Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

муравьи

Энциклопедия Кольера

МУРАВЬИ (Formicidae), семейство стебельчатобрюхих насекомых отряда перепончатокрылых (Hymenoptera), включающего также ос, пчел, пилильщиков, наездников и орехотворок. Делится на 12 современных и вымерших подсемейств, объединяющих 297 родов примерно с 8800 видами. Трудность классификации муравьев связана с двумя феноменами - наличием видов-двойников и гибридов. Мирмекологи (зоологи, специализирующиеся на изучении муравьев) знают, что первых, т.е. видов, практически не различимых по внешнему виду, среди муравьев довольно много. В результате описанный по анатомическим (морфологическим) признакам небольшого числа особей вид нередко приходится разделять на два или более самостоятельных - изолированных друг от друга репродуктивно. Отличить их друг от друга можно на основе статистического анализа промеров очень больших количеств (крупных выборок) индивидов, по хромосомным (генетическим) или биохимическим (ферментным) особенностям. И напротив, два близкородственных вида муравьев, которые легко различимы по внешним признакам, в местах совместного обитания нередко скрещиваются и дают гибридные формы. Если эти гибриды плодовиты, значит речь идет не о самостоятельных видах, а лишь о разных расах одного и того же (по определению, потомство от скрещивания разных видов неплодовито.)

Обилие. Муравьи - общественные насекомые, обитающие на земле и деревьях по всему миру, кроме Антарктики, Исландии, Гренландии и некоторых удаленных от континентов островов. Благодаря такому космополитному распространению, обилию и своим хорошо заметным колониям муравьи известны повсюду. Муравьи - самое эволюционно продвинутое семейство насекомых с точки зрения поведения, экологии и физиологии. Их колонии представляют собой сложные социальные образования с разделением труда и системами коммуникации, позволяющими особям координировать свои действия при выполнении задач, которые не по силам одному индивиду. Кроме того, многие виды муравьев поддерживают высокоразвитые симбиотические отношения с другими насекомыми и растениями. Преимущества, даваемые муравьям кооперацией, привели к тому, что на сегодняшний день это доминирующая по численности группа членистоногих. Так, на 1 акре (0,4 га) саванны в Кот-д'Ивуаре (Африка) обитает 8 млн. муравьев, образующих примерно 3000 колоний. Вместе с термитами (еще одной крупной группой общественных насекомых) муравьи составляют треть общей биомассы наземных животных в тропическом лесу бассейна Амазонки. Другими словами, при средней популяционной плотности 3,25 млн. муравьев и 0,4 млн. термитов на 1 акр они в сумме весят лишь вдвое меньше, чем все прочие сухопутные животные этого дождевого леса. В областях с умеренным климатом их меньше, но цифры все равно впечатляют. На площади 8 кв. км во Флориде обнаружено 76 видов муравьев из 30 родов, а на площади 5,5 кв. км в Мичигане - 87 их видов из 23 родов.

<a href='/dict/муравьи' class='wordLink' target='_blank'>МУРАВЬИ</a>

ТРИ ОБЫЧНЫХ В США МУРАВЬЯ:

а - пенсильванский муравей-древоточец, выгрызающий свои гнезда в древесине, но ею самой не питающийся; б - рыжий лесной муравей, живущий практически по всей планете; в - царица аргентинского муравья, только что сбросившая крылья.

Экологическое и экономическое значение. Такие многочисленные и к тому же колониальные животные не могут не изменять, причем существенным образом, населяемую ими среду. В лесах умеренного пояса они перемещают и аэрируют грунта не меньше, а в тропических лесах - больше, чем земляные черви. В дождевых тропических лесах 99,9% питательных веществ оставалось бы в верхних 5 см почвы, если бы не переносилось вглубь животными. Муравьи-листорезы из рода Atta заносят там растительный материал на глубину до 6 м. Муравьи, питающиеся семенами, способствуют расселению многих растений. На юго-западе США муравьи-жнецы из рода Pogonomyrmex относятся к основным зерноядным животным и успешно конкурируют за корм с млекопитающими. Многие муравьи предствляют собой важные звенья пищевых цепей как хищники беспозвоночных (других насекомых и т.д.), причем некоторые их виды специально используются человеком для борьбы с сельскохозяйственными вредителями. Однако жизнедеятельность муравьев иногда противоречит интересам людей. Так, муравьи-листорезы из родов Acromyrmex и Atta - самые злостные вредители культурных растений в Центральной и Южной Америке. Виды Solenopsis richteri и S. invicta, случайно интродуцированные в США из Южной Америки примерно в 1918 и 1940 соответственно, сейчас заселили ок. 105 млн. га сельскохозяйственных площадей в девяти юго-восточных штатах. Они не только вредят культурам, но и могут больно искусать человека и скот, убивают диких животных, повреждают дороги, делая ходы под их покрытием, и электрооборудование, например в светофорах (по непонятным причинам их привлекают электрические поля.)

Вид S. geminata родом с юго-востока США и севера Южной Америки проник с коммерческими грузами в Индию, на Тайвань, Малайский архипелаг, в Полинезию и ряд областей Африки. Такие виды, называемые заносными, в новых для себя регионах часто поселяются в сильно измененных человеком местообитаниях, например в городах. Один из них, фараонов муравей (Monomorium pharaonis), стал космополитом, обжившим пространства внутри стен зданий. Он наносит существенный вред, проникая в стерильные помещения больниц и загрязняя их. Аргентинский муравей (Iridomyrmex humulis) - еще один хорошо известный заносный вид, бывший на юго-востоке США сельскохозяйственным вредителем до тех пор, пока его численность там по неясным причинам не сократилась. Занесенный на острова Галапагос вид Wasmannia auropunctata стал угрозой для уникальной фауны этого архипелага.

Эволюция. Муравьи - близкие родственники ос, и некоторые исследователи даже считают их своего рода высокоспециализированными осами. Известны как крылатые муравьи (самцы и царицы), так и бескрылые осы (самки немок). Однако в целом муравьи внешне отличаются от ос присутствием перед брюшком хорошо заметного стебелька из одного-двух узловато расширенных члеников, где часто находится торчащий вверх выступ. Другая их отличительная черта - парная метаплевральная железа, расположенная непосредственно перед стебельком в задних углах мезосомы (части тела между головой и брюшком, которая у большинства насекомых называется грудью) и часто заметная там по вздутиям - "буллам". Хотя анатомическое и поведенческое сходство муравьев с осами уже давно приводило к тому, что последних считали их предками, эта точка зрения была научно подтверждена лишь в 1967, когда в янтаре из Нью-Джерси были найдены два ископаемых образца, соответствующих, так сказать, "осомуравью", т.е. переходной форме между двумя группами. Ее назвали Sphecomyrma freyi. Этот вид датирован концом мелового периода (примерно 80 млн. лет назад) и почти идеально подходит на роль звена, связующего муравьев с одиночными осами надсемейства Vespoidea. В его анатомии мозаично сочетаются муравьиные и осиные признаки, но таксономически вид относится к муравьям, поскольку обладает метаплевральными железами. С тех пор обнаружено множество других ископаемых экземпляров, помещенных в роды Sphecomyrma и Cretomyrma, которые объединяют в подсемейство Sphecomyrminae. Судя по этим находкам, в среднем - позднем мелу несколько видов примитивных муравьев было широко распространено по Лавразии - суперконтиненту, разделившемуся впоследствии на Евразию и Северную Америку. По меньшей мере 65 млн. лет назад они начали эволюционно дивергировать, адаптируясь к различным местообитаниям (экологическим нишам). Одновременно происходила дивергенция покрытосеменных, или цветковых, растений, становившихся доминантами сообществ, и скорее всего тогда же начали складываться их симбиотические взаимоотношения с муравьями.

ОБЩЕСТВЕННАЯ ОРГАНИЗАЦИЯ МУРАВЬЕВ

Насекомые, образующие крупные скопления, не обязательно являются эвсоциальными, т.е. истинно общественными. Социобиологи различают несколько уровней организации групповой жизни. Насекомых называют коммунальными, если особи одного поколения занимают одно составное гнездо, но каждая заботится только о собственном потомстве. У полусоциальных видов существует репродуктивное разделение труда между половой кастой и стерильными рабочими особями, однако все они относятся к одному поколению. В гнездах эвсоциальных таксонов, кроме различных каст, присутствует несколько рабочих поколений: старшие заботятся о своих младших братьях и сестрах. Эвсоциальность известна только в двух отрядах насекомых - у термитов (Isoptera) и перепончатокрылых (Hymenoptera). Все муравьи эвсоциальны, тогда как у пчел и ос встречаются разные уровни социальной организации. Муравьи в колонии делятся на четыре основные категории: 1) самцы и девственные самки, ожидающие брачного лета (который у них наступает не всегда); 2) плодущая царица, или матканекоторых случаях их несколько); 3) рабочие, иногда составляющие несколько субкаст; 4) расплод (яйца, личинки и куколки).

Самцы. Сообщество муравьев состоит в основном из самок. Немногочисленные самцы, за редким исключением, не принимают участия в жизни колонии. Они остаются в гнезде до брачного лета, а после него оказываются бездомными и не способными о себе заботиться. В принципе, их единственная функция - спаривание, и, выполнив ее, они быстро умирают. За небольшими исключениями, самцы развиваются из неоплодотворенных яиц, т.е. генетически гаплоидны - обладают только одним набором хромосом, достающимся им от материнской яйцеклетки.

Самки. Неразмножающиеся рабочие, как и плодущие царицы, по генотипу самки, однако их половая система обычно недоразвита. И те и другие развиваются из оплодотворенных яиц, т.е. являются диплоидными - у них два набора хромосом, полученных от сперматозоида и яйцеклетки. Эту на первый взгляд универсальную систему усложняет присутствие телитокии, т.е. развития самок из неоплодотворенных яиц, например у Pristomyrmex pungens, наличие диплоидных самцов, в частности у S. invicta и Formica exsecta, и откладка у некоторых видов жизнеспособных яиц рабочими особями. Хотя все оплодотворенные яйцеклетки по своему генетическому потенциалу способны развиться в цариц, у большинства видов основная их часть дает рабочих. Физиологические механизмы, определяющие, будет ли яйцеклетка оплодотворена и представитель какой касты получится в случае ее оплодотворения, окончательно не выяснены. Ясно только, что, в отличие от медоносных пчел, это определяют не выкармливающие личинок рабочие. В то же время развитие царицы зависит от особенностей питания и температурного режима. Известно также, что у родов Solenopsis, Monomorium и Myrmica некая пороговая пропорция девственных самок в гнезде подавляет их дальнейшее возникновение.

Рабочие. Каста рабочих обычно делится на три различающиеся размерами субкасты - мелких, средних и крупных особей. У большинства видов переход между ними постепенный, и это деление отчасти условно, но в некоторых случаях существуют две четко выраженные группы - мелкие и крупные рабочие. Первые у ряда видов в основном или полностью выполняют защитные функции и называются солдатами. У зерноядных форм они часто занимаются также помолом, т.е. очисткой семян от оболочек и измельчением их питательной части, эндосперма. Мелкие и средние рабочие выполняют различные задачи, которые меняются с возрастом. Сначала они работают няньками, кормя и чистя расплод, затем становятся строителями, расширяющими и ремонтирующими гнездо, а самые старыечаще прочих гибнущие) выполняют опасную роль фуражиров, т.е. собирают и приносят в муравейник еду. Объем рабочей силы, доступной для каждой конкретной задачи, оптимизирован - он устанавливается и поддерживается в наиболее эффективных пределах путем регулирования периода жизни, в течение которого особи выполняют ту или иную функцию.

Расплод. Цикл развития муравьев, как и у всех перепончатокрылых, включает полное превращение (голометаболию). Из яйца вылупляется личинка - единственная растущая стадия насекомого. Ее кутикула, т.е. наружный покров, растягивается только в определенных пределах, поэтому в ходе роста несколько раз сменяется - происходят линьки. Соответственно различаются несколько возрастных стадий личинки: первая - от вылупления до первой линьки, вторая - до второй линьки и т.д. Для муравьев типичны четыре личиночные стадии, которые завершаются окукливанием, хотя у некоторых видов их три или пять. Перед тем как превратиться в куколку, личинка прекращает питаться, отрыгивает меконий (содержимое своего кишечника) и, у большинства муравьев, окружает себя шелковым коконом (именно эти коконы называют в народе муравьиными яйцами). Внутри куколки происходит радикальная перестройка тела насекомого - безногая мешковидная личинка превращается в морфологически сложную взрослую особь (имаго). Все предшествующие стадии жизненного цикла муравьев объединяют под названием "расплод".

<a href='/dict/муравьи' class='wordLink' target='_blank'>МУРАВЬИ</a>

МУРАВЕЙ И ЕГО РАСПЛОД: на заднем плане - мешковидная личинка, которая в ходе метаморфоза, включающего стадию куколки (спереди), превращается во взрослое насекомое (имаго).

РАСПОЗНАВАНИЕ СОРОДИЧЕЙ

Сохранение сложной структуры муравьиной колонии, т.е. связи всех особей со своей группой и их способности распознавать прочих ее членов, обусловлено двумя феноменами - трофаллаксисом (обменом проглоченной жидкой пищей) и химической коммуникацией.

Трофаллаксис. В простейшем случае корм, например семена или кусочки насекомых, приносимый в гнездо фуражирами, распределяется между всеми рабочими. Трофаллаксис же - это специализированная форма такого обмена, для которого используется жидкая пища, накопленная в зобу муравьев. Оттуда она либо отрыгивается (стомодеальный трофаллаксис), либо экскретируется через анус (проктодеальный трофаллаксис). Хорошо изучены питание и трофаллаксис у вида S. invicta. Используя фильтр из тонких щетинок, рабочие отделяют в своей глотке пищевые частицы диаметром более 0,88 мкм от жидкости. Твердые частицы скапливаются в особом кармане - инфрабуккальной (подротовой) полости, где склеиваются в комок. Затем муравей "выплевывает" его и скармливает личинке четвертого возрастанекоторые виды просто выбрасывают). Мандибулы (жвалы, или нижние челюсти) этой личинки склеротизированы (покрыты твердым покровом); она пережевывает ими и съедает пищевой комок, удерживая его в преподиуме ("хлебной корзине") - своего рода кормушке, образованной жесткими щетинками на ее "груди". Все прочие жизненные стадии этого муравья питаются только жидкой пищей. Личинкам первых трех возрастов рабочие отрыгивают ее в отфильтрованном виде из зоба, пропуская небольшую часть его содержимого в среднюю кишку для переваривания и поддержания собственной жизни. У некоторых видов муравьев отдельные рабочие специализируются на запасании корма. Наиболее выражена такая специализация у форм, питающихся главным образом нектаром и "медвяной росой", выделяемой равнокрылыми - тлями и червецами. Накапливающих сладкую пищу муравьев выделяют в особую касту "медовых бочек". Они хорошо известны у вида Myrmecosystis minimus с юго-запада США. Раздувшееся брюшко его "медовых бочек" достигает размера горошины. Они не способны двигаться и висят на потолке гнездовых галерей, крепко прицепившись к нему ногами. Голодные муравьи и другие населяющие муравейник членистоногие заставляют их (как и обычных рабочих) поделиться пищей, как бы щекоча нижнюю губу особи-накопителя своими антеннами.

Химическая коммуникация. Способность муравьев отличать членов собственной колонии от всех прочих насекомых - основа их общественной жизни. При встрече муравьи ощупывают (фактически - обнюхивают) друг друга своими антеннами, проводя безошибочную идентификацию. Муравья, пытающегося проникнуть в гнездо муравьев другого вида, хозяева немедленно убивают. Исход встречи с особями своего вида из других колоний варьирует от постепенного признания до смертельной схватки. В первом случае новичка могут изредка подкармливать, пока он не приобретет запах хозяев. Рабочие рода Solenopsis из моногинных (т.е. содержащих одну царицу) колоний всегда убивают чужих рабочих и цариц, но легко "усыновляют" расплод. Те же муравьи из полигинных колоний, в которых цариц несколько, относятся терпимо и к имаго. Несмотря на высоко развитую способность муравьев различать своих и чужих, их вводит в заблуждение запах многих других членистоногих, которые поселяются в муравейнике, становясь муравьиными симбионтами и даже нахлебниками. По-видимому, у каждой колонии есть неповторимый запах, свойственный всем ее взрослым особям и обусловленный специфической смесью углеводородов, секретируемых их кутикулой. Различия в составе этой смеси могут объясняться, по крайней мере частично, неодинаковым рационом насекомых.

Феромоны. У муравьев высоко развита коммуникация с помощью особых сигнальных веществ. Те из них, которые используются в рамках одного вида, называются феромонами. Так, испуганный муравей предупреждает прочих членов колонии об опасности, выделяя феромон тревоги. Все уловившие его запах или вкус особи того же вида также теряют покой. Поднявший тревогу муравей может одновременно выделить ориентационный феромон, привлекающий к нему сородичей и тем самым помогающий им организовать оборону. Явившиеся "по вызову" рабочие, ознакомившись с первичным стимулом (источником опасности), выделяют такие же феромоны, усиливая первоначальный сигнал, однако особи, еще не столкнувшиеся непосредственно с этим раздражителем, сами тревожных сигналов не посылают. Когда опасность миновала, химическое оповещение о ней прекращается и соответствующее вещество вскоре рассеивается в воздухе, прекращая оказывать возбуждающее действие. Феромоны используются также для "провешивания" троп. Длинные цепочки муравьев, снующих взад-вперед между гнездом и источником пищи, идут по химическому следу, проложенному первыми нашедшими данный корм фуражирами и закрепленному их последователями. Когда еда кончается, фуражиры перестают выделять соответствующий феромон, их запах над тропой быстро выветривается, и на нее больше не обращают внимания. Кстати, муравьи идут не по жидкому следу на земле, а ориентируются по шлейфу распространяющихся в воздухе паров специфического вещества, улавливая градиент их концентрации, который и позволяет выбирать нужное направление. Феромоны очень эффективны в том смысле, что требуемую реакцию вызывают минимальные их количества. Например, 1 мг следового феромона вида Atta texana при оптимальном распределении хватило бы на "провешивание" тропы длиной 120 000 км! Другие феромоны используются для распознавания царицы и расплода, их кормления и чистки, а также для простого привлечения друг к другу рабочих особей. Приведенные выше примеры относятся к т.н. феромонам-релизерам, запускающим специфическую поведенческую реакцию у воспринимающего их организма. Другая категория феромонов называется праймерами - они вызывают перестройку не поведения, а физиологического состояния. Так, праймеры, выделяемые уже находящимися в гнезде девственными царицами, подавляют появление новых фертильных самок, а праймеры размножающейся царицы стимулируют развитие стерильности у рабочих особей. Еще один праймер тормозит деалацию, т.е. сбрасывание крыльев у девственных цариц до брачного лета, - освободиться от них они могут, только достаточно удалившись от гнезда, а значит, и от источника соответствующего феромона.

Другие сигнальные вещества. Выделяют еще две категории сигнальных веществ. Алломоны используются для межвидовой коммуникации и полезны только тому, кто их выделяет. К ним относятся, например, химические приманки для добычи. Кайромоны также служат для межвидового общения, но полезны, наоборот, воспринимающему их организму. Так, муравьи идентифицируют по кайромонам других насекомых.

Некрофорез. Муравьи обязательно убирают из гнезд разлагающиеся остатки, в том числе мертвые тела своих сородичей. Стимуляцию некрофореза (переноски трупов) нельзя назвать коммуникацией в строгом смысле слова, однако и она связана с хеморецепцией. Некрофорическое поведение у муравьев запускается олеиновой кислотой - одним из многих продуктов распада насекомых. Особь, испачканная этим веществом, с точки зрения других рабочих мертва, даже если она активно сопротивляется "выносу тела".

Нехимическая коммуникация. Хотя коммуникация муравьев осуществляется главным образом с помощью сигнальных веществ, эти стимулы по сравнению с физическими (например, слуховыми и зрительными) обладают весьма существенным недостатком - они медленно исчезают. Физические сигналы могут использоваться муравьями в сочетании с феромонами для модуляции (тонкой настройки) смысловой нагрузки последних. Установлено, что муравьи общаются с помощью осязания (тактильных стимулов), например при выпрашивании еды, и звуков. Существование зрительной коммуникации у них не установлено, хотя у многих муравьев глаза хорошо развиты и видят они прекрасно (рабочие особи некоторых видов слепы). Муравьи почти глухи к распространяющимся в воздухе звуковым волнам, однако весьма чувствительны к вибрациям твердых тел. Сами они вызывают такие колебания путем стридуляции или постукивания. Стридуляция, т.е. генерирование звуков за счет трения друг о друга двух поверхностей, производится муравьем при неоднократном поднимании и опускании брюшка, в результате чего кутикулярный "смычок" (обычно на заднем сегменте стебелька) движется взад-вперед по кутикулярной "струне" (обычно на передней поверхности брюшка). Постукивание свойственно, например, муравьям-древоточцам (род Camponotus), которые барабанят по деревянным стенкам своих гнездовых камер и туннелей жвалами или брюшком. В зависимости от вида вибрационная коммуникация служит для поднятия тревоги, мобилизации помощников, прекращения спаривания (самка сигнализирует, что уже оплодотворена) или модулирования действия феромонов.

Железы. Сигнальные вещества продуцируются специальными железами, которых у разных видов муравьев обнаружено не менее десяти. Эти железы в зависимости от рода насекомого варьируют по форме, функции и количеству и никогда не встречаются сразу все у одного вида. Часто их бывает у особи шесть, но функции определяются ее таксономической принадлежностью. Уже упоминавшиеся метаплевральные железы обычно секретируют антибиотические вещества, но иногда выделяют феромоны тревоги и репелленты, используемые для защиты от врагов. Поскольку эти железы распространены среди муравьев очень широко и обычно вырабатывают антимикробные соединения, например фенилуксусную кислоту, создается впечатление, что борьба с микроорганизмами крайне важна для муравьев, живущих в таких местообитаниях, как почва и гниющие листья, которые буквально кишат бактериями и грибами. В то же время метаплевральные железы отсутствуют у некоторых древесных муравьев, местообитания которых "чище", а также у ряда муравьев, занимающихся социальным паразитизмом, и самцов многих видов. Пигидиальные железы открываются сзади на верхней стороне брюшка. У некоторых видов они вырабатывают феромоны тревоги и/или репелленты, используемые для защиты от врагов. У других они выделяют следовые феромоны или вещества, стимулирующие "тандемный бег" - примитивную форму следования друг за другом. Стернальные железы открываются на нижней стороне брюшка около ануса. Это неоднородная группа органов, обычно продуцирующих следовые и призывные феромоны. Мандибулярные железы открываются на внутренней стороне жвал. Их секреты многочисленны, разнообразны и зависят от вида насекомых, но в большинстве случаев служат главным образом для поднятия тревоги и защиты. У некоторых муравьев они мелкие и выделяют в основном мощные феромоны тревоги; у других крупные и образуют токсины. Мандибулярные железы рабочих Camponotus saundersi сильно увеличены и тянутся через все тело. Если схватить такого муравья, его брюшко резко сократится и лопнет, разбрызгав кругом липкий защитный секрет этих желез, а сам муравей погибнет, так что его реакцию можно назвать суицидальной. Дюфурова железа мелкая; она тесно связана с ядовитой железой и секретирует разнообразные углеводороды, спирты, кетоны, сложные эфиры и лактоны. Специфические функции этих веществ большей частью неизвестны, но в целом они участвуют в поднятии тревоги. Ядовитая железа продуцирует яд, используемый для нападения и защиты. Однако у некоторых видов определенные компоненты этого токсина служат феромонами тревоги и привлечения сородичей, а у других он выполняет роль репеллента. Муравьи рода Solenopsis применяют свой яд как антимикробное дезинфицирующее средство: они распыляют его в виде аэрозольной взвеси, покачивая вверх-вниз брюшком. Когда-то считалось, что все муравьи выделяют ядовитую муравьиную кислоту (откуда и ее название), однако сейчас ясно, что это свойственно только представителям подсемейства Formicinae. Как ни странно, у более примитивных по строению муравьев, например бродячих, ядом служит не эта простейшая органическая кислота, а белки, среди которых обнаружены разрушающие нервную систему нейротоксины и вызывающие неизбирательный распад тканей гистолитики. У Solenopsis яд содержит алкалоиды, что вообще не свойственно животным, и пептиды (мелкие белковоподобные молекулы), являющиеся аллергенами.

ФУНКЦИОНИРОВАНИЕ КОЛОНИИ

Основание колонии. Жизненный цикл муравьиной колонии обычно начинается с брачного лета самцов и девственных самок. Однако у видов Formica такого лета не происходит, и спариваются они на земле. У некоторых полигинных муравьев одна или несколько фертильных самок, покинув материнское гнездо вместе с группой рабочих, строят новое гнездо. Этот процесс называется роением, или почкованием. Чаще всего почкование лишь дополняет брачный лет, но некоторые паразитические или примитивные виды с бескрылыми самками основывают колонии только таким способом. Летающие самцы таких муравьев реагируют на "призывы" самок, сидящих около входа в гнездо и выделяющих половые феромоны-аттрактанты. В областях с умеренным климатом брачный лет происходит в теплые весенние дни, обычно после дождя. В тропиках его, вероятно, стимулирует начало сезона дождей. У каждого вида брачный лет приурочен к определенному времени суток и контролируется биологическими часами; например у Atta texana он происходит с 3.00 до 4.15, а у Myrmica americana - с 12.30 до 16.30. Самки видов, живущих маленькими колониями, спариваются только один раз, а у видов с крупными колониями их оплодотворяет несколько самцов (полиандрия) - так они получают достаточно спермы для оплодотворения всех яиц, которые будут отложены в течение жизни. (За год царица откладывает от 400 яиц у Myrmica, до 50 млн. у Dorylus nigricans.) В отличие от спермы млекопитающих, которая в половых путях самки жизнеспособна обычно лишь несколько дней, муравьиная хранится в сперматеке (семеприемнике) царицы пять и более лет. Самцы способны лишь к единственному в жизни спариванию. Они выходят из куколки, уже выработав весь возможный запас спермы (их семенники к этому моменту дегенерировали), который тратится за один прием. Спарившись, самка "спускается с небес на землю" и, поскольку праймер, подавляющий деалацию, больше не действует, сбрасывает крылья. После этого она прячется в подземную камеру и приступает к основному в жизни занятию - откладке яиц. Чтобы выжить, самка-основательница должна вырастить достаточное количество рабочих нужного размера, которые возьмут на себя функции фуражировки, ухода за расплодом и расширения гнезда. У некоторых видов царицы поначалу занимаются сбором пищи, однако это опасно, так как приходится покидать гнездо. У других муравьев они остаются в нем, поддерживая собственное существование и выращивая первых рабочих за счет запасов своего жира и подвергающихся гистолизу (разжижению) летательных мышц. Царица кормит личинок специальным слюнным секретом и/или особыми "кормовыми" яйцами. Независимо от того, занимается она фуражировкой или нет, количество доступного корма сначала весьма ограниченно, поэтому между числом и размером первых рабочих ищется компромисс. Все они мелкие или даже карликовые и составляют своего рода временную субкасту. Иногда гнездо основывают несколько занимающихся фуражировкой или не покидающих своих камер цариц, однако, если вид не полигинный, рабочие в конечном итоге оставляют в живых только одну из них. Такие колонии называются плеометрозными - в отличие от гаплометрозных, основанных одной царицей. В гнездах родов Camponotus и Iridomyrmex иногда живут несколько цариц, которые "не терпят" друг друга и занимают внутри муравейника отдельные территории. Такая ситуация называется олигогинией - в отличие от полигинии и моногинии (присутствия только одной плодущей самки).

Эргономическая стадия. Когда первые мелкие рабочие приступают к своим обязанностям, колония вступает в стадию экспоненциального роста, называемую также эргономической. Теперь молодая царица полностью посвящает себя откладке яиц. Муравьям несвойственны развлечения, но жизнь в колонии не складывается исключительно из работы. В любой отдельно взятый момент трудятся лишь немногие рабочие особи. Уровень общей активности колонии, по-видимому, циклически колеблется, но даже в периоды ее пика многие муравьи чистятся, стоят на месте или слоняются без дела, ничем конкретным не занимаясь. Возможно, это отдыхающая смена. Младшие рабочие заботятся о расплоде и царице: они их кормят, чистят (вылизывают) и дезинфицируют антибиотическими выделениями метаплевральных желез или ядом. Кроме того, они сортируют расплод по жизненным стадиям (яйца, личинки, куколки), а у некоторых видов даже по возрастным стадиям личинок. Они (как и личинки) способны отличать кормовые яйца, которыми питается расплод, от фертильных, а рабочие рода Monomorium даже могут определить, из каких вылупятся самцы, а из каких - самки. Иногда они переносят расплод в участки муравейника с оптимальными температурой и влажностью или прячут его в глубь гнезда при появлении опасности. Они помогают личинкам линять, а имаго - выходить из куколок и коконов. В обслуживании колонии могут участвовать и личинки. Сообщалось, что у некоторых видов они служат специализированной "пищеварительной" кастой и отрыгивают частично переваренный корм или продукты биосинтеза, а у муравьев-портных выделяют шелк для строительства гнезда. Поскольку большинство муравьев изменяет местоположение гнезда в зависимости от погодных условий, нарушений или доступности пищи, строительные работы практически никогда не завершаются. Муравьи-листорезы могут оставаться в одном гнезде лет десять - это огромное сооружение, достигающее в глубину и ширину 6 м и требующее значительных усилий по уходу и ремонту. Эмиграция начинается с рабочих и напоминает их циркуляцию между муравейником и источником пищи. Отличие лишь в том, что в движение приходят все члены колонии (расплод переносят жвалами). Разведчики, отыскав подходящее место, феромонами призывают к себе остальных и указывают им дорогу. Фуражировка - дело опасное. Фуражиры всех муравьев, кроме бродячих, выходят на поиски пищи в одиночку и могут столкнуться с множеством хищников (прежде всего - пауков и мух-ктырей), враждебно настроенных муравьев собственного и других видов, а также с неблагоприятными погодными условиями. Продолжительность жизни фуражира измеряется днями; это работа для самых старых рабочих, которым "все равно скоро умирать". Как и для брачного лета, у каждого вида муравьев есть четкий график фуражировки, несколько меняющийся в голодные периоды. Разные часы сбора пищи помогают свести к минимуму число конфликтов и оптимизировать разделение ресурсов между таксонами, занимающими одно и то же местообитание. Одиночные фуражиры расползаются от гнезда к источникам корма в пределах колониальной территории. В зависимости от вида они просто движутся в знакомом направлении, следуют по подземным туннелям или по следу, оставленному феромонами на поверхности. В местах фуражировки они ориентируются по заученным зрительным стимулам. Показано, что муравьи способны запоминать путь в лабиринте, где приходится выбирать из шести направлений, и хранить эту информацию в течение недели.

Зрелая фаза. Колония становится зрелой, когда в ней появляются дочерние репродуктивные касты. Между ее окончательным размером и климатическими условиями корреляции не отмечено; некоторые самые крупные муравейники существуют в средней полосе. Продолжительность жизни моногинной колонии в принципе такая же, что и у ее царицы, а у полигинной (по крайней мере там, где спаривание происходит внутри гнезда) теоретически неограниченна. Царица живет многие годы (18-20 лет у Lasius и Formica, менее 10 у Solenopsis), рабочие - намного меньше. Срок жизни самцов самый короткий - меньше года, считая от откладки яйца до брачного лета.

Гнездо. Гнезда муравьев совершенно не такие, как у медоносных пчел и общественных ос. Это не симметричные структуры из геометрически правильных ячеек, а сложные сети из неодинаковых по размеру туннелей и камер. Будь это подземные это лабиринты или, у древесных видов, "картонные" сооружения из растительных волокон и частиц почвы - общее устройство их одинаково. В гнезде у муравьев должно быть тепло и влажно. Насыпаемые видами Solenopsis земляные холмики служат для улавливания солнечного тепла и функционируют как миниатюрные парники. Некоторые муравьи собирают мелкие камешки, кусочки древесного угля и мертвых растений и укладывают их на поверхность гнезда в качестве солнечных коллекторов. Муравьи строят гнезда в местах, выбираемых, по крайней мере частично, с учетом их теплового режима. Например, в прохладную погоду их может привлечь прогреваемая солнцем скала. Зимой виды Solenopsis сосредоточивают свои гнезда на южных склонах насыпей идущих в широтном направлении дорог и возводят высокие холмики; летом они перемещаются на северную сторону насыпей, а холмики строят низкие или вообще их не возводят. Муравьи могут отчасти оптимизировать температурные условия своего существования, перемещаясь внутри гнезда вверх-вниз или даже переходя в гнездо-спутник. Рабочие ряда пустынных видов, напившись воды, отрыгивают ее в муравейнике для поддержания необходимой влажности.

<a href='/dict/муравьи' class='wordLink' target='_blank'>МУРАВЬИ</a>

ЖЕЛТЫЙ САДОВЫЙ ЛАЗИЙ строит земляные холмики на полях и прокапывает ходы к корням кукурузы. С окружающих растений муравьи собирают тлей и переносят их на эти корни. Тли питаются соком кукурузы, а лазии - выделяемой тлями падью (медвяной росой).

Симбиоз (сожительство) - это тесная взаимосвязь между представителями разных видов, из которых по крайней мере один обойтись без нее не может. Различают три типа симбиоза. Паразитизм выгоден одному из партнеров (паразиту) и вреден другому (хозяину). Комменсализм полезен одному симбионту, но не отражается на другом. Мутуализм - это взаимовыгодное сосуществование. Все три типа взаимоотношений известны среди как животных, так и растений, хотя между разными видами муравьев мутуализма не отмечено.

Паразитизм. Один из примеров паразитизма у муравьев - заражение некоторых их видов грибами рода Cordyceps. По крайней мере некоторые таксоны Cordyceps продуцируют антибиотик кордицепин, который предохраняет источник их питания (труп муравья-хозяина) от бактерий и других грибов, пока этот Cordyceps не завершит свой жизненный цикл. Паразитоидами называют насекомых, паразитирующих только в неполовозрелом состоянии (имаго от хозяев не зависят), причем пораженный ими организм продолжает жить, пока не закончится развитие их личинок. Все наездники-эвхаритиды (Eucharitidae) - паразитоиды муравьев, причем каждый их вид вступает в симбиоз только с одним видом-хозяином. Жизненный цикл этих перепончатокрылых демонстрирует высокоразвитую химическую мимикрию. Наездник откладывает яйца на часто посещаемое муравьем растение. Вылупляющиеся личинки, называемые планидами, прикрепляются к проходящим мимо рабочим муравьям и переносятся ими в гнездо - к муравьиным личинкам. Кормятся планиды в основном куколками хозяев. Муравьи не способны отличить паразитоидов от собственного расплода, поскольку пахнут они точно так же (химическая мимикрия): у личинок наездников одинаковая с хозяевами смесь кутикулярных углеводородов, что доказывает сравнение полученных при газовой хроматографии "отпечатков пальцев" (картин распределения в ад

Полезные сервисы

естественный отбор

Энциклопедический словарь

Есте́ственный отбо́р - процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных. Естественный отбор - следствие борьбы за существование; обусловливает относительную целесообразность строения и функций организмов; творческая роль естественного отбора выражается в преобразовании популяций, приводящем к появлению новых видов. Понятие о естественном отборе как основном движущем факторе исторического развития живой природы введено Ч. Дарвином.

* * *

ЕСТЕСТВЕННЫЙ ОТБОР - ЕСТЕ́СТВЕННЫЙ ОТБО́Р, основной фактор эволюции организмов, значение и механизм действия которого были вскрыты Ч. Дарвином (см. ДАРВИН Чарлз Роберт). Дарвин не был первым, кто открыл естественный отбор. До него о дифференциальной (различной) смертности и дифференциальном выживании организмов писали, по меньшей мере, дважды. Однако Дарвин был первым, кто понял, что естественный отбор является основной движущей силой, фактором эволюции органического мира. В своей знаменитой книге «Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь», впервые изданной в 1859 году, он назвал естественным отбором «принцип сохранения, или переживания наиболее приспособленных» организмов. К аналогичным взглядам одновременно и независимо пришел английский натуралист А. Уоллес (см. УОЛЛЕС Алфред Рассел), признававший приоритет Дарвина.

Логика рассуждений Дарвина была безупречна: если среди организмов данного вида или разновидности каждая особь чем-то отличается от всех других особей, то есть существует индивидуальная изменчивость, то среди этих организмов всегда существуют и более приспособленные, и менее приспособленные к условиям окружающей среды. В борьбе за существование (см. БОРЬБА ЗА СУЩЕСТВОВАНИЕ) более приспособленные чаще выживают - подвергаются естественному отбору, а менее приспособленные чаще гибнут. Это происходит в каждом поколении, а в чреде поколений полезные изменения накапливаются, организмы постепенно становятся непохожими на своих предков. В конечном итоге, благодаря естественному отбору возникают новые виды.

Сформулированная Дарвином теория, объяснившая действием естественного отбора и приспособленность организмов к условиям их жизни, и многообразие видов, составляющих биосферу, полностью сохранила свое значение. Все попытки опровергнуть ее, а они были многочисленными и с позиций отрицания самого явления эволюции, и с позиций отрицания значения естественного отбора в этом процессе, до сих пор не увенчались успехом.

Однако со времени первой публикации «Происхождения видов…» биология ушла далеко вперед. Развивалась и теория естественного отбора, особенно в связи с огромными достижениями генетики в первой трети 20 века. Теперь известно, как возникает наследственная индивидуальная изменчивость, как происходит борьба за существование, в каких условиях и в каком направлении действует естественный отбор. Правда, эволюция - процесс медленный. Формирование нового вида занимает десятки - сотни тысяч лет. Поэтому наблюдать естественный отбор почти невозможно. В биологической литературе мало исследований, в которых непосредственно прослежен этот процесс. Тем не менее результаты экспериментов, анализ причин дифференциальных смертности и выживания организмов в природе, реконструкции, в которых об отборе судят по его результатам, постепенно сформировали современную теорию естественного отбора.

Наследственная изменчивость - материал для отбора

Материалом для естественного отбора служит наследственная изменчивость, а источником наследственной изменчивости являются мутации - наследуемые изменения генетического материала. Для эволюции имеют значение только те мутации, которые возникают в половых клетках, так как только они передаются следующему поколению. Большинство вновь возникающих мутаций репарируются - исправляются ферментными системами клетки. Однако часть из них остается - ферменты не «узнают» их. Такие мутации относительно редки. В среднем они возникают с частотой одна мутация на 1000000 гомологичных генов (1,10-6). Однако геном, например, человека содержит не менее 30000 структурных генов, то есть генов, кодирующих синтез белков. Количество регуляторных генов, по-видимому, не меньше. Поэтому в пересчете на геном мутации не так уж редки. Главное же в том, что мутации накапливаются. Большинство вновь возникающих мутаций рецессивны, т. е. их действие подавляют доминантные, «нормальные» гены. Поэтому рецессивные мутации сохраняются в генофонде популяции, не проявляясь в фенотипе и не влияя на приспособленность организмов. Поскольку мутационный процесс идет непрерывно, число рецессивных мутаций в генофонде увеличивается от поколения к поколению.

Большинство мутаций, если они проявляются в фенотипе, снижают приспособленность организмов. Они вызывают различные нарушения обмена веществ или морфологические изменения - уродства. Однако часть фенотипических проявлений мутаций может оказываться полезной при изменении условий существования популяции. Например, у комнатной мухи известна мутация, снижающая скорость проведения нервных импульсов. В гомозиготном (см. ГОМОЗИГОТА)состоянии такая мутация летальна. Гетерозиготные мутантные мухи проигрывают по приспособленности нормальным, но жизнеспособны, так как нормальный аллель частично компенсирует вредный эффект мутации. Однако, если на популяцию мух, в генофонде которой есть эта мутация, воздействуют инсектицидом нервно-паралитического действия, мухи, гетерозиготные по этой мутации, оказываются более жизнеспособными, чем нормальные, - они выживают. Медленное прохождение нервных импульсов у таких мух ослабляет действие яда. Поэтому естественный отбор поддерживает высокую частоту этой мутации во многих популяциях мух. Аналогично, во многих популяциях людей, живущих в районах, где свирепствует малярия, распространена мутация серповидноклеточной анемии (см. СЕРПОВИДНОКЛЕТОЧНАЯ АНЕМИЯ). Эта мутация снижает сродство гемоглобина к кислороду и в гомозиготном состоянии тоже летальна, причем дети погибают в раннем возрасте. Однако, в гетерозиготном состоянии эта мутация, хотя и вызывает анемию, поддерживается естественным отбором. Одним из многих ее проявлений является изменение формы эритроцитов. В норме они округлые, а при серповидноклеточной анемии похожи на молодой месяц. Плазмодии - возбудители малярии - не могут проникнуть в такие эритроциты, и люди не болеют малярией. За приспособленность гетерозигот популяция «платит» детской смертностью гомозигот по этой мутации.

Отбор по генетически детерминированным признакам

Случаи, когда материалом естественного отбора служат непосредственно мутации, относительно редки. Большинство признаков многоклеточных организмов зависит от действия многих генов - они полигенны. Грубо говоря, нет гена формы носа, но есть много генов, влияющих на его форму. Большинство мутаций проявляется в фенотипе в сочетании с действием многих других генов, причем генов, уже прошедших естественный отбор, то есть полезных и нормальных. Это ослабляет вредное действие мутаций и предотвращает их элиминацию (выбраковку) из генофонда вместе с гибелью менее приспособленных организмов. Такие мутантные гены включаются в процесс естественного отбора и в череде поколений продолжают комбинироваться с другими генами таким образом, что возникающие комбинации повышают приспособительное значение признаков фенотипа. Параллельно, благодаря влиянию других генов, первично рецессивный мутантный ген постепенно становится доминантным и распространяется в генофонде как нормальный наследственный элемент особей данной популяции.

Известным примером подобного действия естественного отбора является так называемый индустриальный меланизм у бабочки березовой пяденицы. Эта бабочка широко распространена в Европе и Северной Америке. Бабочки активны в сумерках, а день проводят, сидя на коре берез. Крылья их имеют покровительственную окраску: они бледно-серые с разводами, что имитирует цвет бересты, заросшей лишайниками. Такая окраска защищает бабочек от насекомоядных птиц - синиц, поползней и др. История эволюции окраски английских популяций березовой пяденицы началась в 1735 году, когда англичане впервые в мире применили каменный уголь для выплавки чугуна. Промышленная копоть во влажном климате Англии оседала на коре берез. Лишайники постепенно погибали, а береста становилась сначала серой, а затем черной. Пяденицы на темном фоне стали легкой добычей птиц. В 1848 году английские энтомологи-любители обнаружили и поместили в свои коллекции первых березовых пядениц с темноокрашенными крыльями. Такие бабочки в окрестностях Манчестера составляли не более 1% от численности популяции. К 1960-м годам промышленная копоть покрыла почти все леса Великобритании, и темные пяденицы постепенно вытеснили светлых. Светлая форма преобладает только там, где атлантические циклоны уносят копоть на восток. В результате серии экологических экспериментов и наблюдений было доказано, что птицы действительно чаще съедают тех бабочек, окраска которых контрастирует с фоном - корой дерева. В задымленном лесу близ Бирмингема выпустили одновременно 50 светлых и 50 темных бабочек и затем посчитали, сколько бабочек съели птицы. Оказалось, что было съедено 43 светлых и 15 темных. Показательно, что, хотя темная окраска защищает бабочек, эта защита не абсолютна. Более высокая приспособленность не гарантирует выживания, а только повышает его вероятность. Естественный отбор - вероятностный, а не детерминистический процесс.

Были проведены и генетические опыты, показавшие, что темная окраска крыльев доминантна по отношению к светлой и определяется, на первый взгляд, одним геном. Во втором поколении, когда происходит расщепление генов, строго выдерживается соотношение: 3 черных к 1 светлой, как в знаменитых опытах Г. Менделя (см. МЕНДЕЛЬ Грегор Иоганн) по наследованию признаков у гороха. Казалось бы, что у пядениц возникла полезная доминантная мутация, которая затем распространилась во многих популяциях этой бабочки. Однако, когда для проверки этого предположения ученые скрестили английских черных бабочек со светлыми бабочками из Канады, результат оказался неожиданным. В первом поколении окраска бабочек была промежуточной - серой, а расщепление во втором поколении дало соотношение, характерное для неполного доминирования: 1 черная, 2 серые, 1 светлая. Это означает, что черная окраска - результат не единичной доминантной мутации, а следствие комбинирования генов, в ходе которого черная окраска стала доминантной, а исходная светлая - рецессивной. Бабочки, сохранившиеся в коллекциях энтомологов с середины прошлого века, имеют не столь темную окраску, как современные. Это указывает на то, что потемнение бабочек происходило постепенно, в череде поколений. Таким образом, преобразование генетического определения признаков фенотипа - это сложный и постепенный процесс, основанный на комбинировании генов под действием естественного отбора.

Причины отбора - гибель или устранение от размножения

Естественный отбор не обязательно связан с гибелью менее приспособленных организмов. У многих насекомых, пауков, крабов и позвоночных существуют сложные ритуалы поведения, обуславливающие неслучайный выбор брачного партнера, место данного животного в иерархии главенства/подчинения в стае или стаде, распределение территории индивидуальных участков для выведения потомства. Все эти эколого-этологические системы направлены на повышение надежности размножения, а тем самым - на устранение от размножения тех особей, которые не способны конкурировать с элитой популяции, чья относительная приспособленность выше средней приспособленности особей данной популяции.

Устранение от размножения не менее эффективно, чем гибель менее приспособленных организмов, так как неразмножающиеся особи не передают свои гены следующему поколению. Кроме того, дифференциальное размножение предоставляет животным два преимущества. Во-первых, селективность (избирательность) скрещиваний означает более всестороннюю «оценку» приспособленности. Для успеха размножения важно не только быть приспособленным по отношению к внешним для популяции экологическим факторам - успешно добывать пищу, избегать врагов и т. п., но и быть в этих отношениях лучше своих собратьев. Во-вторых, селективность скрещиваний уменьшает вредное для естественного отбора значение случайной гибели. Неразмножающаяся часть популяции, так называемый популяционный резерв, оказывается в худших условиях существования, чем репродуктивная часть популяции. Неразмножающиеся особи не имеют индивидуальных участков и вынуждены перемещаться по территории, становясь заметными для хищников. В стаях или стадах животные, занимающие низкое положение в иерархии, третируются более высокоранговыми особями, что вызывает у первых стресс и затрудняет им доступ к источникам пищи. В результате организмы, обладающие более низкой относительной приспособленностью, выполняют роль буфера, смягчающего неблагоприятные воздействия среды на репродуктивную часть популяции.

Механизмы устранения от размножения, то есть селективного скрещивания более приспособленных, видоспецифичны, а потому очень многообразны. В простейшем случае, названном Дарвином половым отбором (см. ПОЛОВОЙ ОТБОР), они приводят к выработке вторичных половых признаков (см. ВТОРИЧНЫЕ ПОЛОВЫЕ ПРИЗНАКИ). Яркая окраска самцов и сложные ритуалы ухаживания у многих птиц, гигантские размеры и драчливость самцов котиков и сивучей, кваканье лягушек и любые другие способы продемонстрировать самке свою привлекательность - результаты полового отбора.

Обычно устраняются от размножения молодые особи, часто даже после того, как они достигли половой зрелости. Например, у морских котиков половая зрелость наступает на втором году жизни, а к размножению секачи приступают на шестом году. Часть неразмножающихся молодых животных замещает постепенно уходящих из жизни иерархов, часть гибнет, а часть так и остается в популяционном резерве. Например, у ворон такой резерв составляет от 20 до 30% общей численности популяции. При этом старые вороны в возрасте 6-7 лет, из года в год занимающие свой гнездовой участок, лучше выкармливают птенцов, чем молодые 2-3-летние, только что занявшие свой гнездовой участок. Установлено, что старые вороны в Наурзумском заповеднике (Казахстан) приносят корм птенцам в среднем 64 раза в день, а молодые - не более 50 раз.

Пример с воронами показывает, насколько важна для естественного отбора не только та изменчивость, которая непосредственно детерминирована генетическими особенностями организмов, но и широта нормы реакции генотипов - возможности приобретения индивидуального опыта, сложные поведенческие реакции, физиологические процессы, при помощи которых организм адаптируется к изменениям условий среды, например, выдерживает голод или зимние холода.

Отбор по признакам с широкой нормой реакции

Норма реакции - диапазон изменений фенотипа при неизменном генотипе - важнейший способ адаптации организмов к изменениям условий их существования. Сами по себе изменения в пределах нормы реакции не наследуются, но способность к этим изменениям наследственно обусловлена. Например, яркость летнего загара у людей зависит от того, сколько времени человек провел на солнце, но смуглые брюнеты загорают быстрее и загар у них темнее, чем у светлокожих блондинов. Норма реакции, как и ее изменение, тоже вырабатывается под действием естественного отбора. Однако, механизм действия естественного отбора на подобные пластичные признаки фенотипа отличается от механизма его действия на признаки, жестко детерминированные генами, такие, например, как цвет крыльев у березовых пядениц. Если изменение условий существования не выходит за пределы нормы реакции большинства особей популяции, то организмы и приспосабливаются к нему в пределах своих индивидуальных возможностей, без изменения генетического состава популяции. Отбор вступает в действие несколько позже - он отбирает и комбинирует гены таким образом, чтобы обеспечить надежное, не зависящее ни от случайных колебаний среды, ни от случайных наследственных отклонений (мутаций), проявление нормы реакции в новых условиях.

Одним из немногих исследованных примеров подобной адаптации может служить приспособление лесных мышей к жизни в высокогорьях Кавказа. Количество гемоглобина в крови у сухопутных млекопитающих соответствует парциальному давлению кислорода в местах их обитания. На равнине гемоглобина меньше, в горах, при пониженном атмосферном давлении, его становится больше. Количество гемоглобина - физиологический признак с широкой нормой реакции. Именно это свойство используют альпинисты, проходя адаптацию в горах перед высотными восхождениями. Через несколько дней пребывания в высокогорье количество гемоглобина в их крови увеличивается, что обеспечивает возможность подняться еще выше. То же самое происходит и с любыми другими млекопитающими при стойком понижении атмосферного давления.

Лесные мыши живут и на равнине, в Краснодарском крае (300 м над уровнем моря), и на высоте 1600-1700 м в горах. У равнинных мышей количество гемоглобина на 9-12 % ниже, чем у горных. При перемещении равнинных мышей в горы (или при помещении их в барокамеру) после 5-6 дней акклимации количество гемоглобина у них повышалось, но это повышение не превышало 7% и не достигало уровня, свойственного горным мышам. Аналогично, при переселении горных мышей на равнину, количество гемоглобина в их крови снижалось, но оставалось на 2-3% выше, чем у равнинных мышей. Другими словами, при освоении лесными мышами высокогорья у них произошел генетически детерминированный сдвиг нормы реакции по количеству гемоглобина в крови. Объяснить это изменение можно только естественным отбором на адаптацию к недостатку кислорода.

Формы естественного отбора

Естественный отбор далеко не всегда приводит к возникновению новых адаптаций. Достаточно часто он лишь сохраняет уже существующие приспособления организмов (и в этом случае действует как стабилизирующий отбор) или, меняя свое направление по сезонам года, в зависимости от циклических изменений состава пищи или врагов и паразитов, приводит не к выработке новых приспособлений, а только к циклическим изменениям состава популяций.

Например, российский биолог Н. В. Тимофеев-Ресовский (см. ТИМОФЕЕВ-РЕСОВСКИЙ Николай Владимирович) описал в Южной Германии циклические изменения состава популяций у двухточечной божьей коровки. В течение 10 лет каждую осень в этой популяции преобладали жуки с черной окраской спинки и надкрыльев, а каждую весну - с красной. Оказалось, что черные жуки быстрее размножаются, а красные более устойчивы к холоду во время зимовки. Благодаря большей смертности черных коровок зимой, весной красных становится примерно на 25% больше, а осенью - в среднем настолько же меньше. Действовал циклический отбор, менявший свое направление по сезонам года.

Если естественный отбор ответственен за формирование новых адаптивных признаков, он называется движущим. Однако, в постоянных условиях среды, когда признаки организмов сохраняют свое адаптивное значение, действует стабилизирующий отбор, направленный на поддержание в неизменном состоянии уже существующих приспособлений. Дело в том, что генетическая изменчивость, поскольку она не направлена, стремится разрушить приспособительные признаки и разрушает их в том случае, если по ним не идет отбор. Например, у всех диких млекопитающих окраска шерсти имеет защитное, маскирующее животное, или сигнальное значение. Только у домашних животных возникает пегая окраска - неправильное чередование пятен окрашенной и белой шерсти, как у пестрых коров. Домашним животным защитная окраска не нужна.

При стабилизирующем отборе отсекаются все сильные уклонения признаков, выживают особи, близкие по своим признакам к среднему их значению, нормальному для популяции. Такой отбор может поддерживать признак в течение миллионов лет.

Эффекты естественного отбора

Движущая форма естественного отбора приводит на основе генетической изменчивости к возникновению новых приспособлений организмов. В этом выражаются два главных результата его действия: накапливающий и преобразующий эффекты. Накапливающий эффект представляет собой усиление в череде поколений полезных организму признаков. Например, если жертва изначально крупнее нападающих на нее хищников, то дальнейшее увеличение размеров жертвы будет лучше защищать ее от нападений. Конечно, отбор на увеличение размеров может происходить только тогда, когда крупные жертвы, такие как титанотерий третичного периода или современные слоны, вполне обеспечены пищей. Но отбор на увеличение размеров и скорости роста жертв вызовет аналогичное направление отбора у хищников - они тоже станут более крупными. Это было характерно не только для третичных млекопитающих, но и для динозавров, например, тираннозавров (см. ТИРАННОЗАВРЫбронтозавров (см. АПАТОЗАВРЫ). Накапливающий эффект движущего отбора проявляется не только по отношению к целостному организму, но и по отношению к отдельным органам. Увеличение размеров переднего мозга, прогрессивное развитие коры больших полушарий в ряду позвоночных - тоже пример накапливающего эффекта отбора.

Преобразующий эффект, или как его называли в конце 19 - начале 20 века, творческая роль естественного отбора, состоит в том, что, изменяя признаки в соответствии с изменениями условий среды - усиливая полезные и ослабляя признаки, утратившие приспособительное значение, естественный отбор преобразует организацию потомков по сравнению с предками, создавая новые виды. Один из основателей популяционной генетики, американский ученый С. Райт (см. РАЙТ Сьюалл) точно охарактеризовал творческую роль естественного отбора, сказав, что он из хаоса изменчивости создает новую организацию.

Генетическая изменчивость, проявляясь в фенотипе, меняет отдельные признаки, а в процессе борьбы за существование гибнут, устраняются от размножения или, напротив, выживают и размножаются целостные организмы. Поэтому, несмотря на то, что отбор идет по признакам фенотипа, каждый раз «оценивается» приспособленность особи, отличающейся от других особей популяции именно своими признаками. Поэтому творческая роль отбора выражается именно в преобразовании всей организации особей.

Кроме накапливающего и преобразующего, естественному отбору свойственны также поддерживающий и распределяющий эффекты.

Поддерживающий эффект выражается в том, что приспособленность организмов, подвергающихся естественному отбору, не может уменьшаться. Она может увеличиваться или оставаться на том же уровне, что и у предков. Сказанное не означает, что все признаки обязательно должны обладать приспособительным значением, быть полезными организму. Рудиментарные органы, например, остаток костей тазового пояса у усатых китов, таковыми не обладают. Иногда у животных возникают признаки не только бесполезные, но и вредные (см. Адаптация (см. АДАПТАЦИЯ (в биологии))).

Распределяющий эффект отбора состоит в том, что в более благоприятных условиях среды организмы чаще выживают и оставляют потомство. В менее благоприятных это происходит реже. В результате отбор распределяет организмы данного вида в пределах его ареала. Популяция - элементарная единица эволюции - сама формируется под действием естественного отбора.

Таким образом, естественный отбор - не единственный, но важнейший движущий фактор эволюции. Все биологическое разнообразие, составляющее биосферу Земли, сформировалось в результате естественного отбора.

Полезные сервисы

южный морской слон

Энциклопедический словарь

ЮЖНЫЙ МОРСКОЙ СЛОН - Ю́ЖНЫЙ МОРСКО́Й СЛОН (Mirounga leonina) - вид настоящих тюленей (см. НАСТОЯЩИЕ ТЮЛЕНИ) рода морских слонов, один из наиболее крупных тюленей: длина тела самца может достигать 5,5 м, масса до 2,5 т. Самки заметно мельче, длина тела у них обычно менее 3 м. Как и у хохлача, к которому морской слон систематически близок, у самцов развит кожистый мешок, расположенный на верхней стороне морды. Когда зверь возбужден, мешок несколько распрямляется и длина его достигает 60-80 см. При спокойном состоянии зверя длина мешка сокращается вдвое. Некоторое сходство мешка с хоботом слона, а также крупные размеры зверя и послужили причиной тому, что этого тюленя называют морским слоном.

Мех взрослых животных короткий, жесткий, буро-коричневый; новорожденные покрыты густым черным мехом, который примерно в месячном возрасте меняется на серебристо-серый. Подкожный жировой слой развит сильно, что заметно при передвижения зверя по суше: туловище тюленя сотрясается подобно студенистой массе. Южный морской слон распространен в Южном полушарии, в субантарктических водах. Его лежбища располагаются на Фолклендских, Южных Оркнейских, Южных Шетландских островах, на Кергелене, Южной Георгии, на побережье Южной Америки (Патагония, Чили, Огненная Земля). Наиболее крупные стада встречаются на островах Южная Георгия и Кергелен (примерно по 250 тысяч голов). Морские слоны несколько столетий привлекали внимание промышленников, снаряжавших зверобойные корабли в субантарктические районы. Зверей добывали на береговых лежбищах - на островах Южная Георгия, Кергелен, Южных Шетландских островах. Во многих районах численность морских слонов снизилась. Прекращение промысла способствовало восстановлению поголовья, затем добыча возобновилась в ограниченных пределах.

Южные морские слоны - мигрирующие звери. Летом они держатся на береговых лежбищах, где происходит деторождение, спаривание и линька. На зиму большинство зверей уходит на север, в более теплые воды, и только незначительное число остается в районах береговых лежбищ. Пути миграций и места зимовок точно не известны.

Лежбища южных морских слонов располагаются на песчано-галечных пляжах, нередко в бухточках и заливах. Неразмножающиеся звери залегают и на значительном отдалении от моря (на несколько сотен метров), обычно по берегам ручьев. Половозрелые звери подходят к лежбищам весной, в конце августа - начале сентября. Неполовозрелые особи запаздывают примерно на месяц. Сроки появления зверей растянуты, роды наблюдаются с конца августа до начала ноября, но чаще всего с конца сентября до второй декады октября. Родится, как правило, один детеныш длиной 80-100 см и массой 20-30 кг. Спаривание бывает после родов, беременность длится примерно 11 месяцев. Молочное кормление продолжается около месяца, после чего детеныши часто покидают семейные лежбища и залегают отдельно от взрослых. После окончания лактации детеныши несколько недель не сходят в воду, ничего не едят и существуют за счет подкожного жира.

Во время образования гаремов между самцами бывают драки. При этом они громко ревут, распрямляют «хобот», бросаются друг на друга и наносят клыками тяжелые раны, часто повреждают «хобот». Обычно малоподвижные, флегматичные, самцы во время драки проявляют ловкость и энергию. Порой они высоко поднимаются передней частью тела и, энергично действуя хвостовой частью, выделывают пируэты, почти полностью отрываясь от земли. В остальное время слоны на лежбищах большей частью спят, мало обращают внимания на посторонние звуки, и к ним можно подойти вплотную.

Раньше всехсередине лета) покидает лежбища приплод текущего года, когда молодым исполнится 2-3 месяца. В ноябре гаремные лежбища постепенно распадаются. Сильно истощенные самки откармливаются в море, после чего образуют линные залежки. Тогда же у берегов скопляются неполовозрелые южные морские слоны, у которых тоже начинается линька. Лишь часть их лежит на прибрежных отмелях, а большинство отходит на 100-200 м (иногда и дальше) в глубь суши и располагается на лугах и торфяниках, нередко сырых. Позже всех, в марте, происходит линька у половозрелых самцов. Закончив линьку, звери всех возрастных групп покидают сушу. Большинство зверей уходит в открытое море, где проводит зиму. В районе лежбищ остаются лишь немногие слоны. В районе лежбищ южные морские слоны кормятся главным образом головоногими моллюсками, реже рыбой. Характер питания в морской период жизни точно не известен. Ныряют слоны на глубину до нескольких сот метров.

Полезные сервисы