрессорный белок не блокирует транскрипцию мРНК, если он не связан с определенной молекулой. У бактерий некоторые ферменты, участвующие в синтезе определенных аминокислот, образуются только в отсутствие этих аминокислот, т.е. бактерии производят данные ферменты лишь по мере надобности. Если добавить в среду соответствующую аминокислоту, она образует комплекс с репрессором и активирует его, а тем самым ингибирует транскрипцию соответствующих генов. Уже образовавшаяся мРНК вскоре расщепляется, и синтез ферментов останавливается. Такие ферменты являются отрицально индуцибельными. Поскольку репрессорные белки сами кодируются генами, работа которых, в свою очередь, может регулироваться другими генами, а синтез малых молекул-индукторов и гормонов также в конечном счете регулируется генами, механизмы регуляции генной активности могут быть очень сложными.

ЛИТЕРАТУРА

Ичас М. Биологический код. М., 1971 Шабарова З.А., Богданов А.А. Химия нуклеиновых кислот и их компонентов, М., 1978 Зенгер В. Принципы структурной организации нуклеиновых кислот. М., 1987

Полезные сервисы

вирусы

Энциклопедия Кольера

ВИРУСЫ - мельчайшие возбудители инфекционных болезней. В переводе с латинского virus означает "яд, ядовитое начало". До конца 19 в. термин "вирус" использовался в медицине для обозначения любого инфекционного агента, вызывающего заболевание. Современное значение это слово приобрело после 1892, когда русский ботаник Д. И. Ивановский установил "фильтруемость" возбудителя мозаичной болезни табака (табачной мозаики). Он показал, что клеточный сок из зараженных этой болезнью растений, пропущенный через специальные фильтры, задерживающие бактерии, сохраняет способность вызывать то же заболевание у здоровых растений. Пять лет спустя другой фильтрующийся агент - возбудитель ящура крупного рогатого скота - был обнаружен немецким бактериологом Ф.Леффлером. В 1898 голландский ботаник М.Бейеринк повторил в расширенном варианте эти опыты и подтвердил выводы Ивановского. Он назвал "фильтрующееся ядовитое начало", вызывающее табачную мозаику, "фильтрующимся вирусом". Этот термин использовался на протяжении многих лет и постепенно сократился до одного слова - "вирус". В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов. Наиболее просто устроенные вирусы состоят из нуклеиновой кислоты, являющейся генетическим материалом (геномом) вируса, и покрывающего нуклеиновую кислоту белкового чехла. В состав некоторых вирусов входят также углеводы и жиры (липиды). Таким образом, вирусы можно рассматривать просто как мобильные наборы генетической информации. Вирусы лишены некоторых ферментов, необходимых для репродукции, и могут размножаться только внутри живой клетки, метаболизм которой после заражения перестраивается на воспроизводство вирусных, а не клеточных компонентов. Это свойство вирусов позволяет отнести их к облигатным (обязательным) клеточным паразитам.

После синтеза отдельных компонентов формируются новые вирусные частицы. Симптомы вирусного заболевания развиваются как следствие повреждения вирусами отдельных клеток. Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов. Являются ли вирусы живыми организмами? В 1935 американский биохимик У.

Стэнли выделил в кристаллической форме вирус табачной мозаики, доказав тем самым его молекулярную природу. Полученные результаты вызвали бурные дискуссии о природе вирусов: являются ли они живыми организмами или просто активированными молекулами? Действительно, внутри зараженной клетки вирусы проявляют себя как интегральные компоненты более сложных живых систем, но вне клетки представляют собой метаболически инертные нуклеопротеины. Вирусы содержат генетическую информацию, но не могут самостоятельно реализовать ее, не обладая собственным механизмом синтеза белка. Когда особенности строения и репродукции вирусов оказались выясненными, вопрос о том, являются ли они живыми, постепенно утратил свое значение.

Размеры вирусов. Величина вирусов варьирует от 20 до 300 нм (1 нм = 10-9 м). Практически все вирусы по своим размерам мельче, чем бактерии (см. БАКТЕРИИ). Однако наиболее крупные вирусы, например вирус коровьей оспы, имеют такие же размеры, как и наиболее мелкие бактерии (хламидии и риккетсии), которые тоже являются облигатными паразитами и размножаются только в живых клетках. Поэтому отличительными чертами вирусов по сравнению с другими микроскопическими возбудителями инфекций служат не размеры или обязательный паразитизм, а особенности строения и уникальные механизмы репликации (воспроизведения самих себя).

СТРОЕНИЕ ВИРУСОВ

Полноценная по строению и инфекционная, т.е. способная вызвать заражение, вирусная частица вне клетки называется вирионом. Сердцевина ("ядро") вириона содержит одну молекулу, а иногда две или несколько молекул нуклеиновой кислоты. Белковый чехол, покрывающий нуклеиновую кислоту вириона и защищающий ее от вредных воздействий окружающей среды, называется капсидом. Нуклеиновая кислота вириона является генетическим материалом вируса (его геномом) и представлена дезоксирибонуклеиновой кислотой (ДНК) или рибонуклеиновой кислотой (РНК), но никогда двумя этими соединениями сразу. (Хламидии, риккетсии и все другие "истинно живые" микроорганизмы содержат одновременно ДНК и РНК.) Нуклеиновые кислоты самых мелких вирусов содержат три или четыре гена, тогда как самые крупные вирусы имеют до ста генов. У некоторых вирусов в дополнение к капсиду имеется еще и внешняя оболочка, состоящая из белков и липидов. Она образуется из мембран зараженной клетки, содержащих встроенные вирусные белки. Термины "голые вирионы" и "лишенные оболочки вирионы" используются как синонимы. Капсиды самых мелких и просто устроенных вирусов могут состоять лишь из одного или нескольких видов белковых молекул. Несколько молекул одного или разных белков объединяются в субъединицы, называемые капсомерами. Капсомеры, в свою очередь, образуют правильные геометрические структуры вирусного капсида. У разных вирусов форма капсида является характерной особенностью (признаком) вириона.

<a href='/dict/при' class='wordLink' target='_blank'>ПРИ</a> <a href='/dict/икосаэдрическом' class='wordLink' target='_blank'>ИКОСАЭДРИЧЕСКОМ</a> <a href='/dict/типе' class='wordLink' target='_blank'>ТИПЕ</a> <a href='/dict/симметрии' class='wordLink' target='_blank'>СИММЕТРИИ</a>, <a href='/dict/показанной' class='wordLink' target='_blank'>показанной</a> на <a href='/dict/схеме' class='wordLink' target='_blank'>схеме</a> <a href='/dict/строения' class='wordLink' target='_blank'>строения</a> <a href='/dict/аденовируса' class='wordLink' target='_blank'>аденовируса</a>, <a href='/dict/капсомеры' class='wordLink' target='_blank'>капсомеры</a>, <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/белковые' class='wordLink' target='_blank'>белковые</a> <a href='/dict/субъединицы' class='wordLink' target='_blank'>субъединицы</a> <a href='/dict/вируса' class='wordLink' target='_blank'>вируса</a>, <a href='/dict/образуют' class='wordLink' target='_blank'>образуют</a> <a href='/dict/изометрический' class='wordLink' target='_blank'>изометрический</a> <a href='/dict/белковый' class='wordLink' target='_blank'>белковый</a> <a href='/dict/чехол' class='wordLink' target='_blank'>чехол</a>, <a href='/dict/состоящий' class='wordLink' target='_blank'>состоящий</a> из 20 <a href='/dict/правильных' class='wordLink' target='_blank'>правильных</a> <a href='/dict/треугольников' class='wordLink' target='_blank'>треугольников</a>.

ПРИ ИКОСАЭДРИЧЕСКОМ ТИПЕ СИММЕТРИИ, показанной на схеме строения аденовируса, капсомеры, или белковые субъединицы вируса, образуют изометрический белковый чехол, состоящий из 20 правильных треугольников.

Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц - капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi - двадцать, hedra - поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.

В <a href='/dict/случае' class='wordLink' target='_blank'>СЛУЧАЕ</a> <a href='/dict/спиральной' class='wordLink' target='_blank'>СПИРАЛЬНОЙ</a> <a href='/dict/симметрии' class='wordLink' target='_blank'>СИММЕТРИИ</a>, <a href='/dict/показанной' class='wordLink' target='_blank'>показанной</a> на <a href='/dict/схеме' class='wordLink' target='_blank'>схеме</a> <a href='/dict/строения' class='wordLink' target='_blank'>строения</a> <a href='/dict/вируса' class='wordLink' target='_blank'>вируса</a> <a href='/dict/табачной' class='wordLink' target='_blank'>табачной</a> <a href='/dict/мозаики' class='wordLink' target='_blank'>мозаики</a>, <a href='/dict/капсомеры' class='wordLink' target='_blank'>капсомеры</a>, <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/субъединицы' class='wordLink' target='_blank'>субъединицы</a> <a href='/dict/вируса' class='wordLink' target='_blank'>вируса</a>, <a href='/dict/формируют' class='wordLink' target='_blank'>формируют</a> <a href='/dict/спираль' class='wordLink' target='_blank'>спираль</a> <a href='/dict/вокруг' class='wordLink' target='_blank'>вокруг</a> <a href='/dict/полой' class='wordLink' target='_blank'>полой</a> <a href='/dict/трубчатой' class='wordLink' target='_blank'>трубчатой</a> <a href='/dict/сердцевины' class='wordLink' target='_blank'>сердцевины</a>.

В СЛУЧАЕ СПИРАЛЬНОЙ СИММЕТРИИ, показанной на схеме строения вируса табачной мозаики, капсомеры, или субъединицы вируса, формируют спираль вокруг полой трубчатой сердцевины.

У отдельных бактериофагов (вирусов бактерий; фагов) смешанный тип симметрии. У т.н. "хвостатых" фагов головка имеет вид сферического капсида; от нее отходит длинный трубчатый отросток - "хвост".

<a href='/dict/комбинированная' class='wordLink' target='_blank'>КОМБИНИРОВАННАЯ</a>, <a href='/dict/или' class='wordLink' target='_blank'>или</a> <a href='/dict/смешанная' class='wordLink' target='_blank'>смешанная</a>, <a href='/dict/симметрия' class='wordLink' target='_blank'>симметрия</a> у <a href='/dict/вирусов' class='wordLink' target='_blank'>вирусов</a> <a href='/dict/может' class='wordLink' target='_blank'>может</a> <a href='/dict/быть' class='wordLink' target='_blank'>быть</a> <a href='/dict/представлена' class='wordLink' target='_blank'>представлена</a> <a href='/dict/разными' class='wordLink' target='_blank'>разными</a> <a href='/dict/вариантами' class='wordLink' target='_blank'>вариантами</a>. <a href='/dict/частица' class='wordLink' target='_blank'>Частица</a> <a href='/dict/бактериофага' class='wordLink' target='_blank'>бактериофага</a>, <a href='/dict/показанная' class='wordLink' target='_blank'>показанная</a> на <a href='/dict/схеме' class='wordLink' target='_blank'>схеме</a>, <a href='/dict/имеет' class='wordLink' target='_blank'>имеет</a> <a href='/dict/головку' class='wordLink' target='_blank'>головку</a> <a href='/dict/правильной' class='wordLink' target='_blank'>правильной</a> <a href='/dict/геометрической' class='wordLink' target='_blank'>геометрической</a> <a href='/dict/формы' class='wordLink' target='_blank'>формы</a> и <a href='/dict/хвост' class='wordLink' target='_blank'>хвост</a> со <a href='/dict/спиральной' class='wordLink' target='_blank'>спиральной</a> <a href='/dict/симметрией' class='wordLink' target='_blank'>симметрией</a>.

КОМБИНИРОВАННАЯ, или смешанная, симметрия у вирусов может быть представлена разными вариантами. Частица бактериофага, показанная на схеме, имеет "головку" правильной геометрической формы и "хвост" со спиральной симметрией.

Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.

РЕПЛИКАЦИЯ ВИРУСОВ

Генетическую информацию, закодированную в отдельном гене, в общем можно рассматривать как инструкцию по производству определенного белка в клетке. Такая инструкция воспринимается клеткой только в том случае, если она послана в виде мРНК. Поэтому клетки, у которых генетический материал представлен ДНК, должны "переписать" (транскрибировать) эту информацию в комплементарную копию мРНК

(см. также НУКЛЕИНОВЫЕ КИСЛОТЫ).

ДНК-содержащие вирусы по способу репликации отличаются от РНК-содержащих вирусов. ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо. Первый этап репликации вирусов связан с проникновением вирусной нуклеиновой кислоты в клетку организма-хозяина. Этому процессу могут способствовать специальные ферменты, входящие в состав капсида или внешней оболочки вириона, причем оболочка остается снаружи клетки или вирион теряет ее сразу после проникновения внутрь клетки. Вирус находит подходящую для его размножения клетку, контактируя отдельными участками своего капсида (или внешней оболочки) со специфическими рецепторами на поверхности клетки по типу "ключ - замок". Если специфические ("узнающие") рецепторы на поверхности клетки отсутствуют, то клетка не чувствительна к вирусной инфекции: вирус в нее не проникает. Для того чтобы реализовать свою генетическую информацию, проникшая в клетку вирусная ДНК транскрибируется специальными ферментами в мРНК. Образовавшаяся мРНК перемещается к клеточным "фабрикам" синтеза белка - рибосомам, где она заменяет клеточные "послания" собственными "инструкциями" и транслируется (прочитывается), в результате чего синтезируются вирусные белки. Сама же вирусная ДНК многократно удваивается (дуплицируется) при участии другого набора ферментов, как вирусных, так и принадлежащих клетке. Синтезированный белок, который используется для строительства капсида, и размноженная во многих копиях вирусная ДНК объединяются и формируют новые, "дочерние" вирионы. Сформированное вирусное потомство покидает использованную клетку и заражает новые: цикл репродукции вируса повторяется. Некоторые вирусы во время отпочковывания от поверхности клетки захватывают часть клеточной мембраны, в которую "заблаговременно" встроились вирусные белки, и таким образом приобретают оболочку. Что касается клетки-хозяина, то она в итоге оказывается поврежденной или даже полностью разрушенной. У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь - запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы. У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с "+" нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с "-" нитью РНК последняя должна сначала "переписаться" в "+" нить; только после этого начинается синтез вирусных белков и происходит репликация вируса. Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.

См. также РЕТРОВИРУСЫ.

КЛАССИФИКАЦИЯ ВИРУСОВ

Если вирусы действительно являются мобильными генетическими элементами, получившими "автономию" (независимость) от генетического аппарата их хозяев (разных типов клеток), то разные группы вирусовразным геномом, строением и репликацией) должны были возникнуть независимо друг от друга. Поэтому построить для всех вирусов единую родословную, связывающую их на основе эволюционных взаимоотношений, невозможно. Принципы "естественной" классификации, используемые в систематике животных, не подходят для вирусов. Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса. В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Эволюция вирусов и вирусных инфекций. Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным. Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках. Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем. Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме. Многие вирусы не могут долго сохраняться в природе при низкой плотности расселения вида-хозяина. Малочисленность популяций первобытных охотников и сборщиков растений создавала неблагоприятные условия для существования некоторых вирусов; поэтому весьма вероятно, что какие-то вирусы человека возникли позже, с появлением городских и сельских поселений. Предполагается, что вирус кори первоначально существовал среди собак (как возбудитель лихорадки), а натуральная оспа человека могла появиться в результате эволюции оспы коров или мышей. К наиболее "свежим" примерам эволюции вирусов можно отнести синдром приобретенного иммунодефицита человека (СПИД). Существуют данные о генетическом сходстве вирусов иммунодефицита человека и африканских зеленых мартышек. "Новые" инфекции обычно протекают в тяжелой форме, нередко со смертельным исходом, но в процессе эволюции возбудителя они могут стать более легкими. Хороший пример - история вируса миксоматоза. В 1950 этот вирус, эндемичный для Южной Америки и довольно безобидный для местных кроликов, вместе с европейскими породами этих животных был завезен в Австралию. Заболевание австралийских кроликов, ранее не встречавшихся с данным вирусом, было смертельным в 99,5% случаев. Несколько лет спустя смертность от этого заболевания значительно снизилась, в некоторых районах до 50%, что объясняется не только "аттенуирующими" (ослабляющими) мутациями в вирусном геноме, но и возросшей генетической устойчивостью кроликов к заболеванию, причем в обоих случаях эффективная природная селекция произошла под мощным давлением естественного отбора. Репродукция вирусов в природе поддерживается разными типами организмов: бактериями, грибами, простейшими, растениями, животными. Например, насекомые часто страдают от вирусов, которые накапливаются в их клетках в виде крупных кристаллов. Растения нередко поражаются мелкими и просто устроенными РНК-содержащими вирусами. Эти вирусы даже не имеют специальных механизмов для проникновения в клетку. Они переносятся насекомыми (которые питаются клеточным соком), круглыми червями и контактным способом, заражая растение при его механическом повреждении. Вирусы бактерий (бактериофаги) имеют наиболее сложный механизм доставки своего генетического материала в чувствительную бактериальную клетку. Сначала "хвост" фага, имеющий вид тонкой трубочки, прикрепляется к стенке бактерии. Затем специальные ферменты "хвоста" растворяют участок бактериальной стенки и в образовавшееся отверстие через "хвост", как через иглу шприца, впрыскивается генетический материал фага (обычно ДНК). Более десяти основных групп вирусов патогенны для человека. Среди ДНК-содержащих вирусов это семейство поксвирусов (вызывающих натуральную оспу, коровью оспу и другие оспенные инфекции), вирусы группы герпеса (герпетические высыпания на губах, ветряная оспа), аденовирусы (заболевания дыхательных путей и глаз), семейство паповавирусов (бородавки и другие разрастания кожи), гепаднавирусы (вирус гепатита B). РНК-содержащих вирусов, болезнетворных для человека, значительно больше. Пикорнавирусы (от лат. pico - очень мелкий, англ. RNA - РНК) - самые мелкие вирусы млекопитающих, похожие на некоторые вирусы растений; они вызывают полиомиелит, гепатит А, острые простудные заболевания. Миксовирусы и парамиксовирусы - причина разных форм гриппа, кори и эпидемического паротита (свинки). Арбовирусы (от англ. arthropod borne - "переносимые членистоногими") - самая большая группа вирусов (более 300) - переносятся насекомыми и являются возбудителями клещевого и японского энцефалитов, желтой лихорадки, менингоэнцефалитов лошадей, колорадской клещевой лихорадки, шотландского энцефалита овец и других опасных болезней. Реовирусы - довольно редкие возбудители респираторных и кишечных заболеваний человека - стали предметом особого научного интереса в силу того, что их генетический материал представлен двухцепочечной фрагментированной РНК.

См. также

ВЕНЕРИЧЕСКИЕ БОЛЕЗНИ;

ВЕТРЯНАЯ ОСПА;

ГЕПАТИТ;

ГРИПП;

ДЕНГЕ ЛИХОРАДКА;

МОНОНУКЛЕОЗ ИНФЕКЦИОННЫЙ;

КОРЬ;

КРАСНУХА;

МЕНИНГИТ;

ОСПА НАТУРАЛЬНАЯ;

ПОЛИОМИЕЛИТ;

РЕСПИРАТОРНЫЕ ВИРУСНЫЕ ЗАБОЛЕВАНИЯ;

СВИНКА;

СИНДРОМ ПРИОБРЕТЕННОГО ИММУННОГО ДЕФИЦИТА (СПИД);

ЭНЦЕФАЛИТ. Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда - Якоба и куру - дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы - прионами (см. ПРИОН).

Лечение и профилактика. Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, - задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса. Известно, что в организме человека вырабатываются особые белки - интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями

(см. ГЕННАЯ ИНЖЕНЕРИЯ). К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания. Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире.

См. также ВАКЦИНАЦИЯ И ИММУНИЗАЦИЯ. Современные методы вакцинации и иммунизации разделяются на три основных группы. Во-первых, это использование ослабленного штамма вируса, который стимулирует в организме продуцирование антител, эффективно действующих против более патогенного штамма. Во-вторых, введение убитого вируса (например, инактивированного формалином), который тоже индуцирует образование антител. Третий вариант - т.н. "пассивная" иммунизация, т.е. введение уже готовых "чужих" антител. Животное, например лошадь, иммунизируют, затем из ее крови выделяют антитела, очищают их и используют для введения пациенту, чтобы создать немедленный, но непродолжительный иммунитет. Иногда используют антитела из крови человека, перенесшего данное заболевание (например, корь, клещевой энцефалит).

Накопление вирусов. Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Вирусы бактерий первыми стали объектом детальных исследований как наиболее удобная модель, обладающая рядом преимуществ по сравнению с другими вирусами. Полный цикл репликации фагов, т.е. время от заражения бактериальной клетки до выхода из нее размножившихся вирусных частиц, происходит в течение одного часа. Другие вирусы обычно накапливаются в течение нескольких суток или даже более продолжительного времени. Незадолго до Второй мировой войны и вскоре после ее окончания были разработаны методы изучения отдельных вирусных частиц. Чашки с питательным агаром, на котором выращен монослой (сплошной слой) бактериальных клеток, заражают частицами фага, используя для этого его последовательные разведения. Размножаясь, вирус убивает "приютившую" его клетку и проникает в соседние, которые тоже гибнут после накопления фагового потомства. Участок погибших клеток виден невооруженным глазом как светлое пятно. Такие пятна называют "негативными колониями", или бляшками. Разработанный метод позволил изучать потомство отдельных вирусных частиц, обнаружить генетическую рекомбинацию вирусов и определить генетическую структуру и способы репликации фагов в деталях, казавшихся ранее невероятными. Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствие появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

ЛИТЕРАТУРА

Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1-3, М., 1989

Полезные сервисы

рибонуклеиновые кислоты

Энциклопедический словарь

Рибонуклеи́новые кисло́ты (РНК), высокомолекулярные органические соединения, тип нуклеиновых кислот. Образованы нуклеотидами, в которые входят аденин, гуанин, цитозин и урацил и сахар рибозаДНК вместо урацила - тимин, вместо рибозы - дезоксирибоза). В клетках всех живых организмов участвуют в реализации генетической информации. Три основных вида: матричные, или информационные (мРНК, или иРНК); транспортные (тРНК); рибосомные (рРНК). У многих вирусов (так называемых РНК-содержащих) - вещество наследственности. Некоторые РНК (так называемые рибозимы) обладают активностью ферментов.

* * *

РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ - РИБОНУКЛЕИ́НОВЫЕ КИСЛО́ТЫ (РНК), семейство нуклеиновых кислот (см. НУКЛЕИНОВЫЕ КИСЛОТЫ), содержащих в качестве углеводного компонента остаток рибозы (см. РИБОЗА). PНK присутствуют во всех живых клетках, участвуя в процессах, связанных с передачей генетической информации от дезоксирибонуклеиновой кислоты (см. ДЕЗОКСИРИБОНУКЛЕИНОВЫЕ КИСЛОТЫ)(ДНК) к белку. Из РНК образованы геномы (см. ГЕНОМ) многих вирусов.

Строение рибонуклеиновых кислот

За редким исключением все PНK состоят из одиночных полинуклеотидных цепей. Их многомерные единицы - монорибонуклеотиды - содержат пуриновые (см. ПУРИНОВЫЕ ОСНОВАНИЯ)- аденин (см. АДЕНИНгуанин (см. ГУАНИНпиримидиновые (см. ПИРИМИДИНОВЫЕ ОСНОВАНИЯ)основания - цитозин (см. ЦИТОЗИНурацил (см. УРАЦИЛ). Обычно нуклеотиды обозначают начальными буквами названий входящих в их состав оснований на английском или русскомрусскоязычной научной литературе) языках: соответственно А, G (Г), С (Ц) и U (У). Как и в молекулах ДНК, отдельные нуклеотиды связаны между собой 3"- , 5"- фосфодиэфирными связями: остаток фосфорной кислоты служит связующим звеном между 3"-атомом углерода рибозы одного нуклеотида и 5"-атомом углерода рибозы другого (исходя из этого различают 3"-; и 5"-конец молекулы).

Молекулы PНK содержат от нескольких десятков до нескольких десятков тысяч нуклеотидов. Все РНК способны к формированию вторичной структуры, основным элементом которой являются сравнительно короткие двуцелочечные тяжи, образованные комплементарными основаниями одной и той же молекулы, и связывающие их однотяжевые участки.

Синтез РНК

В живой клетке синтез РНК происходит с помощью фермента РНК-полимеразы в процессе транскрипции - считывания (переписывания) информации заложенной в молекуле ДНК, или в гене (часто группе генов).

Молекулы РНК формируются на матрице, которой служит одна из цепей ДНК, последовательность нуклеотидов в которой определяет порядок включения рибонуклеотидов по принципу комплементарности (гуанин против цитозина, урацил против аденина и т. д.). РНК-полимераза, продвигаясь вдоль одной из цепей ДНК, соединяет нуклеотиды в том порядке, который определен матрицей. Образовавшиеся молекулы РНК называют транскриптами.

История изучения РНК

Впервые РНК была выделена в 1889 году немецким биохимиком Р. Альтманом из клеток дрожжей. Но только в 1950-х гг., после доказательства генетической роли ДНК и установления ее двуцепочечной структуры, были описаны основные типы РНК и определены их функции. Было показано, что основная масса РНК в клетке (до 80%) приходится на рибосомные рибонуклеиновые кислоты (рРНК), которые в комплексе с белками образуют клеточную органеллу - рибосому (см. РИБОСОМЫ), и непосредственно участвуют в биосинтезе белка (см. Трансляция (см. ТРАНСЛЯЦИЯ (в биологии))).

В начале 19б0-х гг. на основании того, что у эукариот (см. ЭУКАРИОТЫ)почти вся ДНК сосредоточена в ядре, а синтез белка протекает главным образом в цитоплазме (см. ЦИТОПЛАЗМА)на рибосомах (см. РИБОСОМЫ), была высказана мысль о том, что какой-то вид РНК несет генетическую информацию для синтеза белка, то есть должна существовать какая-то молекула, переносящая информацию от ядра к рибосомам. Вскоре было установлено, что эту роль играют информационные, или матричные, рибонуклеиновые кислоты (иРНК, мРНК) - комплементарные копии генов.

Каждому работающему гену (или группе генов) соответствует своя молекула мРНК. Первичный транскрипт (мРНК-предшественник) по размерам намного (в 4-5 раз) превышает зрелую мРНК, которая, в свою очередь, служит матрицей для синтеза белка на рибосомах. Это связано прежде всего с экзон-интронным строением большинства эукариотических генов. В ходе созревания (процессинга) мРНК ее интронные участки удаляются, а экзоны - сшиваются друг с другом, или, как говорят, подвергаются сплайсингу. Кроме того, молекула мРНК претерпевает и некоторые другие изменения (укорачивание со стороны 3"-конца, присоединение от 20 до 200 остатков адениловой кислоты и т. д.). Каждые три последовательно расположенных основания в зрелой мРНК, называемые кодонами, соответствуют определенной аминокислоте в молекуле белка, который синтезируется по мере продвижения вдоль нее рибосомы. У прокариот мРНК не претерпевает существенных изменений после синтеза на ДНК.

В расшифровке же (декодировании) записанной в мРНК информации участвуют транспортные рибонуклеиновые кислоты (тРНК). Они переносят нужную аминокислоту к растущей полипептидной цепи в ходе синтеза белка. Узнавание кодона в мРНК осуществляется с помощью трех оснований в тРНК, называемых антикодонами, а доставляемая аминокислота присоединена к ее 3"-концу. Специфичность такой системы переноса обеспечивается тем, что имеется по крайней мере одна тРНК для каждой аминокислоты (валиновая тРНК переносит валин, аланиновая - аланин и т. д.). Но, как правило, в цитоплазме клеток встречается около 40 видов тРНК, которые доставляют 20 аминокислот, так как одна и та же аминокислота может кодироваться несколькими разными кодонами (см. Генетический код (см. ГЕНЕТИЧЕСКИЙ КОД)).

В дальнейшем были разработаны способы определения последовательности нуклеотидов в РНК, установления ее пространственной структуры. Крупнейшим открытием явилось обнаружение у некоторых РНК, названных рибозимами, способности расщеплять полирибонуклеотидные цепи, то есть играть роль фермента (ранее считалось, что ферментами могут быть только белки). Этот факт дал основания предполагать, что в период зарождения жизни на Земле РНК могла действовать самостоятельно (без белков и ДНК) и все биохимические превращения осуществлялись при ее участии.

Среди всех вышеперечисленных основных трех классов РНК наиболее изучены тРНК. Отличительной особенностью тРНК является наличие в их структуре так называемых минорных (необычных) оснований (описано более 40 таких оснований). Среди них наиболее часто встречаются инозин - производное аденина, псевдоуридин и другие производные урацила. Минорные основания появляются в тРНК уже после ее синтеза на ДНК, причем превращение обычных оснований в модифицированные происходит при участии специальных ферментов. Различные виды тРНК имеют сходную структуру и состоят примерно из 76 нуклеотидов (молекулярная масса 25 тыс.). Укладка молекул тРНК напоминает по форме клеверный лист. В ней выделяют 4 участка (стебли), в которых комплементарные пары оснований образуют водородные связи, и 3 одноцепочечных участка (петли). Значительно сложнее выглядят структуры высокомолекулярных рРНК или геномной РНК вирусов, однако детали пространственной организации их молекул пока неизвестны.

Помимо вышеописанных типов РНК, все эукариотические клетки содержат множество низкомолекулярных (коротких) молекул РНК, которые находятся в виде комплекса с молекулами белка (нуклеопротеидные частицы). Так называемые малые ядерные РНК (мяРНК) играют ключевую роль в процессинге транскриптов. Роль цитоплазматических низкомолекулярных РНК до конца не ясна.

У РНК-содержащих вирусов геномы могут быть представлены или двуцепочечной РНК, или одноцепочечной. Во многих случаях структурная организация геномных РНК сходна с мРНК эукариот. Поэтому при синтезе вирусных белков в клетке вирусная РНК может использоваться непосредственно в качестве матрицы.

См. Нуклеиновые кислоты (см. НУКЛЕИНОВЫЕ КИСЛОТЫ).Репликация ДНК

Полезные сервисы