Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

флемстид (flamsteed) джон

флемстид джон

Энциклопедический словарь

Энциклопедия Кольера

ФЛЕМСТИД Джон (Flamsteed, John)

(1646-1719), английский астроном. Родился 19 августа 1646 в Денби (графство Дербишир). Ввиду слабого здоровья оставил школу в 16 лет и начал самостоятельно заниматься астрономией. Используя маленький телескоп, определил точные положения звезд, планет, Солнца, составил таблицы движения Луны. В научном мире стал известен благодаря предвычислениям затмений и лунных покрытий. С 1670 работал в Кембриджском университете, где в 1674 получил степень магистра. В 1675 был назначен директором только что организованной по указанию Карла II Гринвичской обсерватории, став первым королевским астрономом. В Гринвичской обсерватории Флемстид начал систематические наблюдения планет, Луны и Солнца; пересмотрел теорию их движений и вычислил будущие эфемериды. Несмотря на слабое здоровье, участвовал в конструировании и сборке новых инструментов, тщательно определял их погрешности. С высокой точностью определил наклон эклиптики, положение точек равноденствия и прямые восхождения звезд. Усовершенствовал теорию движений Луны, Юпитера и Сатурна. Результаты наблюдений Флемстида представлены в его фундаментальном труде Британская история неба (Historia coelestis Britannica); третий его том, знаменитый Британский каталог, был издан посмертно в 1725 и содержит данные о положении 3000 звезд. Всем звездам каталога Флемстид присвоил номера в порядке возрастания их прямых восхождений в пределах каждого созвездия. Этими номерами звезды часто обозначают и сегодня (например, 61 Лебедя). Он составил также таблицы атмосферной рефракции и таблицы приливов. Изобрел коническую проекцию в картографии. Умер Флемстид в Гринвиче 31 декабря 1719.

ЛИТЕРАТУРА

Форбс Э. Г. Ранние астрономические исследования Джона Флемстида. - Историко-астрономические исследования, 1978, вып. 14

ФЛЕМСТИД Джон (Flamsteed, John)

(1646-1719), английский астроном. Родился 19 августа 1646 в Денби (графство Дербишир). Ввиду слабого здоровья оставил школу в 16 лет и начал самостоятельно заниматься астрономией. Используя маленький телескоп, определил точные положения звезд, планет, Солнца, составил таблицы движения Луны. В научном мире стал известен благодаря предвычислениям затмений и лунных покрытий. С 1670 работал в Кембриджском университете, где в 1674 получил степень магистра. В 1675 был назначен директором только что организованной по указанию Карла II Гринвичской обсерватории, став первым королевским астрономом. В Гринвичской обсерватории Флемстид начал систематические наблюдения планет, Луны и Солнца; пересмотрел теорию их движений и вычислил будущие эфемериды. Несмотря на слабое здоровье, участвовал в конструировании и сборке новых инструментов, тщательно определял их погрешности. С высокой точностью определил наклон эклиптики, положение точек равноденствия и прямые восхождения звезд. Усовершенствовал теорию движений Луны, Юпитера и Сатурна. Результаты наблюдений Флемстида представлены в его фундаментальном труде Британская история неба (Historia coelestis Britannica); третий его том, знаменитый Британский каталог, был издан посмертно в 1725 и содержит данные о положении 3000 звезд. Всем звездам каталога Флемстид присвоил номера в порядке возрастания их прямых восхождений в пределах каждого созвездия. Этими номерами звезды часто обозначают и сегодня (например, 61 Лебедя). Он составил также таблицы атмосферной рефракции и таблицы приливов. Изобрел коническую проекцию в картографии. Умер Флемстид в Гринвиче 31 декабря 1719.

ЛИТЕРАТУРА

Форбс Э. Г. Ранние астрономические исследования Джона Флемстида. - Историко-астрономические исследования, 1978, вып. 14

Полезные сервисы

ньютон исаак

Энциклопедия Кольера

НЬЮТОН Исаак (Newton, Isaac)

<a href='/dict/исаак' class='wordLink' target='_blank'>ИСААК</a> <a href='/dict/ньютон' class='wordLink' target='_blank'>НЬЮТОН</a>

ИСААК НЬЮТОН

(1642-1727), английский математик и естествоиспытатель, механик, астроном и физик, основатель классической физики. Сформулировал закон всемирного тяготения, установил фундаментальные положения физической оптики, разработал начала дифференциального и интегрального исчислений. Его Математические начала натуральной философии (Philosophiae naturalis principia mathematica), Оптика (Opticks) и Об анализе (De analysi) принадлежат к числу величайших творений человеческого разума. Блестящие новаторские достижения Ньютона в науке позволили объяснить на точном математическом языке множество явлений неживой природы и зародили надежду, что со временем удастся объяснить все явления. Опираясь на известные факты, строя теорию, описывающую их математически, извлекая следствия из теории и сравнивая полученные результаты с данными наблюдений и эксперимента, он впервые попытался не только объяснять физические явления, но и предсказывать их. Покончив с неразберихой существовавших тогда теорий света и цвета, Ньютон своими экспериментами объяснил феномен цвета и предвосхитил современные достижения в теории света. Созданный им математический анализ стал одним из наиболее универсальных и мощных инструментов естествознания. Для Ньютона, по словам Эйнштейна, "природа была открытой книгой, письмена которой он без труда читал. Концепции, которые он привлекал для упорядочения данных опыта, казалось, сами собой вытекали из опыта, из изящных экспериментов, заботливо описываемых им со множеством деталей и расставленных по порядку подобно игрушкам. В одном лице он сочетал экспериментатора, теоретика, мастера и - в не меньшей степени - художника слова. Он предстает перед нами сильным, уверенным и одиноким". Ньютон родился 25 декабря 1642, почти через год после смерти Галилея, в Вулсторпе (графство Линкольншир). Отец Ньютона умер еще до его рождения, и, когда мальчику было два года, его мать вторично вышла замуж. Воспитанием Исаака занималась бабушка с материнской стороны. Учиться Ньютон начал в школах соседних деревень, а в возрасте 10 лет был отдан в классическую школу в ближайшем городке Грантеме. Эти годы он прожил в доме аптекаря Кларка, откуда, по-видимому, вынес сохранившийся на всю жизнь интерес к различным химическим манипуляциям. Ньютон рос тихим, не слишком углублявшимся в книги мальчиком, очень любившим, однако, делать что-нибудь своими руками. Он смастерил несколько солнечных часов, игрушечных водяных мельниц, водяные часы, механический экипаж и воздушных змеев с прикрепленными к их хвостам фонариками. Но в школе, по собственному признанию, Ньютон был очень невнимателен. В 1656 мать Ньютона после смерти второго мужа вернулась в Вулсторп и забрала сына из школы с намерением сделать из него фермера. Однако он не проявил никаких наклонностей к фермерскому делу. Рассказывают, что однажды его обнаружили в тени у ограды глубоко погруженным в чтение математической книги, хотя ему надлежало в это время быть на ярмарке в Грантеме. Уступив настойчивым уговорам учителя Грантемской школы, по достоинству оценившему интеллектуальную одаренность своего ученика, мать наконец разрешила сыну готовиться к поступлению в Кембриджский университет. В июне 1661 Ньютон был принят в Тринити-колледж на правах сабсайзера - студента, в обязанности которого входило прислуживать преподавателям колледжа. Из записных книжек Ньютона того периода видно, что он изучал арифметику, геометрию, тригонометрию, а позже - коперниковскую астрономию и оптику. Несомненно, большим стимулом для него стало общение с выдающимся математиком и теологом И.Барроу, профессором математики, рано распознавшим гений Ньютона и сделавшим все, что было в его силах, чтобы тот раскрылся с максимальной полнотой. В январе 1665 Ньютон получил степень бакалавра. К тому времени Ньютон, по его собственному признанию, основательно продвинулся в разработке "метода флюксий" (анализе бесконечно малых). Из-за вспыхнувшей в Кембридже эпидемии чумы университет и город обезлюдели, и Ньютон вернулся в Вулсторп, где пробыл почти два года. Именно в этот период он записал свои первые мысли о всемирном тяготении. По словам Ньютона, импульсом к размышлениям о тяготении послужило яблоко, упавшее на его глазах в саду. Как явствует из записи разговора с Ньютоном в преклонном возрасте, в то время он пытался определить, какого рода силы могли бы удерживать Луну на ее орбите. Падение яблока навело его на мысль, что, возможно, на яблоко действует та же самая сила тяготения, только на малом расстоянии. Свою догадку он проверил, оценив, весьма приблизительно, какой должна быть сила притяжения, если исходить из гипотезы о том, что она обратно пропорциональна квадрату расстояния (именно такова сила притяжения между Солнцем и планетами). Ньютон в то время и не пытался получить более точный результат, поскольку задача о нахождении полной силы притяжения, оказываемого всей Землей на небольшое тело вблизи ее поверхности, заведомо представляла большие трудности. В Вулсторпе Ньютон поставил свои первые опыты по исследованию природы света. В то время белый свет считался однородным. Однако эксперименты с призмой сразу показали, что прошедший через нее пучок солнечного света разворачивается в разноцветную полоску (спектр). И хотя подобные опыты, вероятнее всего, проводились и другими естествоиспытателями, именно Ньютон показал, что разложение в спектр обусловлено разной преломляемостью лучей разных цветов. Например, фиолетовый луч, проходя через преломляющую среду, отклоняется от первоначального направления на больший угол, чем луч красного света. Выводы Ньютона, проверенные с помощью остроумных экспериментов, сводились к следующему: солнечный свет представляет собой комбинацию лучей всех цветов, сами же эти лучи монохроматичны или, как говорил ученый, "гомогенеальны" и разделяются потому, что обладают разной преломляемостью. В это время Ньютону не исполнилось и 24 лет, и именно об этом периоде своей жизни он впоследствии писал: "Я находился в расцвете сил, и мысли мои были заняты математикой и философией в большей степени, чем когда-либо потом". Под "философией" Ньютон подразумевал то, что сейчас принято называть физикой. В октябре 1667, вскоре после возвращения в Кембридж, Ньютона избрали младшим членом Тринити-колледжа; через шесть месяцев он стал одним из старших членов и вскоре получил степень магистра. Много времени Ньютон посвятил овладению ремеслом оптика. Уже первые эксперименты с призмами убедили его в том, что усовершенствование телескопа ограничивается не столько трудностями вытачивания линз правильной формы, сколько разной преломляемостью лучей разных цветов, из-за чего пучок белого света невозможно сфокусировать в одной точке. Хроматическая аберрация обусловлена различием в углах, на которые отклоняются при прохождении через линзу лучи света разных цветов и, следовательно, разных длин волн. Сегодня хроматическую аберрацию корректируют подбором линзи, изготовленных из стекол с разными показателями преломления (такие комбинации линз называются ахроматами), но во времена Ньютона этот способ еще не был изобретен. И тогда Ньютон обратился к единственному практически возможному решению - конструированию зеркального телескопа (телескопа-рефлектора). Схему такого телескопа предложил в 1663 шотландский математик Дж.Грегори, но первым его построил Ньютон в 1668. Зеркальный телескоп давал увеличение примерно в 40 раз, хотя имел в длину лишь 15 см и по конструктивным особенностям немного отличался от предложенного Грегори. В 1669 Ньютон передал Барроу важный манускрипт, известный под сокращенным латинским названием Об анализе (De analysi), в котором содержались многие из полученных им результатов в области математического анализа. Благодаря Барроу этот труд стал известен нескольким ведущим математикам Великобритании и континентальной Европы, но он был опубликован лишь в 1711. К концу 1660 Барроу оставил кафедру и употребил все свое влияние, чтобы его преемником стал Ньютон. В качестве предмета первого курса лекций Ньютон избрал оптику. В 1671 Королевское общество удостоверило и закрепило приоритет Ньютона в создании телескопа, опубликовав описание его инструмента. В начале следующего года он был избран членом Королевского общества и вскоре получил предложение представить отчет о своем открытии сложной природы белого света, которое сам Ньютон описывает как "...преудивительное, если не наиболее значительное, открытие из совершенных до сих пор в действиях природы". Отчет ученого произвел столь сильное впечатление, что было решено опубликовать его. Но затем последовал длинный ряд статей, во многих случаях плохо обоснованных, авторы которых критиковали взгляды Ньютона. Большинство возражений пришло из континентальной Европы, но не только: часть принадлежала Р.Гуку, куратору Королевского общества. Вначале Ньютон обстоятельно и терпеливо отвечал на все выпады, но потом они ему изрядно надоели и начали вызывать все большее раздражение. В 1675 он признавался в письме секретарю Королевского общества: "Я вижу, что стал рабом философии, но если мне удастся отделаться от мистера Лайнуса [[одного из наиболее въедливых и дотошных критиков]], то я раз и навсегда покончу с такого рода делами и буду заниматься тем, что принесет мне удовлетворение, или тем, что останется после меня. Ибо мне ясно, что либо необходимо решиться не производить ничего нового, либо превратиться в раба, чтобы отстаивать новое". Споры о приоритетах усилили скрытность и нетерпимость к возражениям, столь типичные для характера Ньютона в конце его жизни. В последующие годы Ньютон занимался различными математическими, оптическими и химическими исследованиями, а в 1679 снова вернулся к проблеме планетных орбит. Идея о том, что сила тяготения обратно пропорциональна квадрату расстояния от Солнца до планет, которую он проверил приближенными выкладками в Вулсторпе, теперь была предметом широкого обсуждения. Именно такой закон следовал для простого случая круговой орбиты из третьего закона Кеплера, устанавливающего зависимость между периодами обращения планет вокруг Солнца и радиусами их орбит, вместе с формулой для центростремительного ускорения тела, движущегося по окружности, которую в 1673 вывел Х.Гюйгенс. Обратную задачу - определение орбиты из закона изменения силы с расстоянием, бывшую предметом обсуждения Гука, Рена и Галлея, - Ньютон решил примерно в 1680. Ньютон доказал теорему о том, что сферически симметрично распределенная масса притягивает внешние тела так, как если бы вся масса была сосредоточена в центре. В августе 1684 Галлей посетил Кембридж, чтобы обсудить с Ньютоном проблемы орбит. Во время беседы относительно формы орбиты тела, движущегося под действием силы притяжения к неподвижному центру, обратно пропорциональной квадрату расстояния, Ньютон высказал предположение, что орбита будет иметь форму эллипса. Во время второго визита Галлею был показан "прелюбопытный трактат о движении (de motu)" на двадцати четырех страницах, по просьбе Галлея в феврале 1685 представленный Королевскому обществу. Этот трактат о законах движения стал основой первой книги Математических начал натуральной философии (Philosophiae naturalis principia mathematica) - сочинения, оказавшего огромное воздействие на научную мысль последующих поколений. По общему признанию, Начала - одна из наиболее значительных книг в истории человечества. И то, что она была создана примерно за 18 месяцев, - интеллектуальный подвиг, не имеющий параллелей ни в прошлом, ни в настоящем. Особенно важную роль в создании Начал сыграл Галлей. Он тактично сглаживал разногласия между Ньютоном и Гуком, утверждавшим, что о законе обратной пропорциональности силы квадрату расстояния Ньютон узнал из его, Гука, сообщения. В порыве раздражения Ньютон даже решил было отказаться от издания третьей книги Начал, но Галлею удалось уговорить его не делать этого. Именно Галлей взял на себя все хлопоты, связанные с изданием, и оплатил все издержки. Наконец в разгар лета 1687 Начала вышли из печати и сразу были признаны шедевром, хотя Ньютон намеренно сделал свое сочинение трудночитаемым, "дабы избежать укусов мелких эпигонов от математики". Воображение научного сообщества покорили величественная объединяющая идея гравитации, или всемирного тяготения, действие которой распространяется на всю Солнечную систему, и объяснение на основе единого принципа таких разных явлений, как приливы, прецессия равноденствий и ряд особенностей в движении Луны. Несмотря на столь благоприятный прием, потребовалось еще пятьдесят лет для того, чтобы ньютоновская схема смогла окончательно ниспровергнуть носившую более качественный характер и более наглядную теорию вихрей Р.Декарта. Но с самого начала сочинение Ньютона рассматривалось как свидетельство существования в мироздании единого плана, указывающего на наличие Творца. То, что сам Ньютон считал именно так, явствует из сказанного им в конце трактата: "Такое изящное соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа [[Бога]]... Рассуждение же [[о Боге]], на основании совершающихся явлений, конечно, относится к предмету натуральной философии". Лишь значительно позднее идею неукоснительно действующего универсального закона стали связывать с материалистической и агностической философией, и не только в физике, но и в биологии и социальных науках. За несколько месяцев до публикации Начал Ньютон приобрел известность как защитник академических свобод. Король Яков II, надеявшийся реставрировать римский католицизм, в феврале 1687 издал повеление, которым предписывал Кембриджу присвоить степень магистра некоему монаху ордена бенедиктинцев, не требуя от него обычной присяги на верность и послушание. Университет ответил категорическим отказом, и Ньютон сыграл заметную роль в отстаивании позиции университета. Сенат назначил депутацию, в состав которой вошел и Ньютон. Она предстала перед комиссией в Вестминстере и дала отпор незаконным притязаниям короля. После низвержения Якова II Ньютон был избран представителем от университета в парламент, где он и заседал с января 1689 до его роспуска год спустя. Исполнение общественных обязанностей повлекло за собой изменения в замкнутом образе жизни, который прежде вел Ньютон. Теперь ему приходилось часто наведываться в Лондон, где он встречался со многими выдающимися личностями. Возможно, как реакция на напряженную работу, у Ньютона началась депрессия, завершившаяся нервным срывом. Сразу же после выздоровления Ньютон взялся за решение сложной задачи о движении Луны. Работая над этой проблемой, ученый вступил в переписку с Дж.Флемстидом, первым Королевским астрономом, чьи наблюдения Луны были ему крайне необходимы. Однако отношения Ньютона и Флемстида оказались омраченными непониманием и ссорами, завершившись разрывом. В 1698 Ньютон попытался продолжить работу над теорией орбиты Луны и возобновил отношения с Флемстидом, но снова возникли трения, и Ньютон обвинил Флемстида в том, что тот утаивает часть наблюдений. Вражда между Ньютоном и Флемстидом не прекращалась вплоть до смерти последнего в 1719. В 1696 усилиями друзей, пытавшихся подыскать для Ньютона какую-нибудь хорошо оплачиваемую должность на государственной службе, он был назначен смотрителем Монетного двора. Это потребовало от него постоянного пребывания в Лондоне, где он поселился и прожил до конца своих дней. Ньютону было поручено руководство перечеканкой английской монеты. Имевшие тогда хождение монеты обесценились из-за мошеннической практики обрубания краев. Необходимо было наладить чеканку новых монет с насечкой по краю, имеющих стандартные массу и состав. Эта задача, требовавшая больших технических познаний и административного искусства, была успешно решена за три года к ноябрю 1699. Тогда же Ньютон был назначен на должность директора Монетного двора. Этот хорошо оплачиваемый пост он занимал до конца жизни. В 1701 Ньютон отказывается от кафедры в Кембридже и от членства в Тринити-колледже, а в 1703 его избирают президентом Королевского общества и затем ежегодно переизбирают на этот пост. В 1704, после смерти своего главного оппонента, Гука, Ньютон выпустил свой второй фундаментальный труд - Оптику. Она была написана по-английски и позже переведена на латынь. В 1717 вышло и второе издание со специальным приложением, содержащим общие рассуждения в форме Вопросов (Queries), показывающих, как глубоко Ньютон понимал физику. В 1705 королева Анна возвела Ньютона в рыцарское достоинство. К тому времени он стал признанным главой не только британских, но и европейских ученых. В последние два десятилетия своей жизни Ньютон подготовил второе и третье издания Начал (1713, 1726). Были опубликованы также второе и третье издания Оптики (1717, 1721). В эти же годы Ньютон оказался вовлеченным в долгий спор с Г. Лейбницем по поводу приоритета в создании математического анализа. Этот спор, продолжавшийся даже после смерти Лейбница его сторонниками, наполнил горечью последние годы жизни Ньютона и ослабил научные связи Великобритании с континентальной Европой, отрицательно сказавшись и на развитии математической науки в Великобритании. Ныне принято считать, что Ньютон первым объединил и выявил то, что в скрытой форме содержалось в работах его предшественников - Ф.Кавальери, П.Ферма и Р.Декарта. Хотя сам Ньютон мог решать многие физические задачи с помощью своих дифференциалов, в Началах он пользовался традиционными математическими методами, восходящими еще к Евклиду и Архимеду. Ньютон считал, что физическое содержание его труда будет восприниматься легче, если методы решения останутся традиционными. Открытия Лейбница были сделаны позже, хотя и независимо, но Лейбниц опередил Ньютона в публикации подробного изложения математического анализа и ввел обозначения, сохранившиеся с незначительными изменениями до нашего времени. Слава Ньютона неразрывно связана с его приоритетом основоположника систематического применения математических методов к исследованию природы, а также с его открытием закона тяготения. Ньютон упрочил основания динамики как надежной опоры механической картины мира, приложив ее законы к небесным явлениям, о чем прежде никто не смел и помыслить. Достижения Ньютона в применении бесконечных рядов и в дифференциальном и интегральном исчислениях намного превосходят все, что было сделано до него, и поэтому Ньютона считают основоположником этих методов анализа. Что же касается влияния трудов Ньютона на развитие физической науки, то его трудно преувеличить. За два столетия после публикации Начал необычайно расширился диапазон явлений, подчиняющихся законам динамики и поддающихся описанию математическими методами. Многое из сделанного в этой области можно рассматривать как непосредственное продолжение Начал. И только к 20 в. основные положения, на которые опирались труды Ньютона, потребовали коренного пересмотра. Эта ревизия привела к созданию современной теории относительности и квантовой теории. Но для систем обычных макроскопических размеров, движущихся со скоростями, гораздо меньшими скорости света, законы динамики, сформулированные Ньютоном более трех веков назад, по-прежнему остаются в силе. Ньютону принадлежат также многочисленные сочинения по теологии, хронологии, алхимии и химии, в которых он обладал глубокими познаниями. В 1725 по состоянию здоровья Ньютон был вынужден оставить Лондон и переехать в Кенсингтон, в то время почти деревню. Умер Ньютон в Кенсингтоне 20 марта 1727.

ЛИТЕРАТУРА

Ньютон И. Математические работы. М. - Л., 1937 Ньютон И. Оптика. М., 1954 Кудрявцев П.С. История физики, т. 1. М., 1956 Вавилов С.И. Исаак Ньютон. М., 1961 Ньютон И. Математические начала натуральной философии. - В кн.: Крылов А.Н. Собрание трудов, т. 7. М., 1996

Полезные сервисы

физика

Энциклопедия Кольера

ФИЗИКА (от древнегреч. physis - природа).

Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина "физика" сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства вещества, обусловленные особенностями его атомной структуры, биология, изучающая живые организмы и т.д. Помимо традиционных предметов исследования, о которых пойдет речь ниже, физика занимается столь разными проблемами, как поведение смазки в машинах, процессы образования химических связей, хранение и передача генетической информации в живых системах и т.д. Объединяющий принцип физики как науки кроется не столько в предметах исследования, сколько в подходе к их изучению, и этим физика отличается от других наук. Опираясь на определенные аксиомы и гипотезы, проводя эксперименты и используя математические методы, она стремится объяснить все многообразие природных явлений исходя из небольшого числа взаимосогласующихся принципов. Физик надеется, что, когда о природных явлениях станет известно достаточно много и когда они будут достаточно хорошо поняты, множество других, на первый взгляд разрозненных и не связанных с ними фактов уложатся в простую, допускающую математическое описание схему.

РАННЯЯ ИСТОРИЯ ФИЗИКИ

До эпохи Возрождения, последовавшей за тысячелетием застоя, большинство научных открытий было совершено в Древней Греции, хотя родиной многих открытий и изобретений были также арабские страны и Китай. Особенно больших успехов греки достигли в математике и астрономии. Правда, многое из того, что принято в наследство от древних греков, было известно уже вавилонянам. Однако именно греки ввели понятие доказательства. Греческим мыслителям мы обязаны и другой важной идеей: о возможности объективного познания природы. И все же физика древних греков во многом была несовершенной. Ее основные представления были разработаны Аристотелем и базировались на аналогиях с поведением человека и животных в том смысле, что явления природы объяснялись целями, достижению которых они якобы служат. Греческие астрономы наблюдали небо и записывали свои наблюдения, однако не существует никаких свидетельств того, что они проводили научные эксперименты. Античный мир породил лишь две фигуры, внесшие важный вклад в формирование основ современной физики: Демокрит из Абдеры (ок. 460-370 до н.э.) во Фракии (ныне Болгария) и Архимед из Сиракуз (ок. 287-212 до н.э.). Демокрит первым из великих математиков оказал глубокое влияние на развитие физики. Более всего Демокрит известен как создатель атомистической теории. Идея атомистики, по-видимому, зародилась у его учителя Левкиппа из Милета, фигуры апокрифической, о котором мало что известно. Аргументы атомистов носили косвенный характер (чему вряд ли приходится удивляться, если принять во внимание, что прямые экспериментальные исследования атомных явлений стали возможны только в 20 в.). Они полагали, что, хотя в природе и происходят непрерывные изменения, в ней также, по всей видимости, имеется некий неизменный субстрат. Демокриту этот субстрат виделся как совокупность атомов, а рост и распад организмов и растений - лишь как проявления изменений в расположении неизменных атомов. Плавление твердых тел и испарение жидкостей он объяснял как переход совокупности атомов к менее связанному состоянию. Эпохальные открытия часто можно отнести к одной из двух категорий. Открытие первого рода состоит в обнаружении неожиданно нового явления в эксперименте, который может быть повторен с тем же результатом кем угодно; такое открытие заставляет пересмотреть понятия, ранее считавшиеся твердо установленными. В качестве примера можно привести обнаружение Галилеем спутников Юпитера и открытие Рентгеном излучения, носящего ныне его имя. К открытиям другого рода принадлежат такие, в которых наблюдаемые явления оставляют место для размышлений и выводов. Такие открытия в конечном счете основаны на свойственном ученому интуитивном ощущении природы вещей, и именно к ним относятся открытия, совершенные Левкиппом и Демокритом. К этой же категории принадлежат теория строения Солнечной системы Коперника и специальная и общая теории относительности Эйнштейна. Второй великий предтеча современной физики, Архимед, был величайшим математиком древности. В центре его интересов была статика, которая занимается изучением сил в состоянии равновесия. Например, Архимед показал, как находить центр тяжести различных геометрических фигур. Другая важная работа Архимеда - трактат о гидростатике и плавающих телах. Хотя его труды, в отличие от атомистической теории, не были нацелены на выяснение самой сути природы, они позволили физике подняться еще на одну ступень, показав, как с помощью математики можно расширить физические представления. Иногда математика дает возможность систематизировать все следствия некой физической гипотезы, выражая их в виде соотношений, истинность или ложность которых поддается экспериментальной проверке. В древности этот вывод сделал для себя, пожалуй, лишь Архимед; в Средние века этот урок был предан забвению, и его пришлось открывать заново в эпоху Возрождения.

ВОЗРОЖДЕНИЕ

В конце 16 в. в теоретической астрономии возник кризис, распространившийся и на другие области естествознания. Его результатом стал полный переворот во взглядах человека на самого себя и на окружающий его мир. Событие, послужившие причиной такого переворота, внешне выглядело вполне заурядно: в 1543 вышла в свет книга Коперника Об обращениях небесных сфер (De Revolutionibus), в которой было показано, что движение небесных тел легче понять и описать, если предположить, что в центре Солнечной системы находится Солнце, а Земля - лишь одна из планет, которые обращаются вокруг него. Старая птолемеевская теория помещала неподвижную Землю в центр мироздания, а звезды и планеты, которые мыслились расположенными на прозрачных сферах, обращались вокруг Земли.

<a href='/dict/николай' class='wordLink' target='_blank'>НИКОЛАЙ</a> <a href='/dict/коперник' class='wordLink' target='_blank'>КОПЕРНИК</a>

НИКОЛАЙ КОПЕРНИК

Новая теория предлагала по-новому посмотреть на устройство мира. По Аристотелю, Земля находится в центре мироздания потому, что состоит из тяжелых веществ, которых заставило собраться в центре мира их естественное движение. Каждый объект во Вселенной имеет свое собственное место, к которому он стремится, если может двигаться свободно и если его место не занято чем-то другим, что должно находиться в другом месте. Место земли, воздуха, огня и воды - под самой низкой сферой, сферой Луны. Все в более высоких сферах состоит из особой субстанции - эфира - и не подвержено ни изменению, ни гибели. Понятия собственного места и назначения применимы повсюду: в царствах растений и животных, в человеческих сообществах, в нематериальном мире. Выше всего этого стоит Бог, придающий смысл мирозданию и дарующий ему существование. Солнечная система была важной частью Божественного замысла, и когда Коперник поставил под вопрос эту часть, стало ясно, что опасность грозит и всему целому. К началу 1600-х годов опасность стала еще более реальной. Немецкий астроном И.Кеплер (1571-1630) усовершенствовал коперниковскую теорию, заменив круговые орбиты эллипсами, а неравномерное движение - равномерным, после чего новая теория стала настолько точной, что обращение к старой стало просто неуместным. В 1608 флорентийский математик и физик Галилео Галилей (1564-1642) изобрел телескоп, с помощью которого вскоре удалось получить наглядное подтверждение правильности новой теории, и решился высказать мысль, которая должна была произвести переворот в умах итальянцев и прежде всего - в умах папы Урбана VIII и кардиналов. "О философии - писал Галилей - можно прочесть в величественной книге - я имею в виду Вселенную, и эта книга постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать символы, которыми она пользуется. Написана же она на языке математики, а символы ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту".

<a href='/dict/галилео' class='wordLink' target='_blank'>ГАЛИЛЕО</a> <a href='/dict/галилей' class='wordLink' target='_blank'>ГАЛИЛЕЙ</a>

ГАЛИЛЕО ГАЛИЛЕЙ

Тысячу лет люди искали истину в бесконечных спорах о латинских текстах отцов церкви. Оказывается, они использовали не тот язык и не те книги. После нескольких тайных заседаний суда инквизиции Галилею было запрещено следовать коперниковскому учению. Галилей не подчинился и в 1633 в возрасте 70 лет был вызван на публичный процесс, отрекся от своего учения, несмотря на это, был приговорен к пожизненному домашнему аресту. Но этот запрет вернул Галилея к фундаментальным исследованиям, и через пять лет он опубликовал свой последний и наиболее значительный труд Беседы и математические доказательства, касающиеся двух новых отраслей науки (рус. перевод 1934). Науки эти - статика, занимающаяся изучением сил, находящихся в равновесии, и динамика, изучающая движения под действием сил. Эта работа Галилея стала основой исчерпывающего объяснения коперниковской системы, которое Ньютон дал спустя 50 лет.

ПРИРОДА КАК МЕХАНИЗМ

И. Ньютон (1643-1727) родился в протестантской Англии менее чем через год после смерти Галилея. Научная деятельность Ньютона протекала в основном в Кембридже, где в 1669 он стал профессором математики. Первые открытия в области математики и физики были им сделаны в 24 года. Его открытия в области механики и астрономии подробно изложены в Математических началах натуральной философии (Philosophiae naturalis principia mathematica, 1687). Изложение начинается с формулировок трех законов механики, из которых выводится все остальное в виде последовательности утверждений, задач и математических расчетов, перемежаемых пояснениями (называемыми схолиями), в которых Ньютон комментирует сделанное. Три закона механики формулируются просто: 1. Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние. 2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует. 3. Действию всегда есть равное и противоположное противодействие, иначе - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны. (Перевод А.Н.Крылова)

Новым в системе Ньютона стало понятие силы не просто как некоего действия, а как величины. В первых двух книгах Начал Ньютон показывает, как найти, что произойдет с физическими системами, если к ним приложить различные силы. Далее он рассматривает, какого рода тела встречаются в природе и какие силы на них действуют. Здесь для проверки ньютоновской теории была использована астрономия - область знания, в которой на протяжении 2000 лет велись тщательные наблюдения за движением планет, а последующие работы Коперника и Кеплера привели к созданию непротиворечивой модели Солнечной системы. В книге III Ньютон показал, что огромное множество самых разнообразных явлений и процессов - движение планет, Луны, спутников Юпитера, комет, приливы, прецессию равноденствий и т.д. - можно объяснить, если принять гипотезу о существовании силы всемирного тяготения, действующей между любыми двумя телами и изменяющейся обратно пропорционально квадрату расстояния между ними. Подробные вычисления были выполнены им с помощью оригинальных математических методов, о которых Г.Лейбниц дал такой отзыв: "Если взять математику от начала мира до того времени, когда жил Ньютон, то сделанное им - гораздо лучшая ее половина".

<a href='/dict/исаак' class='wordLink' target='_blank'>ИСААК</a> <a href='/dict/ньютон' class='wordLink' target='_blank'>НЬЮТОН</a>

ИСААК НЬЮТОН

Обрисовав достижения Ньютона в механике, мы должны теперь упомянуть о том, чего ему не удалось достичь. Существует ряд других сил, принципиально отличных от гравитационных, законы которых он так и не открыл. Он также не предложил никакого объяснения трем законам движения (впрочем, следует признать, что все это по большей части осталось необъясненным и поныне). На протяжении всей своей жизни он питал надежду объяснить химические явления, применяя к поведению атомов те же законы, что и к движению планет. Ньютон был последовательным атомистом, убежденным, что все вещество состоит из "твердых, массивных, жестких, непроницаемых, подвижных корпускул", а его интуитивное представление о единстве природы привело к совершенно правильному заключению, что корпускулярные свойства присущи также и свету. Далее Ньютон с атомистических позиций рассматривает некоторые химические реакции. В своих рассуждениях Ньютон предвосхитил многие положения химической науки наших дней, но, как нам теперь ясно, его замысел в принципе не мог быть доведен до завершения, ибо химические явления столь сложны, что без развития экспериментальной техники, лишь в 20 в. открывшей возможность детального исследования свойств отдельных атомов и субатомных частиц, не было никаких шансов понять, что представляют собой атомы, как они взаимодействуют с образованием химических соединений и каким образом свойства атомов, входящих в состав молекулы данного соединения, определяют его свойства. Еще до Ньютона ряд передовых мыслителей, например Декарт, представляли мир как механизм, действующий по законам причинности и не имеющий границ. Задуманный и сотворенный Богом, этот механизм далее мог функционировать самостоятельно, возможно, лишь под Его наблюдением. Сознание человека было островком в центре мироздания, всесторонне связанным с божественным механизмом. И хотя жить с такой философией было не слишком уютно и множество вопросов оставалось без ответа, она явилась благодатным облегчением после тысячелетия теологического гнета. Почти 150 лет, последовавших за выходом ньютоновских Начал, физическая наука рационализировалась и систематизировалась без сумятицы и кипения страстей, привносимых новыми идеями. Основной прогресс в этот период заключался в развитии математического аппарата, позволявшего быстро и корректно рассчитывать следствия, вытекающие из теоретических представлений. Потраченные усилия дали такие плоды, что последующим поколениям ученых, воспитанным на этой философии, оказалось необычайно трудно отказаться от ньютоновского подхода, когда механистическая картина мира стала настолько сложной, что утратила те черты, которые ранее делали ее столь привлекательной. Проследим теперь за наследием ньютоновской философии, распространившейся в различные области исследования, поскольку многие ее слабые, равно как и сильные стороны до сих пор дают о себе знать.

Астрономия. Хотя ныне считается, что благодаря Галилею и Ньютону стало понятным устройство Солнечной системы, было бы большой ошибкой думать, что их идеи сразу же получили признание. После выхода Начал еще целое поколение студентов Кембриджа продолжало изучать планетную теорию Декарта, в которой гравитация не играла никакой роли, а на континенте астрономические идеи Ньютона вообще не воспринял ни один из великих математиков, его современников, - ни Лейбниц, ни Гюйгенс, ни Бернулли. На ум приходит горькое замечание М.Планка: "Новая научная истина торжествует не потому, что переубеждает оппонентов и открывает им глаза, а потому, что ее оппоненты постепенно уходят из жизни и вырастает новое поколение, для которого она новой уже не является". Следует также иметь в виду, что очень долго существовали серьезные основания сомневаться в справедливости теории Ньютона. Она проста применительно к движению одной планеты вокруг Солнца и дает результаты, которые согласуются с эмпирическими законами движения планет Кеплера: планеты движутся по эллиптическим орбитам с Солнцем в одном из фокусов; прямая, проведенная от Солнца к планете, за равные промежутки времени охватывает равные секториальные площади; отношение куба среднего расстояния до Солнца к квадрату периода обращения вокруг Солнца есть величина постоянная для каждой из планет. Существовавшие же данные астрономических наблюдений отличались не только высокой точностью, но и охватывали более чем 2000-летний период времени, а эти данные показывали, что наблюдаемое движение планет отклоняется от предсказанного на основании столь простых законов; так, Юпитер в действительности движется быстрее и находится ближе к Солнцу, а Сатурн - медленнее и дальше от Солнца. И лишь в 1784, спустя 97 лет после выхода Начал, П.Лаплас установил, что эти расхождения связаны с возмущениями орбит, вызванными взаимным притяжением планет, и согласуются с законами Ньютона. Были обнаружены и получили свои объяснения и другие расхождения теории и наблюдений, и лишь в 1915 А.Эйнштейн (1879-1955) показал, что обнаруженное задолго до этого небольшое несоответствие в движении Меркурия требует для своего объяснения новой теории. Общая теория относительности Эйнштейна явилась первой серьезной модификацией теории планетных движений Ньютона. К сожалению, предсказываемые этой теорией эффекты настолько слабы, что окончательная ее проверка еще впереди. И поныне ряд несоответствий остается без объяснения.

Оптика. Линзы появились в весьма древние времена. Кусок горного хрусталя в форме линзы был найден в развалинах Ниневии. Аристофан (5 в. до н.э.) был знаком с применением линз в качестве зажигательных стекол. Через три столетия александрийский астроном Птолемей проводил опыты по преломлению света при переходе его из воздуха в воду или стекло; составленные Птолемеем таблицы сохранились до нашего времени. Древнегреческие мыслители занимались и теорией зрения. Пифагорейцы, как и Демокрит, учили, что видимый предмет посылает в глаз наблюдателя частицы света. Платон и его последователи считали, что мы видим, когда некое явление, источаемое из нашего глаза, взаимодействует с влияниями, исходящими от объекта и Солнца. Бурное развитие науки знаменовалось изобретением новых оптических инструментов и новой волной интереса к зрительному процессу. Около 1608 появился телескоп. Почти сразу же после этого были изобретены микроскопы, которые нетрудно получить из телескопов, просто переставив линзы. Диоптрика (Dioptrica) Кеплера, в которой впервые излагалась теория оптических инструментов, была опубликована в 1611, а закон преломления света при входе в стекло и выходе из него, который пытался установить еще Птолемей, оставался неизвестным до 1637, когда Декарт опубликовал его в своей Диоптрике (Dioptique). Формулировка этого закона (правда, отличная от обычной) была обнаружена в трудах голландского математика В.Снеллиуса уже после его смерти в 1626. Декарт объяснял закон Снеллиуса гипотетическим изменением скорости света при переходе через границу сред, однако фактически о скорости света не было известно ничего, кроме того, что она очень велика. В 1676 датчанин О.Ремер показал, что наблюдаемые в движении спутников Юпитера отклонения можно объяснить, допустив, что свету требуется 22 мин для преодоления расстояния, равного диаметру земной орбиты. Единственное значение для диаметра земной орбиты, которым астрономы располагали в то время, была грубая и довольно произвольная оценка, предложенная директором Парижской обсерватории Ж.Кассини, и из нее следовало, что скорость света составляет около 200 000 км/с. Адекватные оценки размеров Солнечной системы были получены только сто лет спустя, но лишь в 1849 А.Физо впервые измерил скорость света в лабораторных условиях. С тех пор скорость света стала одной из наиболее точно установленных постоянных. На сегодняшний день ее точное значение равно 299792458 ± 1,2 м/с. Параллельно с усовершенствованием оптических приборов и оптических измерений был выстроен ряд теоретических предположений относительно природы света. Некоторые из них описаны в статье СВЕТ, о других будет сказано ниже.

Звук. Изучение звука снова возвращает нас в античность, где туманная традиция связывает начало таких исследований с именем Пифагора. Насколько можно судить, философы Древней Греции за 500 лет до н.э. экспериментально исследовали различия между благозвучными (консонантными) и неблагозвучными (диссонантными) музыкальными интервалами. Они сделали вывод, что если колеблющуюся струну прижимать в различных точках и щипком заставлять колебаться каждую из двух частей струны, то чем "проще" отношение длин двух частей, на которые разделилась струна, тем более благозвучным окажется консонантный интервал издаваемых звуков. Под простыми понимаются отношения 2:1, 3:2, 4:3 и т.д., соответствующие музыкальным интервалам октаве, квинте, кварте и т.д. Эти интервалы составляли основу всей западной музыкальной гармонии до 13 в., и хотя кварта более не считается гармоническим интервалом, продолжая Пифагоров ряд отношений до 5:4 и 6:5, мы получаем большую и малую терции - фундаментальные интервалы западной музыки последних 500 лет. Что касается физической природы звука, то многое здесь было известно уже Аристотелю. В дошедшем до нас в виде фрагментов трактате Звук и слух (см. Aristotelis opera. Ed. Academia regia borussica, v. 1-5, B, 1831-1870) он приводит подробное и точное описание распространения звуковых волн в воздухе. Римский архитектор Витрувий, знакомый с аристотелевской традицией, посвятил одну из книг своего сочинения Об архитектуре (De architectura) (ок. 10 до н.э.) акустике театров и других зданий, заложив этим основания науки, известной сегодня под названием архитектурной акустики. После Витрувия в развитии акустики наступила пауза, которая продолжалась до 17 в., когда акустическими проблемами занялись Галилей и Ньютон. Галилей исследовал разные источники звука, в частности колеблющиеся струны, и показал, что частота колебаний струны, а следовательно, и частота издаваемого звука определяются ее физическими свойствами - длиной, натяжением и массой. Ньютон поставил перед собой более трудную задачу - описать на языке математики процесс распространения звуковой волны в воздухе. Проведенный им анализ, опиравшийся на известные тогда данные об упругости воздуха, дал теоретическое значение скорости звука 298 м/с, тогда как из опытов Флемстида и Галлея было получено значение 348 м/с. Столь значительное расхождение удалось объяснить лишь в 1816, когда Лаплас указал на то, что величина упругости воздуха, на основании которой вычисляется скорость звука, должна отличаться от обычно измеряемой, т.к. изменения в звуковой волне происходят очень быстро и в воздухе не успевает установиться тепловое равновесие. Внеся в вычисления Ньютона поправку в этом единственном пункте, Лаплас получил формулу, прекрасно согласующуюся с самыми точными экспериментальными данными. Сегодня часто ставят обратную задачу: определяют упругость газа по измеренной скорости звука в нем. Когда механизм возникновения звука и его природа были объяснены на основе фундаментальных законов движения, акустика перестала быть чисто умозрительной дисциплиной, и после Лапласа ее развитие шло по трем направлениям: практические потребности (проектирование концертных залов, создание музыкальных инструментов и звуковоспроизводящей аппаратуры), физиологические и психологические аспекты восприятия звука и чистая теория. Второе из названных направлений породило новую область физического познания - область очень интересную и трудную, поскольку в ней изучается субъективный процесс, по сути тот же, посредством которого он сам и исследуется. Здесь физика трудится рука об руку с несколькими другими науками. Основополагающие труды по физиологии слуха и зрения принадлежат Г. Гельмгольцу (1821-1894). Его книги Учение о слуховых ощущениях как физиологическая основа для теории музыки (СПб, 1875) и О зрении (СПб, 1896), по всеобщему признанию, являются научной классикой. Сущность звука - лишь один из вопросов чистой физики, и ответ на него давно получен. И все же существует мало других разделов физики, разветвленные приложения которых вызывали бы такой всеобщий интерес и, судя по публикациям, доставляли бы такое удовольствие работающим в них исследователям.

См. также ЗВУК И АКУСТИКА.

Теплота и термодинамика. Еще каких-нибудь сто лет назад господствовало представление о теплоте как о некой калорической жидкости. Считалось, что эта жидкость есть во всех телах, и от того, сколько ее содержится в теле, зависит его температура. В том, что температура тел, находящихся в тепловом контакте, выравнивается, усматривали аналогию с установлением общего уровня жидкости в сообщающихся сосудах. Теория калорической жидкости в том виде, как ее сформулировал Дж.Блэк (1728-1799), могла объяснить широкий круг явлений. Однако в некоторых пунктах встречались затруднения. Например, хорошо известно, что если нагревать лед, то его температура не повышается до тех пор, пока весь лед не растает. Такое тепло Блэк назвал "скрытым" (термин "скрытая теплота плавления" сохранился поныне), имея в виду, что при таянии льда теплота как-то переходит в частицы воды, не производя обычного эффекта. Вода вмещает большое количество скрытой теплоты, и когда Б.Румфорд (1753-1814) показал, что вес льда при таянии остается неизменным, было решено, что калорическая жидкость невесома. В другом опыте, проведенном в Мюнхенском арсенале на станке, на котором рассверливали стволы пушек, Румфорду удалось добиться выделения огромного количества тепла при небольшом количестве металлической стружки: для этого он в течение двух с половиной часов сверлил болванку тупым сверлом. Румфорд счел, что его опыт убедительно доказал несостоятельность теории калорической жидкости, но ее сторонники возразили, что в материи очень много калорической жидкости и даже при сверлении тупым сверлом высвобождается только малая ее часть. Калорическая теория, подлатанная таким образом, просуществовала примерно до 1850. Однако еще Демокрит более чем за 2000 лет до этого выдвигал другую гипотезу. Если материя состоит из крохотных частиц, то отличие твердого тела от жидкости определяется разной силой их сцепления. Если принять, что вначале при нагревании частицы твердого тела начинают просто сильнее колебаться, оставаясь на своих местах, то разумно предположить, что при нагревании выше определенной температуры частицы будут срываться со своих мест, образуя жидкость, а при дальнейшем нагревании произойдет следующее превращение - жидкость станет газом. Галилей высказал аналогичную идею в 1623, а Декарт писал в 1644, что "под теплом и холодом следует понимать не что иное, как ускорение и замедление материальных частиц". Ньютон, расходившийся с теорией Декарта почти по всем вопросам, в этом пункте был с ней согласен. Хорошо известно, что движение тел при наличии трения порождает тепло и, наоборот, тепло может порождать движение, как это происходит в паровой машине и в двигателе внутреннего сгорания. Возникает вопрос: сколько работы может совершить тепловая машина, если подвести к ней заданное количество тепла? Ответить на этот вопрос весьма трудно, и в его рассмотрении необходимо выделить два этапа. Первое положение, которое мы должны отметить, - то, что совершение тепловой машиной некоторой работы сопровождается исчезновением определенного количества тепла. Говоря о механической работе, совершаемой машиной, пионер в этой области французский физик Н.Карно (1796-1832) употреблял термин "движущая сила". В записной книжке, обнаруженной после смерти Карно в 1878, говорилось: "Тепло может быть колебательным движением частиц. Если это так, то количество тепла есть не что иное, как механическая энергия, затраченная на приведение частиц в колебательное движение ... Таким образом, можно сформулировать общий принцип, согласно которому количество движущей силы в природе неизменно; точнее говоря, она не создается и не исчезает". Этот принцип имеет для физики огромное значение. Он называется законом сохранения энергии, а в контексте данного раздела - первым началом термодинамики. Слово "энергия", введенное в научный оборот Т.Юнгом в 1807, здесь имеет смысл "полного количества энергии", которое остается постоянным и включает в себя тепловую, кинетическую и все прочие формы энергии, которые встретятся нам в дальнейшем. Не стремясь к особой строгости, можно определить энергию как способность совершать работу, а ее мерой, какую бы форму ни принимала энергия, можно считать количество механической работы, которой энергия эквивалентна. Карно удалось найти численное выражение эквивалентности тепла и работы. В современных единицах полученный им результат таков: 3,7 джоуля эквивалентно 1 калории (более точное значение равно 4,19). То же самое открытие было сделано врачом Ю. Майером (1814-1878), заметившим изменения в интенсивности обмена веществ (как мы сказали бы это сейчас) у моряков, совершавших плавание в экваториальных водах. В 1842 Майер пришел к заключению, что механический эквивалент одной калории равен 3,85 джоуля, но его главной заслугой было глубокое интуитивное уяснение важности и универсальности нового принципа, позволившее ему применять закон сохранения энергии в столь разных областях, как физиология, небесная механика и теория приливов. Однако самый существенный вклад в развитие принципа сохранения энергии внес Дж.Джоуль (1818-1889). В 1843-1848 он провел серию опытов по изучению взаимных превращений электрической, тепловой, механической и внутренней энергии и на основании полученных данных заключил, что механический эквивалент тепла составляет от 4,25 до 4,60. Тщательные измерения Джоуля вооружили противников теории калорической жидкости многочисленными весомыми аргументами, и эта теория оказалась окончательно опровергнутой: тепло как вид энергии может возникать и исчезать, но при этом общее количество энергии в мире остается неизменным. Для установления первого начала термодинамики потребовалось столь много времени потому, что существует еще один принцип, ограничивающий величину работы, которую можно совершить при данном количестве тепла. Этот принцип тоже был открыт Карно и изложен им в тоненькой брошюрке Рассуждения о движущей силе огня (Reflexions sur la puissance motrice de feu, 1824). В ней Карно показал, что если тепло подводится к машине при температуре T1, а отводится - при температуре T2 (это могут быть температуры, при которых водяной пар поступает в паровую машину и отводится от нее), то существует некий максимум работы, которую может совершить машина при данном количестве тепла. Этот максимум всегда меньше полного количества тепла и определяется только величинами T1 и T2, независимо от того, какое вещество переносит тепло. Из закона сохранения энергии следует, что часть тепла, подводимого к машине, уходит с отработавшим теплоносителем, оставаясь неиспользованным. Чем ниже температура теплоносителя, тем труднее использовать его энергию на совершение работы. В килограмме воды при комнатной температуре больше тепловой энергии, чем в 10 г пара, но энергию последнего значительно легче извлечь. Таким образом, в результате любого превращения энергии в работу с теплоносителем уходит какое-то количество менее "полезной" энергии, и никакой компенсирующий процесс не может увеличить ее "полезность". В математической форме это положение выразил Р.Клаузиус (1822-1888), введя величину, которую он назвал энтропией и которая является мерой "бесполезности" (с точки зрения совершения работы) энергии. Любой процесс, в результате которого тепло превращается в работу, сопровождается повышением энтропии окружающей среды. Было установлено, что любая попытка уменьшить энтропию приводит к еще большему ее увеличению где-нибудь в другом месте. Ныне этот принцип называется вторым началом термодинамики. Содержание всей своей работы Клаузиус сформулировал в виде двустрочия, помещенного в конце статьи:

Энергия мира постоянна. Энтропия мира стремится к максимуму.

Этот максимум отвечает состоянию, в котором вся материя будет иметь одну и ту же температуру и нигде не будет "полезной" энергии. Но уже задолго до того, как будет достигнуто такое состояние, жизнь станет невозможна. Пессимистический интеллектуальный климат конца 19 в. во многом связан с открытием этих двух абсолютных ограничений для будущего человечества.

Молекулярно-кинетическая теория. Развитая в трудах Клаузиуса, Кельвина (1824-1907) и их последователей наука термодинамика преуспела в установлении связей между множеством различных физических и химических явлений на основе первого и второго начал термодинамики, однако существуют пределы, за которыми столь общие утверждения уже не в силах объяснить происходящее. Необходимо было выяснить, каковы размеры частиц вещества и как они движутся. Не зная этого, невозможно, например, предсказать, при какой температуре будет плавиться данное твердое вещество, каковы его скрытая теплота плавления и электрические свойства. В общую схему термодинамики необходимо было включить законы, которым подчиняется движение отдельных молекул. Проблема, с которой столкнулись здесь ученые, была несравненно более трудной, чем ранее. Молекулы слишком малы, чтобы их можно было наблюдать непосредственно, и выводы можно делать, опираясь только на коллективные свойства систем, состоящих из миллиардов частиц. Первый шаг в создании молекулярно-кинетической теории сделал Д.Бернулли в своей книге по гидродинамике (Hydrodynamica sive de viribus et motibus fluidorum commentarii, 1738). Бернулли принял, что газ состоит из чрезвычайно малых частиц, которые движутся быстро и свободно, если не считать столкновений. Эти частицы осыпают стенки сосуда ударами; каждый такой удар слишком слаб, чтобы его можно было ощутить, но огромное число ударов проявляется как постоянное давление. Затем путем рассуждений, неявно опирающихся на законы Ньютона, Бернулли пришел к выводу, что если медленно сжать газ, не изменяя скоростей движения частиц, то давление повысится, так что произведение давления на объем останется постоянным. Именно это соотношение для газа, сжимаемого при постоянной температуре, экспериментально открыл Р.Бойль в 1660. Бернулли указал также, что нагревание газа должно приводить к увеличению скорости частиц, а тем самым - к повышению давления вследствие увеличения числа и силы ударов частиц о стенки сосуда. Десятью годами позднее аналогичные идеи были высказаны русским ученым М.В.Ломоносовым, который дополнительно указал на то, что если верхнего предела для скоростей молекул газа, а следовательно, и для температуры в принципе не существует, то нижний предел - нулевая скорость - существует всегда, следовательно, должен существовать нижний предел температуры, ниже которого ничего нельзя охладить. Ныне этот предел называют абсолютным нулем. Примечательно, что эти соображения обратили на себя внимание лишь 120 лет спустя, а потому ощутимого влияния на становление молекулярно-кинетической теории практически не оказали. Вместо этого физики и математики на протяжении столетия боролись с ложным представлением Ньютона о взаимном отталкивании всех атомов. Здесь нужно упомянуть одну из самых малоизвестных в истории науки фигур - Дж.Уотерсона (1811-1883). Инженер и учитель, Уотерсон опубликовал в 1843 довольно неясно написанную книгу, прочитанную лишь немногими, в которой изложил некоторые соображения о свойствах газа, состоящего из быстро движущихся молекул. В 1845 он представил в Королевское общество подробную статью, которая, однако, была отвергнута как непригодная для публикации. По мнению одного из рецензентов, статья Уотерсона - "нонсенс, неприемлемый даже для публичного прочтения". Впоследствии Уотерсону удалось все же опубликовать некоторые из своих работ, но они остались без внимания. Уотерсон прожил довольно долго и стал свидетелем того, как другие удостоивались похвал и признания за открытия, которые гораздо раньше сделал он сам. И все же он не дожил до того времени, когда к тем же выводам пришел Дж.Рэлей в 1891, отдавший должное его трудам. В 1856 к идеям Бернулли ученые вернулись снова. А.Крониг (1822-1879), годом позже Клаузиус и в 1860 Дж.Максвелл (1831-1879), великолепно владевший математическим аппаратом, на основе законов Ньютона предприняли систематический анализ газа из частиц, слишком малых, чтобы их можно было видеть, и взаимодействующих при участии сил, зависимость которых от расстояния могла быть задана лишь в самом общем виде. Так была заложена основа кинетической теории газов, или молекулярно-кинетической теориивопрос о природе молекул и их отношении к структуре вещества внес ясность в начале 19 в.

Полезные сервисы