Толковый словарь
КОМПЬЮ́ТЕР - сущ., м., употр. сравн. часто
Морфология: (нет) чего? компью́тера, чему? компью́теру, (вижу) что? компью́тер, чем? компью́тером, о чём? о компью́тере; мн. что? компью́теры, (нет) чего? компью́теров, чему? компью́терам, (вижу) что? компью́теры, чем? компью́терами, о чём? о компью́терах
Компьютер - это электронная машина, которая способна хранить и обрабатывать большое количество информации.
Персональный компьютер. | Портативный компьютер. | Мультимедийный компьютер. | Работать на компьютере. | Связь с банком осуществляется через компьютер.
компью́терный прил.
Компьютерная сеть. | Компьютерный магазин. | Компьютерные игры.
Толковый словарь Ожегова
Популярный словарь
Компьютер
[тэ], -а, м.
Одно из названий электронной вычислительной машины.
Работать на компьютере.
Компьютер нового поколения.
Родственные слова:
компью́терный, компьютериза́ция
Этимология:
От английского computer (← лат. computare ‘вычислять’, ‘считать’). В русском языке - со второй половины ХХ в.
Энциклопедический комментарий:
Первые механические счетные машины, далекие предшественники современных компьютеров, были изготовлены В. Шиккардом и Б. Паскалем (XVII в.). Однако их распространение началось лишь в конце XIX в. Настоящая же компьютерная революция произошла в середине ХХ в. Появившиеся в тот период громоздкие ЭВМ первых поколений содержали огромное число вакуумных ламп и механических частей. Идея микропрограммного управления находит свое практическое воплощение с появлением микропроцессоров, к которым и восходит история микрокомпьютеров, явившихся блестящим достижением развития микроэлектроники. Среди различных вычислительных систем, созданных на базе микропроцессоров, микрокомпьютеры выделяются своими особенностями: габаритами, энергопотреблением, надежностью.
Словарь существительных
Энциклопедический словарь
КОМПЬЮ́ТЕР -а; м. [англ. computer] Электронно-вычислительная машина. Компьютеры пятого поколения. Персональный к. Работать с компьютером.
◁ Компью́терный, -ая, -ое. К-ая техника. К-ое устройство. К-ое обслуживание технологических линий. К. игры (программы, созданные для развлечения, забавы).
* * *
компью́тер (англ. computer, от лат. computo - считаю), то же, что ЭВМ; термин, получивший распространение в научно-популярной и научной литературе, является транскрипцией английского слова computer, что означает вычислитель.
* * *
КОМПЬЮТЕР - КОМПЬЮ́ТЕР (англ. computer, от лат. computo - считаю), машина для приема, переработки, хранения и выдачи информации в электронном виде, которая может воспринимать и выполнять сложные последовательности вычислительных операций по заданной инструкции - программе (см. ПРОГРАММА (для ЭВМ)) .
С начала 1990-х годов термин «компьютер» вытеснил термин «электронная вычислительная машина (см. ЭЛЕКТРОННАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА)» (ЭВМ), которое, в свою очередь, в 1960-х годах заменило понятие «цифровая вычислительная машина (см. ЦИФРОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЦВМ))» (ЦВМ). Все эти три термина в русском языке считаются равнозначными. Само слово «компьютер» является транскрипцией английского слова computer, что означает вычислитель. Английское понятие «computer» гораздо шире, чем понятие «компьютер» в русском языке. В английском языке компьютером называют любое устройство, способное производить математические расчеты, вплоть до логарифмической линейки (см. ЛОГАРИФМИЧЕСКАЯ ЛИНЕЙКА), но чаще в это понятие объединяют все типы вычислительных машин, как аналоговые (смотри Аналоговые вычислительные машины (см. АНАЛОГОВАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА)), так и цифровые.
Хотя компьютеры создавались для численных расчетов, оказалось, что они могут обрабатывать и другие виды информации, так как практически все виды информации могут быть представлены в цифровой форме. Для обработки различной информации компьютеры снабжаются средствами для ее преобразования в цифровую форму и обратно. Поэтому с помощью компьютера можно производить не только численные расчеты, но и работать с текстами, рисунками, фотографиями, видео, звуком, управлять производством и транспортом, осуществлять различные виды связи. Компьютеры превратились в универсальные средства для обработки всех видов информации, используемых человеком.
Принципы работы компьютера
При создании первых вычислительных машин в 1945 математик Джон фон Нейман (см. НЕЙМАН Джон) описал основы конструкции компьютера. Согласно принципам фон Неймана, компьютер должен иметь следующие устройства:
Арифметическо-логическое устройство - для непосредственного осуществления вычислений и логических операций.
Устройство управления - для организации процесса управления программ.
Запоминающее устройство (память) - для хранения программ и информации.
Внешние устройства - для ввода и вывода информации.
Подавляющее большинство компьютеров в своих основных чертах соответствует принципам фон Неймана, но схема устройства современных компьютеров несколько отличается от классической схемы. В частности, арифметическо-логическое устройство и устройство управления, как правило, объединены в центральный процессор. Многие быстродействующие компьютеры осуществляют параллельную обработку данных на нескольких процессорах.
Компьютерная информация хранится в электронном виде в различных запоминающих устройствах, которые называют компьютерной памятью. Для долговременного хранения информации используются постоянные носители компьютерной памяти, которые служат при вводе данных в компьютер и при выводе результатов его работы. Для хранения выполняемых в данный момент программ и промежуточных данных используется оперативная память компьютера, которая работает значительно быстрее постоянных носителей памяти.
В компьютерах используется двоичная система счисления, которая основана на двух цифрах,«0» и «1». Информация любого типа может быть закодирована с использованием двух цифр и помещена в оперативную или постоянную память компьютера. Использование двоичной системы счисления позволяет сделать устройство компьютера максимально простым. Впервые принцип двоичного счисления был сформулирован в 17 веке немецким математиком Готфридом Лейбницем (см. ЛЕЙБНИЦ Готфрид Вильгельм).
Для обозначения двоичных цифр применяется термин бит - сокращение английского словосочетания «двоичная цифра» (binary digit - bit). Для передачи и хранения информации применяют восьмибитовые коды - байты (byte). Существует 256 восьмибитовых чисел. Этого достаточно для кодирования всех заглавных и строчных букв национальных алфавитов, цифр, знаков препинания, символов и служебных кодов, используемых при передаче информации.
В байтах измеряют количество информации. В одном байте достаточно информации для представления одной буквы алфавита или двух десятичных цифр. Килобайт (Кбайт) равен 210 байт = 1024 байтам, мегабайт (1 Мбайт = 1024 Кбайт = 1048576 байт), гигабайт (1 Гбайт = 1024 Мбайт = 1073741824 байт). Современные носители информации имеют емкость до нескольких гигабайт.
Работа компьютера обеспечивается, с одной стороны, аппаратными устройствами, а с другой - программами. Аппаратное обеспечение включает в себя внутренние компоненты (прежде всего интегральные микросхемы, в том числе процессоры, а также системные и интерфейсные платы) и внешние устройства (мониторы, принтеры, модемы, акустические системы). Компьютерные программы подразделяются на три категории:
Прикладные программы, которые непосредственно выполняют необходимые пользователю компьютера работы (редактирование текстов, обработка информационных массивов, просмотр видео, пересылка сообщений).
Системные программы, особую роль среди которых играет операционная система - программа, управляющая компьютером, запускающая другие программы и выполняющая сервисные функции при работе компьютера. Другие сервисные программы обычно выполняют различные вспомогательные функции - создают резервные копии используемой информации, проверяют работоспособность устройств компьютеров.
Инструментальные программы (системы программирования), которые помогают создавать новые программы для компьютера.
Типы компьютеров
Весь спектр современных вычислительных систем можно разделить на три больших класса: миникомпьютеры (см. МИНИКОМПЬЮТЕР)и микрокомпьютеры (см. МИКРОКОМПЬЮТЕР), мейнфреймы (см. МЕЙНФРЕЙМ), суперкомпьютеры (см. СУПЕРКОМПЬЮТЕР). В настоящее время вычислительные системы различают прежде всего по функциональным возможностям.
Основными признаками миникомпьютеров и микрокомпьютеров является шинная организация системы, высокая стандартизация аппаратных и программных средств, ориентация на широкий круг потребителей. Микрокомпьютер, или персональный компьютер (см. ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР), появился в середине 1970-х годов. Его цена и размеры были во много раз меньше, чем у наиболее распространенных в то время больших вычислительных машин, и предназначен он был для одновременной работы с одним пользователем, тогда как большие компьютеры, как правило, поддерживают одновременную работу многих пользователей.
За двадцать лет развития персональные компьютеры превратились в мощные высокопроизводительные устройства по обработке самых различных видов информации, которые качественно расширили сферу применения вычислительных машин. Современные персональные компьютеры имеют практически те же характеристики, что и миникомпьютеры 1980-х годов. Мощность микрокомпьютера позволяет его использовать в качестве сервера для организации работы многих персональных компьютеров в сети.
Персональные компьютеры выпускают в стационарном (настольном) и в портативном исполнении. Стационарные микрокомпьютеры в большинстве случаев состоят из отдельного системного блока, в котором размещаются внутренние устройства и узлы, а также из отдельных внешних устройств (монитор (см. МОНИТОР компьютерный), клавиатура (см. КЛАВИАТУРА (компьютерная)), манипулятор-мышь (см. МЫШЬ компьютерная)), без которых немыслимо использование современных компьютеров. При необходимости к системному блоку микрокомпьютера могут подсоединяться дополнительные внешние устройства (принтер (см. ПРИНТЕР), сканер (см. СКАНЕР) , акустические системы, джойстик).
Портативные персональные компьютеры известны прежде всего в блокнотном (ноутбук (см. НОУТБУК)) исполнении. В ноутбуке все внешние и внутренние устройства соединены в одном корпусе. Так же как и к стационарному микрокомпьютеру, к ноутбуку могут быть подсоединены дополнительные внешние устройства.
Различают также IBM PC-совместимые микрокомпьютеры (читается Ай-Би-Эм Пи-Си) и IBM PC-несовместимые микрокомпьютеры. В конце 1990-х годов IBM PC-совместимые микрокомпьютеры составляли более девяноста процентов мирового компьютерного парка. IBM PC был создан американской фирмой Ай-Би-Эм (см. АЙ-БИ-ЭМ) (IBM) в августе 1981; при его создании был применен принцип открытой архитектуры, который означает применение в конструкции при сборке компьютера готовых блоков и устройств, а также стандартизацию способов соединения компьютерных устройств.
Принцип открытой архитектуры способствовал широкому распространению IBM PC-совместимых микрокомпьютеров-клонов. Их сборкой занялось множество фирм, которые в условиях свободной конкуренции смогли снизить в несколько раз цену на микрокомпьютеры, энергично внедряли в производство новейшие технические достижения. Пользователи, в свою очередь, получили возможность самостоятельно модернизировать свои микрокомпьютеры и оснащать их дополнительными устройствами сотен производителей.
Единственный из IBM PC-несовместимых микрокомпьютеров, получивший относительно широкое распространение, - компьютер Макинтош (Macintosh). Начиная с 1980-х годов микрокомпьютеры Макинтош американской фирмы Эпл (Apple) составляли достойную конкуренцию IBM PC-совместимым микрокомпьютерам, так как, несмотря на свою дороговизну, они обеспечивали пользователю наглядный графический интерфейс, были значительно проще в эксплуатации и обладали большими возможностями. Начиная с 1990-х годов разница между возможностями Макинтошей и IBM PC все более нивелируется. Последние были оснащены операционными системами с графическим интерфейсом (Windows, OS/2), многочисленными рассчитанными на них прикладными программами. В настоящее время Макинтоши удерживают лидирующие позиции лишь на рынке настольных издательских систем.
Во второй половине 1990-х годов в связи с бурным развитием глобальных компьютерных сетей (см. КОМПЬЮТЕРНАЯ СЕТЬ) появляется новый тип персонального компьютера - сетевой компьютер, который предназначен только для работы в компьютерной сети. Сетевому компьютеру не нужны собственная дисковая память, дисководы. Операционную систему, программы и информацию он будет черпать в сети. Предполагается, что сетевые компьютеры будут значительно дешевле настольных персональных компьютеров и постепенно заменят их в фирмах, работающих со специализированными приложениями (телефонная связь, бронирование билетов), и в образовательных учреждениях.
Отдельным видом микрокомпьютера считаются карманные компьютеры (электронные органайзеры, или палмтопы (см. КАРМАННЫЙ ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР)), небольшие устройства весом до 500 граммов и умещающиеся на кисти одной руки. Большинство палмтопов не являлись IBM PC-совместимыми микрокомпьютерами. Лишь в конце 1990-х годов появились карманные компьютеры с операционными системами, позволяющими вести обмен информацией с другими типами компьютеров, подключать палмтопы к глобальным компьютерным сетям. В карманных компьютерах нет ни жесткого диска, ни дисководов. Некоторые из них имеют миниатюрную клавиатуру, но есть модели и без клавиатуры - управление их работой осуществляется нажатиями или рисованием специальным пером прямо по экрану. Наиболее распространены карманные компьютеры фирм Эпл (Apple), Хьюлетт-Паккард (см. ХЬЮЛЕТТ-ПАККАРД)(Hewlett-Packard), Сони (см. СОНИ (компания)) (Sony), Псион (Psion).
Рабочие станции развились из младших моделей миникомпьютеров как переходный вид между микрокомпьютером и миникомпьютером. Внешне они не отличались от стационарных микрокомпьютеров и с течением времени разница между ними нивелировалась. В 1980-е годы к рабочим станциям подсоединялись терминалы - отдельные рабочие места с клавиатурами и мониторами. Терминалы позволяли использовать рабочие станции нескольким человекам.
Позднее на рабочих станциях стал работать один пользователь, и они стали отличаться от персональных микрокомпьютеров лишь большей мощностью. В настоящее время рабочими станциями называют офисные персональные микрокомпьютеры, используемые для интенсивных вычислений. Обычно это работа с профессиональными научными и инженерными прикладными программами, разработка программного обеспечения. Существуют специализированные графические рабочие станции для работы с трехмерной графикой.
Миникомпьютеры занимают промежуточное положение между большими вычислительными машинами и микрокомпьютерами. В большинстве случаев в миникомпьютерах используется архитектура RISC и UNIX и они играют роль серверов, к которым подключаются десятки и сотни терминалов или микрокомпьютеров. Миникомпьютеры используются в крупных фирмах, государственных и научных учреждениях, учебных заведениях, компьютерных центрах для решения задач, с которыми не способны справиться микрокомпьютеры, и для централизованного хранения и переработки больших объемов информации. Основными производителями миникомпьютеров являются фирмы Ай-Ти-энд-Ти (AT&T), Интел (см. ИНТЕЛ) (Intel), Хьюлетт-Паккард (Hewlett-Packard), Digital Equipment.
Мейнфреймы - это универсальные, большие компьютеры общего назначения. Они занимали господствующие позиции на компьютерном рынке до 1980-х годов. Изначально мейнфреймы были предназначены для обработки огромных объемов информации. Наиболее крупный производитель мейнфреймов - фирма Ай-Би-Эм (IBM). Мейнфреймы отличаются исключительной надежностью, высоким быстродействием, очень большой пропускной способностью устройств ввода и вывода информации. К ним могут подсоединяться тысячи терминалов или микрокомпьютеров пользователей. Мейнфреймы используются крупнейшими корпорациями, правительственными учреждениями, банками.
С расцветом микрокомпьютеров и миникомпьютерных систем значение мейнфреймов сократилось. Однако компания Ай-Би-Эм (IBM) перешла к производству компьютеров на новой концептуальной архитектуре ESA/390, которая позволяет использовать мейнфреймы в качестве центра неоднородного вычислительного комплекса.
Стоимость мейнфреймов относительно высока: один компьютер с пакетом прикладных программ оценивается минимум в миллион долларов. Несмотря на это, они активно используются в финансовой сфере и оборонном комплексе, где занимают от 20 до 30 процентов компьютерного парка, так как использование мейнфреймов для централизованного хранения и обработки достаточно большого объема информации обходится дешевле, чем обслуживание распределенных систем обработки данных, состоящих из сотен и тысяч персональных компьютеров.
Суперкомпьютеры необходимы для работы с приложениями, требующими производительности как минимум в сотни миллиардов операций с плавающей точкой в секунду. Столь громадные объемы вычислений нужны для решения задач в аэродинамике, метеорологии, физике высоких энергий, геофизике. Суперкомпьютеры нашли свое применение и в финансовой сфере при обработке больших объемов сделок на биржах. Их отличает высокая стоимость - от пятнадцати миллионов долларов, поэтому решение о покупке таких машин нередко принимается на государственном уровне, развита система торговли подержанными суперкомпьютерами.
История компьютера
История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак (см. АБАК (счеты)). В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 Блез Паскаль (см. ПАСКАЛЬ Блез) сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.
Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 английским математиком Чарлзом Бэббиджем (см. БЭББИДЖ Чарльз). Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Управление такой машиной должно было осуществляться программным путем.
Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века. В 1888 американский инженер Герман Холлерит (см. ХОЛЛЕРИТ Герман) сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В 1890 изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.
В 1896 Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (см. ИНТЕРНЭШНЛ БИЗНЕС МЭШИНС) (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники.
Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В феврале 1944 на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина «Марк-1». Это был монстр весом около 35 тонн. «Марк-1» был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо четыре секунды.
Но электромеханические реле работали недостаточно быстро. Поэтому уже в 1943 американцы начали разработку альтернативного варианта - вычислительной машины на основе электронных ламп. В 1946 была построена первая электронная вычислительная машина ENIAC. Ее вес составлял 30 тонн, она требовала для размещения 170 квадратных метров площади. Вместо тысяч электромеханических деталей ENIAC содержал 18 тысяч электронных ламп. Считала машина в двоичной системе и производила пять тысяч операций сложения или триста операций умножения в секунду.
Машина на электронных лампах работала существенно быстрее, но сами электронные лампы часто выходили из строя. Для их замены в 1947 американцы Джон Бардин (см. БАРДИН Джон), Уолтер Браттейн (см. БРАТТЕЙН Уолтер)и Уильям Брэдфорд Шокли (см. ШОКЛИ Уильям)предложили использовать изобретенные ими стабильные переключающие полупроводниковые элементы -транзисторы (см. ТРАНЗИСТОР) .
Совершенствование первых образцов вычислительных машин привело в 1951 к созданию компьютера UNIVAC, предназначенного для коммерческого использования. UNIVAC стал первым серийно выпускавшимся компьютером, а его первый экземпляр был передан в Бюро переписи населения США.
С активным внедрением транзисторов в 1950-х годах связано рождение второго поколения компьютеров. Один транзистор был способен заменить 40 электронных ламп. В результате быстродействие машин возросло в 10 раз при существенном уменьшении веса и размеров. В компьютерах стали применять запоминающие устройства из магнитных сердечников, способные хранить большой объем информации.
В 1959 были изобретены интегральные микросхемы (см. ИНТЕГРАЛЬНАЯ СХЕМА) (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволяет сократить пути прохождения тока при переключениях, и скорость вычислений повышается в десятки раз. Существенно уменьшаются и габариты машин. Появление чипа знаменовало собой рождение третьего поколения компьютеров.
К началу 1960-х годов компьютеры нашли широкое применение для обработки большого количества статистических данных, производства научных расчетов, решения оборонных задач, создания автоматизированных систем управления. Высокая цена, сложность и дороговизна обслуживания больших вычислительных машин ограничивали их использование во многих сферах. Однако процесс миниатюризации компьютера позволил в 1965 американской фирме Digital Equipment выпустить миникомпьютер PDP-8 ценой в 20 тысяч долларов, что сделало компьютер доступным для средних и мелких коммерческих компаний.
В 1970 сотрудник компании Intel Эдвард Хофф создал первый микропроцессор, разместив несколько интегральных микросхем на одном кремниевом кристалле. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. С микропроцессом появляются микрокомпьютеры - компьютеры четвертого поколения, способные разместиться на письменном столе пользователя.
В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера - вычислительной машины, предназначенной для частного пользователя. Во второй половине 1970-х годов появляются наиболее удачные образцы микрокомпьютеров американской фирмы Эпл (Apple), но широкое распространение персональные компьютеры получили с созданием в августе 1981 фирмой Ай-Би-Эм (IBM) модели микрокомпьютера IBM PC. Применение принципа открытой архитектуры, стандартизация основных компьютерных устройств и способов их соединения привели к массовому производству клонов IBM PC, широкому распространению микрокомпьютеров во всем мире.
За последние десятилетия 20 века микрокомпьютеры проделали значительный эволюционный путь, многократно увеличили свое быстродействие и объемы перерабатываемой информации, но окончательно вытеснить миникомпьютеры и большие вычислительные системы - мейнфреймы они не смогли. Более того, развитие больших вычислительных систем привело к созданию суперкомпьютера - суперпроизводительной и супердорогой машины, способной просчитывать модель ядерного взрыва или крупного землетрясения. В конце 20 века человечество вступило в стадию формирования глобальной информационной сети, которая способна объединить возможности различных компьютерных систем.
Большой энциклопедический словарь
Академический словарь
Энциклопедия Кольера
КОМПЬЮТЕР - устройство, выполняющее математические и логические операции над символами и другими формами информации и выдающее результаты в форме, воспринимаемой человеком или машиной. Первые компьютеры использовались главным образом для расчетов, т.е. сложения, вычитания, умножения, деления и т.д. Сегодня компьютеры применяются для решения многочисленных и разнообразных других задач, таких, как обработка текста, графика и переработка больших массивов информации. Машины, которые выполняют простые вычисления, обычно называются калькуляторами и работают, как правило, по жестким алгоритмам с использованием кнопок и клавиш. Хотя зачастую компьютеры управляются командами, вводимыми с клавиатуры, их основные функции обычно регулируются командами, хранимыми внутри машины, и известными как программное обеспечение, или программы. Действие как калькуляторов, так и компьютеров сводится к манипулированию символами некоторого вида.
ТИПЫ КОМПЬЮТЕРОВ
Существуют два основных типа компьютеров: аналоговые и цифровые. Они различаются принципом построения, способом внутреннего представления информации и реакцией на команды. Аналоговый компьютер работает, имитируя то, что он вычисляет; он делает это, непрерывно варьируя свои характеристики. Такая реакция представляет собой аналог процесса, воплощенного в задаче, с которой он имеет дело. В универсальном аналоговом компьютере имеются резисторы, конденсаторы и катушки индуктивности, между которыми могут устанавливаться соединения, отражающие условия той или иной задачи. Что касается цифровых компьютеров, то они изменяют величины двоичных чисел, или битов, которые представляют элементы задачи, подлежащей решению. Числа в цифровом компьютере могут быть использованы также для представления других символов, таких, как буквы, знаки "плюс" и "минус" и т.п. Цифровые компьютеры, в отличие от аналоговых, работают конечными шагами. Гибридные компьютеры, как следует из их названия, соединяют в себе характеристики упомянутых двух основных типов.
Аналоговые компьютеры. Существуют разнообразные виды таких компьютеров.
Аналоговые компьютеры "программируются" заданием физических характеристик их компонентов. В некоторых компьютерах это делается обычно путем включения или исключения тех или иных компонентов из цепей, соединяющих эти компоненты проводами, и изменением параметров переменных сопротивлений, емкостей и индуктивностей в цепях. Программа работы, например, автомобильной трансмиссии изменяется перемещением ручки переключения передач, что заставляет жидкость в гидроприводе менять направление течения, производя нужный результат. Кроме технических средств, таких, как автоматические трансмиссии и музыкальные синтезаторы, наблюдается тенденция поручать аналоговым компьютерам выполнение специфических вычислительных задач практического плана. Существуют большие универсальные аналоговые компьютеры.
Цифровые компьютеры. Почти все цифровые компьютеры являются электронными. Все они имеют в какой-то степени аналогичные компоненты для получения, сортировки, обработки и передачи информации и используют относительно небольшое число базовых функций для выполнения своих задач. Наиболее важными характеристиками цифровых компьютеров являются быстродействие, способность работать повторяющимися способами, воспроизводимость результатов и универсальность. Благодаря этим характеристикам цифровые компьютеры находят широчайшее применение в диапазоне от наручных часов до космических кораблей. Существуют четыре основных вида цифровых компьютеров: суперкомпьютеры, большие компьютеры, миникомпьютеры и микрокомпьютеры. (Персональный компьютер можно рассматривать как универсальный микрокомпьютер.) Все цифровые компьютеры имеют примерно одинаковое устройство, но различаются размерами и скоростью выполнения вычислений.
Персональные компьютеры. Персональные компьютеры меньше по размерам и менее разнообразны по сравнению с универсальными цифровыми. Однако персональных компьютеров больше, чем универсальных цифровых компьютеров всех других типов, вместе взятых, и их доля постоянно возрастает. Поэтому стоит более подробно остановиться на основных характеристиках персональных компьютеров.
ПЕРСОНАЛЬНЫЙ КОМПЬЮТЕР
Обычно персональный компьютер содержит одиночный микропроцессорный чип, который служит его центральным процессором (см. ниже). Современные персональные компьютеры имеют более ограниченные возможности, чем новейшие миникомпьютеры и большие компьютеры, но уже превосходят по мощности большие компьютеры 1980-х годов. Ограничения большей частью связаны со стоимостью: по мере снижения стоимости базовых компонентов выпускаются более мощные персональные компьютеры. Мощный и более дорогой тип микрокомпьютера, названный рабочей станцией, появился в середине 1980-х годов. На этих станциях применяются самые быстрые микропроцессоры и графические дисплеи высокого разрешения. Многие из них используют RISC-процессоры (см. ниже). По мере роста возможностей персональных компьютеров различие между персональным компьютером и рабочей станцией, как и между микрокомпьютером и миникомпьютером, стирается. Многое из того, что делают большие вычислительные машины, может выполняться и на персональных компьютерах, хотя, как правило, не так быстро. Большие компьютеры требуются для некоторых сложных функций обработки информации; для других, более простых функций, таких, как рутинная обработка текстов или документов, издательские процедуры и простые бухгалтерские операции, персональные компьютеры зачастую более эффективны, чем большие машины.
АРХИТЕКТУРА
Термин "архитектура" по отношению к компьютеру во многом означает то же самое, что и по отношению к сооружению. Например, цифровые компьютеры, подобно большинству зданий, имеют общую базовую архитектуру. Базовая схема для большинства цифровых компьютеров была предложена в конце 1940-х годов Дж.фон Нейманом. Компьютер, подобно зданию, является системой, т.е. логическим соединением основных блоков, каждый из которых имеет специфическое назначение. Часто эти укрупненные блоки называются подсистемами и состоят из меньших блоков, служащих какой-то конкретной цели, которые зачастую включают в себя еще меньшие блоки и компоненты. В состав цифрового компьютера входит пять основных подсистем: устройство управления, арифметико-логическое устройство, подсистемы памяти, ввода-вывода и внутренних связей.
Память. Компьютерная память бывает двух видов: основная и внешняя. Основная память устроена подобно почтовому офису: она состоит из микроскопических ячеек, каждая из которых имеет свой уникальный адрес, или номер. Элемент информации сохраняется в памяти с назначением ему некоторого адреса. Чтобы отыскать эту информацию, компьютер "заглядывает" в ячейку и копирует ее содержимое в свой "командный" пункт. Емкость отдельной ячейки памяти называется словом. Обычно длина слова для персонального компьютера составляет 16 двоичных цифр, или битов. Длина в 8 бит называется байтом. Типичные большие компьютеры оперируют словами длиной от 32 до 128 бит (от 4 до 16 байт), тогда как миникомпьютеры имеют дело со словами в 16-64 бит (2-8 байт). Микрокомпьютеры используют, как правило, слова длиной 8, 16 или 32 бит (1, 2 или 4 байт соответственно). Внешняя память обычно располагается вне центральной части компьютера. Поскольку внешняя память работает медленнее основной, она используется, главным образом для хранения информации, которая не требуется компьютеру срочно. Чтобы использовать внешнюю память, "командный пункт" компьютера обычно передает нужное содержимое части внешней памяти в основную. Основная память ограничена по объему, поэтому конструкторы компьютеров стремятся хранить во внешней памяти как можно больше информации.
Центральный процессор. Ключевыми подсистемами компьютера являются управляющее устройство (УУ) и арифметико-логическое устройство (АЛУ). Вместе они составляют центральный процессор (ЦП) - "командный пункт". В ЦП компьютер манипулирует данными, хранит след своих команд и управляет остальными подсистемами. В большинстве микрокомпьютеров ЦП размещается на одиночном микроэлектронном чипе. У миникомпьютеров УУ зачастую находится на одном чипе, АЛУ - на другом, а команды, управляющие обоими этими устройствами, - на третьем. В больших компьютерах ЦП рассредоточен по многим чипам. Во всех случаях ЦП занимает сравнительно мало места.
ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР
Центральный процессор имеет дело непосредственно с программой, хранимой в основной памяти. Программа представляет собой просто перечень инструкций, указывающих компьютеру, что делать. Большинство компьютерных программ содержит два вида информации: команды и данные. Команды интерпретируются УУ, которое управляет всем, что должно быть сделано, например сложением в АЛУ. Команды поступают в УУ в форме кода операции, называемого так потому, что он сообщает компьютеру, что делать дальше. Большая часть компьютерных задач решается путем манипуляции данными: перемещения слов из одного места памяти в другое, сложения, вычитания, сравнения и изменения слов. Компоненты типичного ЦП показаны на рисунке. Обычно АЛУ выполняет следующие функции: сложение, вычитание, логические операции, сравнение и манипулирование битами. С помощью проводников АЛУ связано с рядом регистров, представляющих собой наборы схем памяти, которые действуют как временные запоминающие устройства в процессе функционирования ЦП. Обычно в компьютере имеются два набора регистров: один для использования ЦП, другой - для удержания следов команд задействованной программы. Среди регистров ЦП выделим прежде всего сумматор, который является устройством, непосредственно обслуживающим АЛУ. Самые последние результаты операций находятся, как правило, в сумматоре. Среди других регистров назовем счетчик команд (который хранит след адресов команд, подлежащих извлечению из памяти), указатель стека (который хранит след промежуточных результатов вычислений) и различные регистры общего назначения. УУ дешифрует команды, извлеченные из памяти, генерирует и выдает управляющие сигналы, необходимые для перемещения данных в компьютере, и сообщает АЛУ, что делать дальше.
Другие типы архитектуры. Хотя большинство компьютеров имеет архитектуру фон Неймана, используются и другие архитектуры. Есть два типа ЦП с архитектурой фон Неймана, обозначаемых CISC (для компьютеров со сложным набором команд) и RISC (для компьютеров с упрощенным набором команд). Традиционный ЦП относится к типу CISC, позволяющему выполнять огромное разнообразие команд; RISC имеет меньше команд, но работает быстрее. RISC-процессор больше подходит для решения таких задач, где имеются многочисленные операции при относительно простых вычислениях, например приложения с интенсивным использованием графики; CISC-процессоры более предпочтительны в универсальных приложениях. Для процессоров обоих этих типов приближается ситуация, когда скорость вычислений ограничивается необходимостью выполнять все на одном процессоре. Некоторые суперкомпьютеры, такие, как многопроцессорная машина, решают эту проблему путем использования параллельных матриц неймановских процессоров. Многопроцессорные машины используются там, где должны обрабатываться большие массивы сходных данных, например при прогнозировании погоды и в графике высокого разрешения. Параллельная машина распределяет данные между процессорами и выполняет расчеты одновременно. Еще один вид машины с параллельными процессорами - кластерный, или нейрокомпьютер, - использует очень простые микропроцессоры. Каждый из них действует подобно нейрону, отвечая на сигналы от нескольких различных входов. В нейрокомпьютере имеется сильно взаимосвязанная сеть таких микропроцессоров. Нейрокомпьютеры могут обучаться: при поступлении новых данных они настраивают реакции индивидуальных микропроцессоров и/или изменяют пути взаимосвязей. Эти компьютеры не программируются с помощью алгоритмов, используемых в других цифровых компьютерах; связи, алгоритмы отклика и законы обучения задаются программистом.
Внутренние коммуникации. Компьютер должен иметь центральный канал коммуникаций, соединяющий все основные подсистемы. Во многих компьютерах этот канал называется шиной. Многие мини- и микрокомпьютерные системы содержат соответствующую универсальную шину, которая может подключать к компьютеру различные специализированные функции. Компьютер с такой шиной можно модернизировать постепенно по мере увеличения требований или изменений технологии.
Ввод и вывод. Цель функции ввода в компьютере - преобразование поступающей извне информации (образов, звуков, нажатий клавиш, положений указателя, напряжений термопар и т.д.) в двоичные числа. Функция вывода - обратный процесс - преобразует двоичные числа в визуальные изображения, печатные знаки, звуки, управляющие напряжения и т.п. По существу, все, что измеримо и может быть преобразовано в электрический аналог двоичных чисел, может быть использовано компьютером. Все, что компьютер способен вычислить, может, в свою очередь, конвертироваться в форму, понимаемую человеком или другими машинами. Один из часто используемых вводов-выводов содержит два устройства: аналого-цифровой и цифро-аналоговый преобразователи. Первый превращает напряжения, такие, как в аналоговом компьютере, в двоичные числа; другой преобразует двоичные числа в напряжения.
АППАРАТНАЯ ЧАСТЬ КОМПЬЮТЕРА
В дальнейшем подразумевается, что все сказанное относится как к большим, так и к персональным компьютерам. Различия будут оговариваться специально. Электронные цифровые компьютеры состоят из схем двух основных типов: логических вентилей и схем памяти на триггерах. Конечно, компьютер содержит и другие типы схем, например приводы, буферы и генераторы. Но вентили и триггеры (см. ниже) выполняют ключевые логические функции компьютера. Вентиль не имеет памяти и генерирует нужный выход только при наличии соответствующих входных сигналов. Триггеры являются ключевыми элементами схем памяти. Выходное напряжение триггера изменяется с первоначального значения на другое, когда поступает определенный входной сигнал, и остается неизменным до тех пор, пока не поступит другой сигнал, переводящий триггер в первоначальное состояние. Наиболее знакомым примером триггера может служить электрический выключатель света. Предположим, свет выключен. Тогда при нажатии кнопки выключатель замыкается, и свет загорается. Нажмите кнопку еще раз - выключатель размыкается, и свет гаснет. Это эквивалент триггера с одним входом. (Триггер с двумя входами может быть представлен сдвоенным переключателем.) Положение триггера "вкл." задается сигналом "установить", положение "выкл." - сигналом "сбросить". Вычислительная техника началась с разработки электронных компьютеров; первыми были машины на электронных лампах (первое поколение ЭВМ). Лампы работают быстрее и более надежны, чем реле. Ламповые компьютеры преобладали примерно с 1944 по 1958. Второе поколение компьютеров эволюционировало в течение нескольких лет после изобретения транзистора (1947). Транзисторы миниатюрнее, надежнее и расходуют значительно меньше энергии, чем электронные лампы. Первые транзисторные компьютеры работали не намного быстрее, чем ламповые, но имели другие преимущества.
См. также ТРАНЗИСТОР. Третье поколение компьютеров началось с введения многотранзисторной формы - интегральной схемы. В интегральной схеме на кусочек подложки (как правило, кремния) помещается максимально возможное количество схемных элементов. Каждая интегральная схема начала 1960-х годов содержала четыре или пять логических вентилей. В начале 1970-х годов появились первые большие интегральные схемы (БИС). В 1980-х годах упор делался на сверхбольшие интегральные схемы (СБИС) и сверхскоростные интегральные схемы. В 1990-х годах фирма "Интел" создала чип i860XP -высокопроизводительный микропроцессор, содержащий 2,5 млн. транзисторов; этот чип одновременно обрабатывает 64 бит со скоростью 100 млн. операций в секунду. Число компонентов на чипе в среднем удваивалось каждый год начиная с 1966, и до конца века этот темп сохранился. Интегральная схема имеет немало преимуществ перед дискретным транзистором: она работает быстрее, более надежна, потребляет меньше энергии и имеет значительно меньшие размеры. Упомянутый выше чип фирмы "Интел" представляет собой прямоугольник размером приблизительно 10ґ15 мм, а соединения на нем имеют ширину 0,8 мкм. Для прорисовки этих исключительно тонких линий применяется электронный луч. Малые размеры элементов позволяют также повысить быстродействие интегральных схем. Компьютеры на электронных лампах имели быстродействие 50 000 операций в секунду. Во втором и третьем поколениях машин схемы работали в наносекундном диапазоне. Машины четвертого поколения, называемые также суперкомпьютерами, выполняют десятки или сотни миллионов операций в секунду. В машине "Крей-2", например, проблема быстродействия решается приданием ей цилиндрической формы, что позволяет минимизировать длину проводников, соединяющих ее элементы. Следующим шагом в попытках увеличить быстродействие компьютеров становится создание оптических микроэлектронных схем. Оптические схемы, в которых данные передаются световыми импульсами, используют то преимущество, что световые волны в стеклянных волокнах распространяются с меньшими задержками и искажениями, чем электронные импульсы в проводах. Применение этих методов позволит малым компьютерам иметь быстродействие и возможности современных суперкомпьютеров.
См. также ВОЛОКОННАЯ ОПТИКА.
Центральный процессор. ЦП типичного компьютера состоит из большого числа логических вентилей и триггеров. УУ использует много вентилей, чтобы выбрать способ обработки, которая должна быть выполнена в АЛУ, а также направить полученные результаты другим частям компьютера. Регистры, о которых мы рассказывали выше, представляют собой большей частью матрицы из триггеров. Наметился ряд тенденций в конструкции и производстве ЦП. В больших компьютерах и многих миникомпьютерах ЦП состоит из набора чипов, каждый из которых выполняет специальную функцию. В этих машинах каждый из основных блоков ЦП - АЛУ, УУ, микрокоманды для УУ - может находиться на одном или нескольких чипах. (Микрокоманды, по существу, сообщают УУ, какие проводники и вентили нужно соединить, чтобы выполнить команду.) Эти ЦП слишком сложны, чтобы их можно было уместить на одном чипе. Такой подход также позволяет вносить изменения в схему компьютера путем замены одного или двух чипов, а не всего ЦП. В некоторых компьютерах выполняемая задача разделяется между несколькими ЦП. Этот метод известен как параллельная обработка. Некоторые ЦП работают непосредственно в терминах языка программирования (см. ниже), а не обычной архитектуры. Ожидается увеличение разнообразия конструкций и возможностей ЦП. Вероятен также отход от традиционной архитектуры по мере роста объема и скоростей обработки. Возможно, самый большой скачок в конструировании ЦП был сделан с появлением в 1971 микропроцессора 4044 фирмы "Интел". Этот 4-разрядный микропроцессор представлял собой сравнительно медленный чип с ограниченным набором команд, но он и его наследники сделали возможным создание карманных калькуляторов и цифровых часов и привели к разработке микрокомпьютера. В 1974 появились 8-разрядные микропроцессоры, обрабатывающие по 8 бит информации одновременно. Как упоминалось раньше, микропроцессор (или другой ЦП) принимает информацию в виде "слов". Например, память компьютера по командам УУ подает в сумматор сразу 8 бит. Затем УУ добавляет, например, число 00101101 к битам в сумматоре (снова сразу все). Теперь в сумматоре находится новый набор из 8 бит. Далее УУ передает эти 8 бит в память, все сразу. На каждом из этих шагов 8 бит обрабатываются или перемещаются одновременно, но индивидуальные действия - их ввод, сложение, копирование результата - выполняются последовательно. В принципе, чем больший размер слова доступен для обработки ЦП, тем больше информации он может "проглотить" сразу и тем быстрее он выполняет свои задачи. Восьмиразрядные микропроцессоры дали жизнь микрокомпьютерам, сложным компьютерным терминалам и ряду "интеллектуальных" устройств; прогресс в вычислительной технике продолжается. В 1990-х годах имелись сотни миллионов 8- и 16-разрядных микропроцессоров, а в большинстве новых персональных компьютеров и рабочих станций использовались 32-разрядные микропроцессоры, выполняющие миллионы операций в секунду. В 1999 фирмой "Интел" выпущен высокопроизводительный микропроцессор "Пентиум III" с тактовой частотой 500 МГц, интегрированной кэш-памятью до 2 Мб и повышенными возможностями в таких сферах, как распознавание речи и трехмерная графика. Одним из логических следствий микроэлектронной технологии была разработка всего компьютера, включая память, на чипе. Конечно, для таких малых компьютеров память довольно ограниченна, но она достаточна для разработки таких устройств, как реле-регуляторы автоматического зажигания и топливных систем автомобилей и микроволновых печей, а также полноценных "карманных" компьютеров.
Устройства памяти. Основная память. Главным устройством памяти для компьютеров второго поколения и для многих больших компьютеров третьего поколения был магнитный сердечник - крохотное колечко магнитного материала размером с бусинку. С помощью тонких проводов, прошивающих колечки в вертикальном и горизонтальном направлениях, из этих сердечников вяжется сетка внутри компьютера. Каждый сердечник хранит магнитный заряд. Направление магнитного потока определяет состояние 1 или 0. Запоминающее устройство на сердечниках было изобретено в 1948 Э.Уонгом и широко использовалось в 1950-1960-х годах. Запоминающее устройство на сердечниках является энергонезависимой памятью, т.е. оно сохраняет свое содержимое даже тогда, когда электроэнергия отключается. Сердечники выполняли функции появившихся ранее ламповых триггеров и привели к появлению термина "оперативная память". Позже память на сердечниках была вытеснена микроэлектронными устройствами, однако она все еще используется в армейском оборудовании, на космических кораблях и для других специальных применений. Важным дополнением к микропроцессору является память на интегральных схемах. Существуют два основных класса этой памяти: оперативное запоминающее устройство с произвольной выборкой (ОЗУ) и постоянное запоминающее устройство (ПЗУ). ОЗУ работают быстро: микропроцессор может получать доступ к ним за 10-20 нс. Обычные коммерческие модули ОЗУ хранят до 256 Мб (1 Мб равен 1 048 576 байт). ОЗУ надежны и работают годами, выполняя миллиарды операций. ОЗУ помнят только то, что вы сообщили им в последний раз; все остальное стирается. ОЗУ потребляют довольно мало энергии, если сравнивать их с другими интегральными схемами примерно тех же размеров и плотности упаковки. Некоторые ОЗУ расходуют так мало энергии, что достаточно маленькой батарейки, чтобы активизировать или хотя бы поддерживать их память после отключения основного источника энергии. Эти ОЗУ часто используются в небольших портативных компьютерах и калькуляторах. При отключении энергии ОЗУ свою память теряет. ПЗУ же запоминает практически навсегда. ПЗУ особенно удобны для задач, которые нуждаются в неоднократном повторении одного и того же набора команд. ПЗУ работают обычно медленнее, чем ОЗУ, но зато их память постоянна и помехоустойчива. Кроме того, свой проигрыш в скорости реакции ПЗУ компенсируют плотностью упаковки. Характеристика ОЗУ и ПЗУ, именуемая произвольным доступом, относится к способности микропроцессора или другого ЦП получать доступ к любому элементу памяти в любое время. Например, если телефонный номер хранится где-нибудь в ОЗУ или ПЗУ и ЦП (через свою программу) знает, где этот номер находится, то ЦП может набрать его почти мгновенно. Важно лишь, чтобы было известно, где он находится. Не все ПЗУ имеют абсолютно постоянную память. Некоторые ПЗУ-подобные устройства обладают, так сказать, полупостоянной памятью, т.е. они помнят (даже при отключенном питании), что им сообщалось, до тех пор, пока не подвергнутся стиранию и перезаписи. Стирание осуществляется путем экспозиции чипа в ультрафиолетовых лучах высокой интенсивности (например, в стираемом ПЗУ - СПЗУ) или другими способами, как в некоторых современных чипах памяти со стиранием и записью.
Внешняя память. К внешней, или периферийной, памяти относятся магнитные ленты, магнитные диски и память на магнитных доменах. Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти. Магнитные ленты в качестве устройств внешней памяти многим знакомы по аудио- и видеомагнитофонным кассетам. И те и другие хранят аналоговые данные, т.е. сигналы, которые изменяются непрерывно, - например, от пианиссимо скрипки до мажорного звука духового инструмента рок-группы. Для использования этих носителей в компьютерах необходимо преобразовать аналоговые сигналы в цифровую форму, т.е. в сигналы, соответствующие двоичным цифрам 0 и 1. Это сравнительно дешевый и довольно медленный носитель. Тем не менее в мощных компьютерах для хранения больших объемов данных часто используют высокоскоростные многодорожечные магнитные ленты. Эти ленты удобны для резервного копирования всей информации с дисков компьютерных систем (см. ниже). По виду ленточные картриджи похожи на аудиокассеты, но предназначены для цифровой записи. Плотность записи в них выше, чем у аудиокассет, а ленты подвергаются специальному тестированию. Они используются при создании резервных копий для систем на жестких дисках. Цифровые аудиоленты также используются в качестве средства резервирования. При этом в кассете меньшего размера, чем аудиокассета, может храниться до миллиарда байт данных. Все типы ленточных запоминающих устройств имеют один основной недостаток - последовательный режим работы, т.е. лента должна прокручиваться до нужного элемента, что отнимает много времени. Требование экономии времени вынуждает пользователя обращаться к другому, более популярному средству хранения информации для небольших компьютеров, - гибкому диску, или дискете. Гибкий магнитный диск является компромиссным решением между магнитной лентой и граммофонной пластинкой. Это небольшой, тонкий и гибкий пластиковый диск, на одной или обеих сторонах которого нанесено магнитное покрытие. Диск с покрытием заключается в защитный конверт или оболочку, имеющую отверстия для доступа головки чтения/записи и двигателя дисковода. Гибкие диски "проигрываются" аналогично грампластинке, но с помощью головки магнитной записи, а не иголки. Подобно магнитной ленте, гибкий диск может формировать постоянную запись программы или данных; поскольку он допускает стирание, его содержимое может быть изменено. Гибкий диск, в отличие от магнитной ленты, является средством произвольного доступа. Информация, записанная на диске, располагается концентрическими окружностями (дорожками) на его поверхности. Одна или две дорожки обычно используются для хранения оглавления. Чтобы найти конкретную запись на диске, компьютер дает указание магнитной головке переместиться к дорожке с оглавлением и найти координаты места нужной информации; при этом диск вращается под магнитной головкой. Как только нужная запись найдена в оглавлении, компьютер приказывает магнитной головке переместиться к соответствующему месту диска. Те же принципы действуют при записи информации. Чтобы изменить информацию на магнитной ленте, надо прочитать всю ленту, вставить изменения и перезаписать измененный вариант. Принцип гибкого диска позволяет исправить конкретный сегмент записей, не затрагивая остальной поверхности. Вот почему запись на диске может быть осуществлена частями, каждая из которых вставляется в любое подходящее место. Единственное дополнительное требование состоит в том, чтобы оглавление на диске изменялось в соответствии с изменениями, сделанными на этом диске. Промышленность выпускает гибкие диски в основном размера 3,5 дюйма (89 мм). Типичный гибкий диск может хранить до 1,5 млн. знаков (байтов), что эквивалентно 900 страницам машинописного текста, напечатанного через два интервала. Имеются также диски большей информационной емкости. Дисководами для гибких дисков оснащаются практически все персональные компьютеры. Жесткий диск подобен гибкому, но сделан из прочных и жестких материалов. Он может вращаться быстрее и вмещает больше информации. Типичный дисковод жесткого диска для персонального компьютера почти не отличается размерами от дисковода гибкого диска, но емкость современного жесткого диска достигает 25-50 Гб, т.е. в тысячи раз больше, чем у гибкого. Кроме того, жесткие диски гораздо быстрее связываются со своим компьютером, чем дискеты. Поиск, который длится до нескольких секунд на дискете, занимает на жестком диске лишь сотые доли секунды. Жесткий диск в большинстве компьютеров служит внешним устройством хранения текущих записей и прикладного программного обеспечения. Обычно жесткий диск заключается в прочный герметичный корпус. Если такой диск отказывает, то компьютер, не имеющий резервной памяти, становится бесполезным. Некоторые жесткие диски, подобно гибким, могут удаляться из дисковода. Жесткие диски дороже дискет, однако стоимость единицы емкости у них постоянно уменьшается.
СИСТЕМА ХРАНЕНИЯ ИНФОРМАЦИИ на компакт-диске. При записи твердотельный лазер "выжигает" информацию на диске в виде крошечных углублений. При поиске такой же лазер используется (но в режиме пониженной мощности) для "чтения" информации: отраженный свет лазера преобразуется в электрические сигналы, которые воспроизводят первоначальную информацию. Положение лазера в режиме записи и поиска задается линейными двигателем и оптическим датчиком. 1 - подложка; 2 - слой оксида; 3 - покрытие; 4 - деталь; 5 - лазерный луч; 6 - линейный оптический датчик положения; 7 - оптическая головка; 8 - диск; 9 - лазерный диод; 10 - фотоприемник; 11 - линейный двигатель.
Оптический диск имеет сходство как с магнитным диском, так и с граммофонной пластинкой. Существуют диски CD-ROM, диски с однократной записью и многократным чтением и стираемые диски. Компакт-диски и диски с однократной записью используются для хранения большого количества информации, не подлежащей изменению. Последние заполняются только один раз, и введенная информация не может быть стерта. Стираемые оптические диски могут использоваться аналогично жестким дискам. По размерам оптические диски варьируются от размеров видеодиска до диаметров 133 мм и менее, характерных для звуковых компакт-дисков.
См. также ИЗОБРАЖЕНИЙ ЗАПИСЬ И ВОСПРОИЗВЕДЕНИЕ.
КОМПЬЮТЕРНЫЙ КОМПАКТ-ДИСК
Оптический диск, как и грампластинка, хранит информацию на спиральной дорожке. Как и в случае с магнитным диском, считывающая головка оптического плейера перемещается вдоль фиксированной направляющей радиально вперед-назад, а не на рычаге, вращающемся около некоторого центра, как в случае грампластинки. Для записи и чтения информации используется лазерный луч. Оптический компакт-диск хранит информацию в форме маленьких поверхностных углублений, соответствующих двоичным числам. Вариации интенсивности лазерного луча, отраженного от этих углублений, распознаются фотоэлементом, который превращает их в электрические сигналы. Стираемые оптические диски имеют покрытие, которое реагирует на магнитное поле от записывающей головки дисковода изменением оптической поляризации. Затем эти изменения могут быть превращены считывающей головкой в электрические сигналы. Информация, записанная на магнитооптическом диске, стирается путем комбинированного действия магнитного поля и лазерного луча. На диске CD-ROM диаметром 120 мм может храниться свыше 300 000 страниц печатного текста, или 650 Мб информации. Коммерческие CD-ROM используются для размещения многочисленных и разнообразных справочных материалов, клипов для компьютерной графики, анимации и комбинаций текста, звука и изображений. Они становятся незаменимыми в мультимедийных системах. Магнитооптические диски имеют такие же размеры, как и распространенные дискеты (89 и 133 мм). Технология производства запоминающих устройств постоянно совершенствуется, что приводит к повышению быстродействия и надежности и снижению стоимости, а у пользователя появляется выбор, практически удовлетворяющий поставленной вычислительной задаче.
Устройства ввода-вывода. Компьютер должен иметь возможность связываться с внешним миром. Кроме устройств внешней памяти, рассмотренных выше, компьютер снабжается связями с оператором, линиями телекоммуникаций, датчиками, исполнительными механизмами и другими машинами.
Интерфейс человек - компьютер. Связь с компьютером пока не похожа на разговор с человеком. Скорее она напоминает общение с пишущей машинкой. Отчасти такая ситуация является результатом недостатков, имеющихся у аппаратных средств, но в большей степени она объясняется неадекватностью программного обеспечения -не ясно, например, как люди думают, и еще меньше известно, как программировать компьютер, чтобы имитировать мышление даже в п
Иллюстрированный энциклопедический словарь
Словарь русского арго
Орфографический словарь
Словарь ударений
Трудности произношения и ударения
Формы слов для слова компьютер
Синонимы к слову компьютер
сущ., кол-во синонимов: 52
пэвм, маршрутизатор, принтсервер, нотбук, лаптоп, субноутбук, электронная вычислительная машина, нейрокомпьютер, умная машина, супермикроэвм, электронный архитектор, писюшник, настольник, микрокомпьютер, камп, промкомпьютер, миникомпьютер, суперкомпьютер, мыслящая машина, пк, мини-эвм, ноутбук, мини-компьютер, сервер, мак, голова, микроэвм, файлсервер, табулятор, лап-топ, хардвер, персоналка, электронный закройщик, компутер, комп, лэптоп, эвм, суперэвм, карманный компьютер, кпк
Тезаурус русской деловой лексики
Идеография
Морфемно-орфографический словарь
Грамматический словарь
Методические термины
Этимологический словарь
Словарь иностранных слов
Сканворды для слова компьютер
Полезные сервисы